Abstract

We present a detailed investigation of strontium magneto-optical trap (MOT) dynamics. Relevant physical quantities in the trap, such as temperature, atom number and density, and loss channels and lifetime, are explored with respect to various trap parameters. By studying the oscillatory response of a two-level 1S01P1 88Sr MOT, we firmly establish the laser cooling dynamics predicted by Doppler theory. Measurements of the MOT temperature, however, deviate severely from Doppler theory predictions, implying significant additional heating mechanisms. To explore the feasibility of attaining quantum degenerate alkaline-earth samples via evaporative cooling, we also present the first experimental demonstration of magnetically trapped metastable 88Sr. Furthermore, motivated by the goal of establishing the fermionic isotope 87Sr as one of the highest-quality, neutral-atom-based optical frequency standards, we present a preliminary study of sub-Doppler cooling in a 87Sr MOT. A dual-isotope (87Sr and 88Sr) MOT is also demonstrated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
    [CrossRef]
  2. J. P. Gordon and A. Ashkin, “Motion of atoms in a radiation trap,” Phys. Rev. A 21, 1606–1617 (1980).
    [CrossRef]
  3. S. Stenholm, “The semiclassical theory of laser cooling,” Rev. Mod. Phys. 58, 699–739 (1986).
    [CrossRef]
  4. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B 6, 2084–2107 (1989).
    [CrossRef]
  5. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
    [CrossRef] [PubMed]
  6. J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am. B 6, 2023–2045 (1989).
    [CrossRef]
  7. D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, and S. Chu, “Optical molasses and multilevel atoms: experiment,” J. Opt. Soc. Am. B 6, 2072–2083 (1989).
    [CrossRef]
  8. C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
    [CrossRef] [PubMed]
  9. K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992).
    [CrossRef] [PubMed]
  10. C. Salomon, J. Dalibard, W. D. Phillips, A. Clairon, and S. Guellati, “Laser cooling of cesium atoms below 3 μK,” Europhys. Lett. 12, 683–699 (1990).
    [CrossRef]
  11. S. Chang, T. Y. Kwon, H. S. Lee, and V. G. Minogin, “Two-photon laser-cooling mechanism in multilevel interaction schemes,” Phys. Rev. A 60, 3148–3159 (1999).
    [CrossRef]
  12. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
    [CrossRef]
  13. K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
    [CrossRef]
  14. T. Ido, Y. Isoya, and H. Katori, “Optical-dipole trapping of Sr atoms at a high phase-space density,” Phys. Rev. A 61, 061403 (2000).
    [CrossRef]
  15. T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, (R)745–748 (1999).
    [CrossRef]
  16. E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403 (2001).
    [CrossRef]
  17. T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
    [CrossRef] [PubMed]
  18. J. Grünert and A. Hemmerich, “Sub-Doppler magneto-optical trap for calcium,” Phys. Rev. A 65, 041401 (2002).
    [CrossRef]
  19. Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniature, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
    [CrossRef] [PubMed]
  20. X. Y. Xu, T. H. Loftus, M. J. Smith, J. L. Hall, A. Gallagher, and J. Ye, “Dynamics in a two-level atom magneto-optical trap,” Phys. Rev. A 66, 011401 (2002).
    [CrossRef]
  21. F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. H. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
    [CrossRef]
  22. F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).
  23. F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, and J. Helmcke, “The optical calcium frequency standard,” IEEE Trans. Instrum. Meas. 48, 613–617 (1999).
    [CrossRef]
  24. T. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
    [CrossRef]
  25. T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
    [CrossRef] [PubMed]
  26. J. Weiner, V. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
    [CrossRef]
  27. T. P. Dinneen, K. R. Vogel, E. Arimondo, J. L. Hall, and A. Gallagher, “Cold collision of Sr*-Sr in a magneto-optical trap,” Phys. Rev. A 59, 1216–1222 (1999).
    [CrossRef]
  28. G. Zinner, T. Binnewies, F. Riehle, and E. Tiemann, “Photoassociation of cold Ca atoms,” Phys. Rev. Lett. 85, 2292–2295 (2000).
    [CrossRef] [PubMed]
  29. H. Katori, “Spectroscopy of strontium atoms in the Lamb–Dicke confinement,” in Proceedings of the 6th Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 323–330.
  30. A. Derevianko, “Feasibility of cooling and trapping metastable alkaline-earth atoms,” Phys. Rev. Lett. 87, 023002 (2001).
    [CrossRef]
  31. J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
    [CrossRef]
  32. T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Magnetic trapping of ytterbium and the alkaline earth metals,” Phys. Rev. A 66, 013411 (2002).
    [CrossRef]
  33. J. Goldwin, S. B. Papp, B. DeMarco, and D. S. Jin, “Two-species magneto-optical trap with 40K and 87Rb,” Phys. Rev. A 65, 021402 (2002).
    [CrossRef]
  34. M.-O. Mewes, G. Ferrari, F. Schreck, A. Sinatra, and C. Salomon, “Simultaneous magneto-optical trapping of two lithium isotopes,” Phys. Rev. A 61, 011403 (1999).
    [CrossRef]
  35. S. G. Crane, X. Zhao, W. Taylor, and D. J. Vieira, “Trapping an isotopic mixture of fermionic 84Rb and bosonic 87Rb atoms,” Phys. Rev. A 62, 011402 (1999).
    [CrossRef]
  36. T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Simultaneous multi-isotope trapping of ytterbium,” Phys. Rev. A 63, 053401 (2001).
    [CrossRef]
  37. T. Kurosu and F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys., 29, L2127–L2129 (1990).
    [CrossRef]
  38. T. Kurosu and F. Shimizu, “Laser cooling and trapping of alkaline earth atoms,” Jpn. J. Appl. Phys. 31, 908–912 (1992).
    [CrossRef]
  39. L. R. Hunter, W. A. Walker, and D. S. Weiss, “Observation of an atomic Stark-electric quadrupole interference,” Phys. Rev. Lett. 56, 823–826 (1986).
    [CrossRef] [PubMed]
  40. C. W. Bauschlicher, S. R. Langhoff, and H. Partridge, “The radiative lifetime of the 1D2 state of Ca and Sr: a core-valence treatment,” J. Phys. B: At. Mol. Phys. 18, 1523–1532 (1985).
    [CrossRef]
  41. K. Vogel, Ph.D. thesis (University of Colorado, Boulder, 1999).
  42. H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
    [CrossRef] [PubMed]

2002 (5)

J. Grünert and A. Hemmerich, “Sub-Doppler magneto-optical trap for calcium,” Phys. Rev. A 65, 041401 (2002).
[CrossRef]

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniature, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

X. Y. Xu, T. H. Loftus, M. J. Smith, J. L. Hall, A. Gallagher, and J. Ye, “Dynamics in a two-level atom magneto-optical trap,” Phys. Rev. A 66, 011401 (2002).
[CrossRef]

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Magnetic trapping of ytterbium and the alkaline earth metals,” Phys. Rev. A 66, 013411 (2002).
[CrossRef]

J. Goldwin, S. B. Papp, B. DeMarco, and D. S. Jin, “Two-species magneto-optical trap with 40K and 87Rb,” Phys. Rev. A 65, 021402 (2002).
[CrossRef]

2001 (6)

A. Derevianko, “Feasibility of cooling and trapping metastable alkaline-earth atoms,” Phys. Rev. Lett. 87, 023002 (2001).
[CrossRef]

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Simultaneous multi-isotope trapping of ytterbium,” Phys. Rev. A 63, 053401 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403 (2001).
[CrossRef]

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

2000 (2)

T. Ido, Y. Isoya, and H. Katori, “Optical-dipole trapping of Sr atoms at a high phase-space density,” Phys. Rev. A 61, 061403 (2000).
[CrossRef]

G. Zinner, T. Binnewies, F. Riehle, and E. Tiemann, “Photoassociation of cold Ca atoms,” Phys. Rev. Lett. 85, 2292–2295 (2000).
[CrossRef] [PubMed]

1999 (9)

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, (R)745–748 (1999).
[CrossRef]

S. Chang, T. Y. Kwon, H. S. Lee, and V. G. Minogin, “Two-photon laser-cooling mechanism in multilevel interaction schemes,” Phys. Rev. A 60, 3148–3159 (1999).
[CrossRef]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
[CrossRef]

J. Weiner, V. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
[CrossRef]

T. P. Dinneen, K. R. Vogel, E. Arimondo, J. L. Hall, and A. Gallagher, “Cold collision of Sr*-Sr in a magneto-optical trap,” Phys. Rev. A 59, 1216–1222 (1999).
[CrossRef]

F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, and J. Helmcke, “The optical calcium frequency standard,” IEEE Trans. Instrum. Meas. 48, 613–617 (1999).
[CrossRef]

M.-O. Mewes, G. Ferrari, F. Schreck, A. Sinatra, and C. Salomon, “Simultaneous magneto-optical trapping of two lithium isotopes,” Phys. Rev. A 61, 011403 (1999).
[CrossRef]

S. G. Crane, X. Zhao, W. Taylor, and D. J. Vieira, “Trapping an isotopic mixture of fermionic 84Rb and bosonic 87Rb atoms,” Phys. Rev. A 62, 011402 (1999).
[CrossRef]

1998 (1)

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. H. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[CrossRef]

1996 (1)

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

1994 (1)

T. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
[CrossRef]

1992 (3)

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992).
[CrossRef] [PubMed]

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
[CrossRef] [PubMed]

T. Kurosu and F. Shimizu, “Laser cooling and trapping of alkaline earth atoms,” Jpn. J. Appl. Phys. 31, 908–912 (1992).
[CrossRef]

1990 (3)

C. Salomon, J. Dalibard, W. D. Phillips, A. Clairon, and S. Guellati, “Laser cooling of cesium atoms below 3 μK,” Europhys. Lett. 12, 683–699 (1990).
[CrossRef]

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
[CrossRef] [PubMed]

T. Kurosu and F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys., 29, L2127–L2129 (1990).
[CrossRef]

1989 (3)

1987 (1)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

1986 (2)

S. Stenholm, “The semiclassical theory of laser cooling,” Rev. Mod. Phys. 58, 699–739 (1986).
[CrossRef]

L. R. Hunter, W. A. Walker, and D. S. Weiss, “Observation of an atomic Stark-electric quadrupole interference,” Phys. Rev. Lett. 56, 823–826 (1986).
[CrossRef] [PubMed]

1985 (1)

C. W. Bauschlicher, S. R. Langhoff, and H. Partridge, “The radiative lifetime of the 1D2 state of Ca and Sr: a core-valence treatment,” J. Phys. B: At. Mol. Phys. 18, 1523–1532 (1985).
[CrossRef]

1980 (1)

J. P. Gordon and A. Ashkin, “Motion of atoms in a radiation trap,” Phys. Rev. A 21, 1606–1617 (1980).
[CrossRef]

1975 (1)

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
[CrossRef]

Arimondo, E.

T. P. Dinneen, K. R. Vogel, E. Arimondo, J. L. Hall, and A. Gallagher, “Cold collision of Sr*-Sr in a magneto-optical trap,” Phys. Rev. A 59, 1216–1222 (1999).
[CrossRef]

Ashkin, A.

J. P. Gordon and A. Ashkin, “Motion of atoms in a radiation trap,” Phys. Rev. A 21, 1606–1617 (1980).
[CrossRef]

Bagnato, V.

J. Weiner, V. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
[CrossRef]

Bauschlicher, C. W.

C. W. Bauschlicher, S. R. Langhoff, and H. Partridge, “The radiative lifetime of the 1D2 state of Ca and Sr: a core-valence treatment,” J. Phys. B: At. Mol. Phys. 18, 1523–1532 (1985).
[CrossRef]

Bergquist, J. C.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Bernard, J. C.

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniature, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

Bidel, Y.

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniature, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

Binnewies, T.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

G. Zinner, T. Binnewies, F. Riehle, and E. Tiemann, “Photoassociation of cold Ca atoms,” Phys. Rev. Lett. 85, 2292–2295 (2000).
[CrossRef] [PubMed]

Bochinski, J. R.

