Abstract

Doppler cooling on a forbidden transition is studied experimentally and numerically. By quenching the upper level of the cooling transition, the scattering rate is increased, and 106 40Ca atoms have been cooled and trapped in a magneto-optical trap to temperatures of down to 6 μK. A model is developed that describes the cooling method by rate equations. Based on the model, Monte Carlo simulations are performed that show good agreement with the experimental results. Possibilities of reaching high densities and low temperature by optimizing the parameters during the cooling phase are discussed, and the benefit of these ultracold atoms for the accuracy and stability of optical frequency standards is demonstrated.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Doppler cooling of an optically dense cloud of magnetically trapped atoms

Piet O. Schmidt, Sven Hensler, Jörg Werner, Thomas Binhammer, Axel Görlitz, and Tilman Pfau
J. Opt. Soc. Am. B 20(5) 960-967 (2003)

Quenched narrow-line second- and third-stage laser cooling of 40Ca

E. Anne Curtis, Christopher W. Oates, and Leo Hollberg
J. Opt. Soc. Am. B 20(5) 977-984 (2003)

Deceleration, trapping, and two-photon cooling of calcium atoms

Reinaldo L. Cavasso Filho, Wictor C. Magno, Daniela A. Manoel, Artemio Scalabrin, Daniel Pereira, and Flavio C. Cruz
J. Opt. Soc. Am. B 20(5) 994-1002 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription