Abstract

We demonstrate three-dimensional quenched narrow-line laser cooling and trapping of 40Ca. With 5 ms of cooling time we can transfer 28% of the atoms from a magneto-optic trap based on the strong 423-nm cooling line to a trap based on the narrow 657-nm clock transition (which is quenched by an intercombination line at 552 nm), thereby reducing the atoms’ temperature from 2 mK to 10 μK. This reduction in temperature should help to reduce the overall systematic frequency uncertainty for our Ca optical frequency standard to <1 Hz. Additional pulsed, quenched, narrow-line third-stage cooling in one dimension yields subrecoil temperatures as low as 300 nK and makes possible the observation of high-contrast two-pulse Ramsey spectroscopic line shapes.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett. 69, 1741–1744 (1992).
    [CrossRef] [PubMed]
  2. J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, “Raman cooling of cesium below 3 nK: new approach inspired by Lévy flight statistics,” Phys. Rev. Lett. 75, 4575–4578 (1995).
    [CrossRef] [PubMed]
  3. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
    [CrossRef] [PubMed]
  4. J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, and C. Cohen-Tannoudji, “Two-dimensional subrecoil laser cooling,” Phys. Rev. Lett. 73, 1915–1918 (1994).
    [CrossRef] [PubMed]
  5. C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
    [CrossRef] [PubMed]
  6. T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
    [CrossRef]
  7. G. Wilpers, “Ein optisches Frequenznormal mit kalten und ultakalten Atomen,” Ph.D. dissertation (University of Hannover, Hannover, Germany, 2002), p. 85.
  8. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
    [CrossRef]
  9. K. R. Vogel, T. P. Dineen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
    [CrossRef]
  10. F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
    [CrossRef] [PubMed]
  11. E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403(R) (2001).
    [CrossRef]
  12. T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
    [CrossRef] [PubMed]
  13. C. W. Oates, F. Bondu, R. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. J. Phys. 7, 449–460 (1999).
  14. G. W ilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “An optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
    [CrossRef]
  15. Ch. J. Bordé, Ch. Salomon, S. Avrillier, A. Van Lerberghe, Ch. Bréant, D. Bassi, and G. Scoles, “Optical Ramsey fringes with traveling waves,” Phys. Rev. A 30, 1836–1848 (1984).
    [CrossRef]
  16. S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
    [CrossRef] [PubMed]
  17. G. J. Dick, “Local oscillator induced instabilities in trapped ion frequency standards,” in Proceedings of the 19th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, Redondo Beach, California, December 1–3, 1987 (U.S. Naval Observatory, Washington, D.C., 1988), pp. 133–147.
  18. L. Maleki, ed., special issue on the Dick effect, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 876–905 (1998).
    [CrossRef]
  19. L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
    [CrossRef]
  20. Lorentzian line shapes were also observed for ultracold Sr atoms, as reported by K. R. Vogel, “Laser cooling on a narrow atomic transition and measurement of the two-body cold collision loss rate in a strontium magneto-optical trap,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1999), pp. 159–183.
  21. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
    [CrossRef] [PubMed]
  22. H. Katori, T. Ido, and M. Kuwata-Gonokami, “Optimal design of dipole potentials for efficient loading of Sr atoms,” J. Phys. Soc. Jpn. 68, 2479–2482 (1999).
    [CrossRef]
  23. H. Katori, “Spectroscopy of strontium atoms in the Lamb–Dicke confinement,” in Proceedings of the Sixth Symposium of Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2001), pp. 323–330.

2002

G. W ilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “An optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef]

2001

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403(R) (2001).
[CrossRef]

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

2000

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
[CrossRef]

1999

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

K. R. Vogel, T. P. Dineen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
[CrossRef]

C. W. Oates, F. Bondu, R. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. J. Phys. 7, 449–460 (1999).

H. Katori, T. Ido, and M. Kuwata-Gonokami, “Optimal design of dipole potentials for efficient loading of Sr atoms,” J. Phys. Soc. Jpn. 68, 2479–2482 (1999).
[CrossRef]

1998

L. Maleki, ed., special issue on the Dick effect, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 876–905 (1998).
[CrossRef]

1995

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, “Raman cooling of cesium below 3 nK: new approach inspired by Lévy flight statistics,” Phys. Rev. Lett. 75, 4575–4578 (1995).
[CrossRef] [PubMed]

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

1994

J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, and C. Cohen-Tannoudji, “Two-dimensional subrecoil laser cooling,” Phys. Rev. Lett. 73, 1915–1918 (1994).
[CrossRef] [PubMed]

1992

M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett. 69, 1741–1744 (1992).
[CrossRef] [PubMed]

1989

F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
[CrossRef] [PubMed]

1988

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

1984

Ch. J. Bordé, Ch. Salomon, S. Avrillier, A. Van Lerberghe, Ch. Bréant, D. Bassi, and G. Scoles, “Optical Ramsey fringes with traveling waves,” Phys. Rev. A 30, 1836–1848 (1984).
[CrossRef]

Adams, C. S.

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

Anderson, M. H.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Arimondo, E.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

Aspect, A.

J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, and C. Cohen-Tannoudji, “Two-dimensional subrecoil laser cooling,” Phys. Rev. Lett. 73, 1915–1918 (1994).
[CrossRef] [PubMed]

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

Avrillier, S.

Ch. J. Bordé, Ch. Salomon, S. Avrillier, A. Van Lerberghe, Ch. Bréant, D. Bassi, and G. Scoles, “Optical Ramsey fringes with traveling waves,” Phys. Rev. A 30, 1836–1848 (1984).
[CrossRef]

Bardou, F.

J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, “Raman cooling of cesium below 3 nK: new approach inspired by Lévy flight statistics,” Phys. Rev. Lett. 75, 4575–4578 (1995).
[CrossRef] [PubMed]

J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, and C. Cohen-Tannoudji, “Two-dimensional subrecoil laser cooling,” Phys. Rev. Lett. 73, 1915–1918 (1994).
[CrossRef] [PubMed]

Bassi, D.

Ch. J. Bordé, Ch. Salomon, S. Avrillier, A. Van Lerberghe, Ch. Bréant, D. Bassi, and G. Scoles, “Optical Ramsey fringes with traveling waves,” Phys. Rev. A 30, 1836–1848 (1984).
[CrossRef]

Ben Dahan, M.

J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, “Raman cooling of cesium below 3 nK: new approach inspired by Lévy flight statistics,” Phys. Rev. Lett. 75, 4575–4578 (1995).
[CrossRef] [PubMed]

Bergquist, J. C.

S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
[CrossRef]

F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
[CrossRef] [PubMed]

Binnewies, T.

G. W ilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “An optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef]

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

Bondu, F.

C. W. Oates, F. Bondu, R. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. J. Phys. 7, 449–460 (1999).

Bordé, Ch. J.

Ch. J. Bordé, Ch. Salomon, S. Avrillier, A. Van Lerberghe, Ch. Bréant, D. Bassi, and G. Scoles, “Optical Ramsey fringes with traveling waves,” Phys. Rev. A 30, 1836–1848 (1984).
[CrossRef]

Bréant, Ch.

Ch. J. Bordé, Ch. Salomon, S. Avrillier, A. Van Lerberghe, Ch. Bréant, D. Bassi, and G. Scoles, “Optical Ramsey fringes with traveling waves,” Phys. Rev. A 30, 1836–1848 (1984).
[CrossRef]

Chu, S.

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett. 69, 1741–1744 (1992).
[CrossRef] [PubMed]

Cohen-Tannoudji, C.

J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, “Raman cooling of cesium below 3 nK: new approach inspired by Lévy flight statistics,” Phys. Rev. Lett. 75, 4575–4578 (1995).
[CrossRef] [PubMed]

J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, and C. Cohen-Tannoudji, “Two-dimensional subrecoil laser cooling,” Phys. Rev. Lett. 73, 1915–1918 (1994).
[CrossRef] [PubMed]

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

Cornell, E. A.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Curtis, E. A.

S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403(R) (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
[CrossRef]

Davidson, N.

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

Degenhardt, C.

G. W ilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “An optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef]

Diddams, S. A.

S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
[CrossRef]

Diedrich, F.

F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
[CrossRef] [PubMed]

Dineen, T. P.

K. R. Vogel, T. P. Dineen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
[CrossRef]

Drullinger, R. E.

S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
[CrossRef]

Ensher, J. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Ertmer, W.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

Fox, R.

C. W. Oates, F. Bondu, R. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. J. Phys. 7, 449–460 (1999).

Gallagher, A.

K. R. Vogel, T. P. Dineen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
[CrossRef]

Hall, J. L.

K. R. Vogel, T. P. Dineen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
[CrossRef]

Helmcke, J.

G. W ilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “An optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef]

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

Hollberg, L.

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403(R) (2001).
[CrossRef]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
[CrossRef]

C. W. Oates, F. Bondu, R. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. J. Phys. 7, 449–460 (1999).

Ido, T.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

H. Katori, T. Ido, and M. Kuwata-Gonokami, “Optimal design of dipole potentials for efficient loading of Sr atoms,” J. Phys. Soc. Jpn. 68, 2479–2482 (1999).
[CrossRef]

ilpers, G. W

G. W ilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “An optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef]

Isoya, Y.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Itano, W. M.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
[CrossRef]

F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
[CrossRef] [PubMed]

Ivanov, E. N.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Kaiser, R.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

Kasevich, M.

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett. 69, 1741–1744 (1992).
[CrossRef] [PubMed]

Katori, H.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

H. Katori, T. Ido, and M. Kuwata-Gonokami, “Optimal design of dipole potentials for efficient loading of Sr atoms,” J. Phys. Soc. Jpn. 68, 2479–2482 (1999).
[CrossRef]

Kuwata-Gonokami, M.

H. Katori, T. Ido, and M. Kuwata-Gonokami, “Optimal design of dipole potentials for efficient loading of Sr atoms,” J. Phys. Soc. Jpn. 68, 2479–2482 (1999).
[CrossRef]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Lawall, J.

J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, and C. Cohen-Tannoudji, “Two-dimensional subrecoil laser cooling,” Phys. Rev. Lett. 73, 1915–1918 (1994).
[CrossRef] [PubMed]

Leduc, M.

J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, and C. Cohen-Tannoudji, “Two-dimensional subrecoil laser cooling,” Phys. Rev. Lett. 73, 1915–1918 (1994).
[CrossRef] [PubMed]

Lee, H. J.

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

Lee, W. D.

S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
[CrossRef]

Maleki, L.

L. Maleki, ed., special issue on the Dick effect, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 876–905 (1998).
[CrossRef]

Matthews, M. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Mehlstäubler, T. E.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

Oates, C. W.

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403(R) (2001).
[CrossRef]

S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
[CrossRef]

C. W. Oates, F. Bondu, R. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. J. Phys. 7, 449–460 (1999).

Peik, E.

J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, “Raman cooling of cesium below 3 nK: new approach inspired by Lévy flight statistics,” Phys. Rev. Lett. 75, 4575–4578 (1995).
[CrossRef] [PubMed]

Rand, S.

J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, “Raman cooling of cesium below 3 nK: new approach inspired by Lévy flight statistics,” Phys. Rev. Lett. 75, 4575–4578 (1995).
[CrossRef] [PubMed]

Rasel, E. M.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

Reichel, J.

J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, “Raman cooling of cesium below 3 nK: new approach inspired by Lévy flight statistics,” Phys. Rev. Lett. 75, 4575–4578 (1995).
[CrossRef] [PubMed]

Riehle, F.

G. W ilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “An optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef]

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

Robinson, H. G.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Salomon, C.

J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, “Raman cooling of cesium below 3 nK: new approach inspired by Lévy flight statistics,” Phys. Rev. Lett. 75, 4575–4578 (1995).
[CrossRef] [PubMed]

Salomon, Ch.

Ch. J. Bordé, Ch. Salomon, S. Avrillier, A. Van Lerberghe, Ch. Bréant, D. Bassi, and G. Scoles, “Optical Ramsey fringes with traveling waves,” Phys. Rev. A 30, 1836–1848 (1984).
[CrossRef]

Saubamea, B.

J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, and C. Cohen-Tannoudji, “Two-dimensional subrecoil laser cooling,” Phys. Rev. Lett. 73, 1915–1918 (1994).
[CrossRef] [PubMed]

Scoles, G.

Ch. J. Bordé, Ch. Salomon, S. Avrillier, A. Van Lerberghe, Ch. Bréant, D. Bassi, and G. Scoles, “Optical Ramsey fringes with traveling waves,” Phys. Rev. A 30, 1836–1848 (1984).
[CrossRef]

Shimizu, K.

J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, and C. Cohen-Tannoudji, “Two-dimensional subrecoil laser cooling,” Phys. Rev. Lett. 73, 1915–1918 (1994).
[CrossRef] [PubMed]

Sterr, U.

G. W ilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “An optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef]

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

Udem, T.

S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
[CrossRef]

Udem, Th.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Van Lerberghe, A.

Ch. J. Bordé, Ch. Salomon, S. Avrillier, A. Van Lerberghe, Ch. Bréant, D. Bassi, and G. Scoles, “Optical Ramsey fringes with traveling waves,” Phys. Rev. A 30, 1836–1848 (1984).
[CrossRef]

Vansteenkiste, N.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

Vogel, K. R.

S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
[CrossRef]

K. R. Vogel, T. P. Dineen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
[CrossRef]

Wieman, C. E.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Wilpers, G.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

Wineland, D. J.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
[CrossRef] [PubMed]

Eur. J. Phys.

C. W. Oates, F. Bondu, R. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. J. Phys. 7, 449–460 (1999).

IEEE J. Quantum Electron.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

IEEE Trans. Instrum. Meas.

K. R. Vogel, T. P. Dineen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

L. Maleki, ed., special issue on the Dick effect, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 876–905 (1998).
[CrossRef]

J. Phys. Soc. Jpn.

H. Katori, T. Ido, and M. Kuwata-Gonokami, “Optimal design of dipole potentials for efficient loading of Sr atoms,” J. Phys. Soc. Jpn. 68, 2479–2482 (1999).
[CrossRef]

Phys. Rev. A

Ch. J. Bordé, Ch. Salomon, S. Avrillier, A. Van Lerberghe, Ch. Bréant, D. Bassi, and G. Scoles, “Optical Ramsey fringes with traveling waves,” Phys. Rev. A 30, 1836–1848 (1984).
[CrossRef]

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403(R) (2001).
[CrossRef]

Phys. Rev. Lett.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
[CrossRef] [PubMed]

M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett. 69, 1741–1744 (1992).
[CrossRef] [PubMed]

J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, “Raman cooling of cesium below 3 nK: new approach inspired by Lévy flight statistics,” Phys. Rev. Lett. 75, 4575–4578 (1995).
[CrossRef] [PubMed]

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, and C. Cohen-Tannoudji, “Two-dimensional subrecoil laser cooling,” Phys. Rev. Lett. 73, 1915–1918 (1994).
[CrossRef] [PubMed]

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
[CrossRef]

G. W ilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “An optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Science

S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Other

H. Katori, “Spectroscopy of strontium atoms in the Lamb–Dicke confinement,” in Proceedings of the Sixth Symposium of Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2001), pp. 323–330.

G. J. Dick, “Local oscillator induced instabilities in trapped ion frequency standards,” in Proceedings of the 19th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, Redondo Beach, California, December 1–3, 1987 (U.S. Naval Observatory, Washington, D.C., 1988), pp. 133–147.

Lorentzian line shapes were also observed for ultracold Sr atoms, as reported by K. R. Vogel, “Laser cooling on a narrow atomic transition and measurement of the two-body cold collision loss rate in a strontium magneto-optical trap,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1999), pp. 159–183.

G. Wilpers, “Ein optisches Frequenznormal mit kalten und ultakalten Atomen,” Ph.D. dissertation (University of Hannover, Hannover, Germany, 2002), p. 85.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Energy-level diagram for 40Ca, showing relevant levels for cooling and quenching.

Fig. 2
Fig. 2

Timing diagram for second-stage cooling. See text for details of the modified shelving detection scheme.

Fig. 3
Fig. 3

Temperature of the atom cloud (corresponding to the rms velocity derived from the fit of a Gaussian line shape to the measured velocity distribution) versus second-stage cooling time. Measurements of the velocity distribution in the other two dimensions yield similar results. The initial trap temperature with no second-stage cooling is ∼2000 μK.

Fig. 4
Fig. 4

Fraction of atoms transferred from the blue trap to the red–green trap versus second-stage cooling time.

Fig. 5
Fig. 5

Atomic velocity distribution after 15 ms of red–green cooling and trapping. A fit to a Gaussian gives a rms velocity of 4.9 cm/s, which corresponds to a temperature of 11.5 μK.

Fig. 6
Fig. 6

Bordé–Ramsey fringes based on the m=0m=0 levels of the 657-nm clock transition with a resolution of 11.55 kHz taken after 4-ms second-stage cooling. A single 100-s frequency sweep shows high-contrast, Fourier-transform-limited fringes. The asymmetric fringe envelope is a result of atomic recoil. Inset, high-resolution 1.45-kHz Bordé–Ramsey fringes taken under the same cooling conditions (<30-s averaging time).

Fig. 7
Fig. 7

Timing diagram for three-stage cooling showing the additional 1-D narrow-line quenched cooling.

Fig. 8
Fig. 8

Velocity distribution after 6-ms second-stage cooling followed by eight cycles of 1-D single-frequency 15-μs red pulses and green quenching. A fit to a Lorentzian yields a velocity (HWHM) of 1.31 cm/s (subrecoil), which corresponds to a temperature of 840 nK.

Fig. 9
Fig. 9

Velocity distribution after 5-ms second-stage cooling followed by five cycles of 15-μs pulses and eight cycles of 25 μs pulses of red–green cooling. A fit of the narrow central feature to a Lorentzian yields a velocity (HWHM) of 1.0 cm/s (two-thirds of a recoil) and a temperature of 520 nK.

Fig. 10
Fig. 10

Two-pulse Ramsey fringes with 1-μs red pulses separated by a 5-μs Ramsey time. Fourier-transform-limited spectrum.

Metrics