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Magnetic trapping of ytterbium and the alkaline earth metals,” Phys. Rev. A 66, 013411 (2002).
[CrossRef]

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Simultaneous multi-isotope trapping of ytterbium,” Phys. Rev. A 63, 053401 (2001).
[CrossRef]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Chang, S.

S. Chang, T. Y. Kwon, H. S. Lee, and V. G. Minogin, “Two-photon laser-cooling mechanism in multilevel interaction schemes,” Phys. Rev. A 60, 3148–3159 (1999).
[CrossRef]

Chu, S.

D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, and S. Chu, “Optical molasses and multilevel atoms: experiment,” J. Opt. Soc. Am. B 6, 2072–2083 (1989).
[CrossRef]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Clairon, A.

C. Salomon, J. Dalibard, W. D. Phillips, A. Clairon, and S. Guellati, “Laser cooling of cesium atoms below 3 μK,” Europhys. Lett. 12, 683–699 (1990).
[CrossRef]

Cohen-Tannoudji, C.

Crane, S. G.

S. G. Crane, X. Zhao, W. Taylor, and D. J. Vieira, “Trapping an isotopic mixture of fermionic 84Rb and bosonic 87Rb atoms,” Phys. Rev. A 62, 011402 (1999).
[CrossRef]

Curtis, E. A.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403 (2001).
[CrossRef]

Dalibard, J.

C. Salomon, J. Dalibard, W. D. Phillips, A. Clairon, and S. Guellati, “Laser cooling of cesium atoms below 3 μK,” Europhys. Lett. 12, 683–699 (1990).
[CrossRef]

J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am. B 6, 2023–2045 (1989).
[CrossRef]

Delande, D.

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniature, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

DeMarco, B.

J. Goldwin, S. B. Papp, B. DeMarco, and D. S. Jin, “Two-species magneto-optical trap with 40K and 87Rb,” Phys. Rev. A 65, 021402 (2002).
[CrossRef]

Derevianko, A.

A. Derevianko, “Feasibility of cooling and trapping metastable alkaline-earth atoms,” Phys. Rev. Lett. 87, 023002 (2001).
[CrossRef]

Diddams, S. A.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Dinneen, T. P.

T. P. Dinneen, K. R. Vogel, E. Arimondo, J. L. Hall, and A. Gallagher, “Cold collision of Sr*-Sr in a magneto-optical trap,” Phys. Rev. A 59, 1216–1222 (1999).
[CrossRef]

K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
[CrossRef]

Drullinger, R. E.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Ertmer, W.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. H. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[CrossRef]

Ferrari, G.

M.-O. Mewes, G. Ferrari, F. Schreck, A. Sinatra, and C. Salomon, “Simultaneous magneto-optical trapping of two lithium isotopes,” Phys. Rev. A 61, 011403 (1999).
[CrossRef]

Gallagher, A.

X. Y. Xu, T. H. Loftus, M. J. Smith, J. L. Hall, A. Gallagher, and J. Ye, “Dynamics in a two-level atom magneto-optical trap,” Phys. Rev. A 66, 011401 (2002).
[CrossRef]

K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
[CrossRef]

T. P. Dinneen, K. R. Vogel, E. Arimondo, J. L. Hall, and A. Gallagher, “Cold collision of Sr*-Sr in a magneto-optical trap,” Phys. Rev. A 59, 1216–1222 (1999).
[CrossRef]

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
[CrossRef] [PubMed]

Goldwin, J.

J. Goldwin, S. B. Papp, B. DeMarco, and D. S. Jin, “Two-species magneto-optical trap with 40K and 87Rb,” Phys. Rev. A 65, 021402 (2002).
[CrossRef]

Gordon, J. P.

J. P. Gordon and A. Ashkin, “Motion of atoms in a radiation trap,” Phys. Rev. A 21, 1606–1617 (1980).
[CrossRef]

Greene, C. H.

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
[CrossRef] [PubMed]

Grünert, J.

J. Grünert and A. Hemmerich, “Sub-Doppler magneto-optical trap for calcium,” Phys. Rev. A 65, 041401 (2002).
[CrossRef]

Guellati, S.

C. Salomon, J. Dalibard, W. D. Phillips, A. Clairon, and S. Guellati, “Laser cooling of cesium atoms below 3 μK,” Europhys. Lett. 12, 683–699 (1990).
[CrossRef]

Hall, J. L.

X. Y. Xu, T. H. Loftus, M. J. Smith, J. L. Hall, A. Gallagher, and J. Ye, “Dynamics in a two-level atom magneto-optical trap,” Phys. Rev. A 66, 011401 (2002).
[CrossRef]

K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
[CrossRef]

T. P. Dinneen, K. R. Vogel, E. Arimondo, J. L. Hall, and A. Gallagher, “Cold collision of Sr*-Sr in a magneto-optical trap,” Phys. Rev. A 59, 1216–1222 (1999).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
[CrossRef]

Helmcke, J.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, and J. Helmcke, “The optical calcium frequency standard,” IEEE Trans. Instrum. Meas. 48, 613–617 (1999).
[CrossRef]

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

T. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
[CrossRef]

Hemmerich, A.

J. Grünert and A. Hemmerich, “Sub-Doppler magneto-optical trap for calcium,” Phys. Rev. A 65, 041401 (2002).
[CrossRef]

Hensler, S.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

Hinderthur, H.

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. H. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[CrossRef]

Hollberg, L.

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Honda, K.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, (R)745–748 (1999).
[CrossRef]

Hunter, L. R.

L. R. Hunter, W. A. Walker, and D. S. Weiss, “Observation of an atomic Stark-electric quadrupole interference,” Phys. Rev. Lett. 56, 823–826 (1986).
[CrossRef] [PubMed]

Ido, T.

T. Ido, Y. Isoya, and H. Katori, “Optical-dipole trapping of Sr atoms at a high phase-space density,” Phys. Rev. A 61, 061403 (2000).
[CrossRef]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Isoya, Y.

T. Ido, Y. Isoya, and H. Katori, “Optical-dipole trapping of Sr atoms at a high phase-space density,” Phys. Rev. A 61, 061403 (2000).
[CrossRef]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Itano, W. M.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Jin, D. S.

J. Goldwin, S. B. Papp, B. DeMarco, and D. S. Jin, “Two-species magneto-optical trap with 40K and 87Rb,” Phys. Rev. A 65, 021402 (2002).
[CrossRef]

Julienne, P. S.

J. Weiner, V. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
[CrossRef]

Kaiser, R.

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniature, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

Katori, H.

T. Ido, Y. Isoya, and H. Katori, “Optical-dipole trapping of Sr atoms at a high phase-space density,” Phys. Rev. A 61, 061403 (2000).
[CrossRef]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Kisters, T.

T. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
[CrossRef]

Klappauf, B.

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniature, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

Kurosu, T.

T. Kurosu and F. Shimizu, “Laser cooling and trapping of alkaline earth atoms,” Jpn. J. Appl. Phys. 31, 908–912 (1992).
[CrossRef]

T. Kurosu and F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys., 29, L2127–L2129 (1990).
[CrossRef]

Kuwamoto, T.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, (R)745–748 (1999).
[CrossRef]

Kuwata-Gonokami, M.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Kwon, T. Y.

S. Chang, T. Y. Kwon, H. S. Lee, and V. G. Minogin, “Two-photon laser-cooling mechanism in multilevel interaction schemes,” Phys. Rev. A 60, 3148–3159 (1999).
[CrossRef]

Labeyrie, G.

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniature, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

Langhoff, S. R.

C. W. Bauschlicher, S. R. Langhoff, and H. Partridge, “The radiative lifetime of the 1D2 state of Ca and Sr: a core-valence treatment,” J. Phys. B: At. Mol. Phys. 18, 1523–1532 (1985).
[CrossRef]

Lee, H. S.

S. Chang, T. Y. Kwon, H. S. Lee, and V. G. Minogin, “Two-photon laser-cooling mechanism in multilevel interaction schemes,” Phys. Rev. A 60, 3148–3159 (1999).
[CrossRef]

Lee, W. D.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Lett, P. D.

Lindquist, K.

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992).
[CrossRef] [PubMed]

Lipphardt, B.

F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, and J. Helmcke, “The optical calcium frequency standard,” IEEE Trans. Instrum. Meas. 48, 613–617 (1999).
[CrossRef]

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

Loftus, T.

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Magnetic trapping of ytterbium and the alkaline earth metals,” Phys. Rev. A 66, 013411 (2002).
[CrossRef]

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Simultaneous multi-isotope trapping of ytterbium,” Phys. Rev. A 63, 053401 (2001).
[CrossRef]

Loftus, T. H.

X. Y. Xu, T. H. Loftus, M. J. Smith, J. L. Hall, A. Gallagher, and J. Ye, “Dynamics in a two-level atom magneto-optical trap,” Phys. Rev. A 66, 011401 (2002).
[CrossRef]

Mehlstaubler, T. E.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

Mewes, M.-O.

M.-O. Mewes, G. Ferrari, F. Schreck, A. Sinatra, and C. Salomon, “Simultaneous magneto-optical trapping of two lithium isotopes,” Phys. Rev. A 61, 011403 (1999).
[CrossRef]

Miniature, C.

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniature, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

Minogin, V. G.

S. Chang, T. Y. Kwon, H. S. Lee, and V. G. Minogin, “Two-photon laser-cooling mechanism in multilevel interaction schemes,” Phys. Rev. A 60, 3148–3159 (1999).
[CrossRef]

Mlynek, J.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

Monroe, C.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
[CrossRef] [PubMed]

Mossberg, T. W.

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Magnetic trapping of ytterbium and the alkaline earth metals,” Phys. Rev. A 66, 013411 (2002).
[CrossRef]

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Simultaneous multi-isotope trapping of ytterbium,” Phys. Rev. A 63, 053401 (2001).
[CrossRef]

Oates, C. W.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403 (2001).
[CrossRef]

Papp, S. B.

J. Goldwin, S. B. Papp, B. DeMarco, and D. S. Jin, “Two-species magneto-optical trap with 40K and 87Rb,” Phys. Rev. A 65, 021402 (2002).
[CrossRef]

Partridge, H.

C. W. Bauschlicher, S. R. Langhoff, and H. Partridge, “The radiative lifetime of the 1D2 state of Ca and Sr: a core-valence treatment,” J. Phys. B: At. Mol. Phys. 18, 1523–1532 (1985).
[CrossRef]

Peng, J. L.

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. H. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[CrossRef]

Pfau, T.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

Phillips, W. D.

C. Salomon, J. Dalibard, W. D. Phillips, A. Clairon, and S. Guellati, “Laser cooling of cesium atoms below 3 μK,” Europhys. Lett. 12, 683–699 (1990).
[CrossRef]

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B 6, 2084–2107 (1989).
[CrossRef]

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Pritchard, D. E.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Rasel, E. M.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

Riehle, F.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

G. Zinner, T. Binnewies, F. Riehle, and E. Tiemann, “Photoassociation of cold Ca atoms,” Phys. Rev. Lett. 85, 2292–2295 (2000).
[CrossRef] [PubMed]

F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, and J. Helmcke, “The optical calcium frequency standard,” IEEE Trans. Instrum. Meas. 48, 613–617 (1999).
[CrossRef]

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

T. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
[CrossRef]

Riis, E.

Robinson, H.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
[CrossRef] [PubMed]

Rolston, S. L.

Ruschewitz, F.

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. H. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[CrossRef]

Salomon, C.

M.-O. Mewes, G. Ferrari, F. Schreck, A. Sinatra, and C. Salomon, “Simultaneous magneto-optical trapping of two lithium isotopes,” Phys. Rev. A 61, 011403 (1999).
[CrossRef]

C. Salomon, J. Dalibard, W. D. Phillips, A. Clairon, and S. Guellati, “Laser cooling of cesium atoms below 3 μK,” Europhys. Lett. 12, 683–699 (1990).
[CrossRef]

Schaffrath, N.

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. H. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[CrossRef]

Schawlow, A. L.

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
[CrossRef]

Schmidt, P. O.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

Schnatz, H.

F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, and J. Helmcke, “The optical calcium frequency standard,” IEEE Trans. Instrum. Meas. 48, 613–617 (1999).
[CrossRef]

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

Schreck, F.

M.-O. Mewes, G. Ferrari, F. Schreck, A. Sinatra, and C. Salomon, “Simultaneous magneto-optical trapping of two lithium isotopes,” Phys. Rev. A 61, 011403 (1999).
[CrossRef]

Sengstock, K. H.

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. H. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[CrossRef]

Shevy, Y.

Shimizu, F.

T. Kurosu and F. Shimizu, “Laser cooling and trapping of alkaline earth atoms,” Jpn. J. Appl. Phys. 31, 908–912 (1992).
[CrossRef]

T. Kurosu and F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys., 29, L2127–L2129 (1990).
[CrossRef]

Sinatra, A.

M.-O. Mewes, G. Ferrari, F. Schreck, A. Sinatra, and C. Salomon, “Simultaneous magneto-optical trapping of two lithium isotopes,” Phys. Rev. A 61, 011403 (1999).
[CrossRef]

Smith, M. J.

X. Y. Xu, T. H. Loftus, M. J. Smith, J. L. Hall, A. Gallagher, and J. Ye, “Dynamics in a two-level atom magneto-optical trap,” Phys. Rev. A 66, 011401 (2002).
[CrossRef]

Stenholm, S.

S. Stenholm, “The semiclassical theory of laser cooling,” Rev. Mod. Phys. 58, 699–739 (1986).
[CrossRef]

Stephens, M.

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992).
[CrossRef] [PubMed]

Sterr, U.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

Stuhler, J.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

Swann, W.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
[CrossRef] [PubMed]

Takahashi, Y.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, (R)745–748 (1999).
[CrossRef]

Tanner, C. E.

Taylor, W.

S. G. Crane, X. Zhao, W. Taylor, and D. J. Vieira, “Trapping an isotopic mixture of fermionic 84Rb and bosonic 87Rb atoms,” Phys. Rev. A 62, 011402 (1999).
[CrossRef]

Theodosiou, C. E.

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
[CrossRef] [PubMed]

Tiemann, E.

G. Zinner, T. Binnewies, F. Riehle, and E. Tiemann, “Photoassociation of cold Ca atoms,” Phys. Rev. Lett. 85, 2292–2295 (2000).
[CrossRef] [PubMed]

Trebst, T.

F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, and J. Helmcke, “The optical calcium frequency standard,” IEEE Trans. Instrum. Meas. 48, 613–617 (1999).
[CrossRef]

Udem, T.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Ungar, P. J.

Vieira, D. J.

S. G. Crane, X. Zhao, W. Taylor, and D. J. Vieira, “Trapping an isotopic mixture of fermionic 84Rb and bosonic 87Rb atoms,” Phys. Rev. A 62, 011402 (1999).
[CrossRef]

Vogel, K. R.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

T. P. Dinneen, K. R. Vogel, E. Arimondo, J. L. Hall, and A. Gallagher, “Cold collision of Sr*-Sr in a magneto-optical trap,” Phys. Rev. A 59, 1216–1222 (1999).
[CrossRef]

K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
[CrossRef]

Walker, W. A.

L. R. Hunter, W. A. Walker, and D. S. Weiss, “Observation of an atomic Stark-electric quadrupole interference,” Phys. Rev. Lett. 56, 823–826 (1986).
[CrossRef] [PubMed]

Watts, R. N.

Weiner, J.

J. Weiner, V. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
[CrossRef]

Weiss, D. S.

D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, and S. Chu, “Optical molasses and multilevel atoms: experiment,” J. Opt. Soc. Am. B 6, 2072–2083 (1989).
[CrossRef]

L. R. Hunter, W. A. Walker, and D. S. Weiss, “Observation of an atomic Stark-electric quadrupole interference,” Phys. Rev. Lett. 56, 823–826 (1986).
[CrossRef] [PubMed]

Werij, H. G. C.

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
[CrossRef] [PubMed]

Werner, J.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

Westbrook, C. I.

Wieman, C.

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992).
[CrossRef] [PubMed]

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
[CrossRef] [PubMed]

Wilkowski, D.

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniature, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

Wilpers, G.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

Xu, X. Y.

X. Y. Xu, T. H. Loftus, M. J. Smith, J. L. Hall, A. Gallagher, and J. Ye, “Dynamics in a two-level atom magneto-optical trap,” Phys. Rev. A 66, 011401 (2002).
[CrossRef]

Yabuzaki, T.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, (R)745–748 (1999).
[CrossRef]

Ye, J.

X. Y. Xu, T. H. Loftus, M. J. Smith, J. L. Hall, A. Gallagher, and J. Ye, “Dynamics in a two-level atom magneto-optical trap,” Phys. Rev. A 66, 011401 (2002).
[CrossRef]

Zeiske, K.

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

T. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
[CrossRef]

Zhao, X.

S. G. Crane, X. Zhao, W. Taylor, and D. J. Vieira, “Trapping an isotopic mixture of fermionic 84Rb and bosonic 87Rb atoms,” Phys. Rev. A 62, 011402 (1999).
[CrossRef]

Zilio, S.

J. Weiner, V. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
[CrossRef]

Zinner, G.

G. Zinner, T. Binnewies, F. Riehle, and E. Tiemann, “Photoassociation of cold Ca atoms,” Phys. Rev. Lett. 85, 2292–2295 (2000).
[CrossRef] [PubMed]

F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, and J. Helmcke, “The optical calcium frequency standard,” IEEE Trans. Instrum. Meas. 48, 613–617 (1999).
[CrossRef]

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

Appl. Phys. B (1)

T. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
[CrossRef]

Europhys. Lett. (1)

C. Salomon, J. Dalibard, W. D. Phillips, A. Clairon, and S. Guellati, “Laser cooling of cesium atoms below 3 μK,” Europhys. Lett. 12, 683–699 (1990).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
[CrossRef]

F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, and J. Helmcke, “The optical calcium frequency standard,” IEEE Trans. Instrum. Meas. 48, 613–617 (1999).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. B: At. Mol. Phys. (1)

C. W. Bauschlicher, S. R. Langhoff, and H. Partridge, “The radiative lifetime of the 1D2 state of Ca and Sr: a core-valence treatment,” J. Phys. B: At. Mol. Phys. 18, 1523–1532 (1985).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Kurosu and F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys., 29, L2127–L2129 (1990).
[CrossRef]

T. Kurosu and F. Shimizu, “Laser cooling and trapping of alkaline earth atoms,” Jpn. J. Appl. Phys. 31, 908–912 (1992).
[CrossRef]

Laser Phys. (1)

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

Opt. Commun. (1)

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
[CrossRef]

Phys. Rev. A (16)

J. P. Gordon and A. Ashkin, “Motion of atoms in a radiation trap,” Phys. Rev. A 21, 1606–1617 (1980).
[CrossRef]

S. Chang, T. Y. Kwon, H. S. Lee, and V. G. Minogin, “Two-photon laser-cooling mechanism in multilevel interaction schemes,” Phys. Rev. A 60, 3148–3159 (1999).
[CrossRef]

T. Ido, Y. Isoya, and H. Katori, “Optical-dipole trapping of Sr atoms at a high phase-space density,” Phys. Rev. A 61, 061403 (2000).
[CrossRef]

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, (R)745–748 (1999).
[CrossRef]

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403 (2001).
[CrossRef]

J. Grünert and A. Hemmerich, “Sub-Doppler magneto-optical trap for calcium,” Phys. Rev. A 65, 041401 (2002).
[CrossRef]

X. Y. Xu, T. H. Loftus, M. J. Smith, J. L. Hall, A. Gallagher, and J. Ye, “Dynamics in a two-level atom magneto-optical trap,” Phys. Rev. A 66, 011401 (2002).
[CrossRef]

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992).
[CrossRef] [PubMed]

T. P. Dinneen, K. R. Vogel, E. Arimondo, J. L. Hall, and A. Gallagher, “Cold collision of Sr*-Sr in a magneto-optical trap,” Phys. Rev. A 59, 1216–1222 (1999).
[CrossRef]

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Magnetic trapping of ytterbium and the alkaline earth metals,” Phys. Rev. A 66, 013411 (2002).
[CrossRef]

J. Goldwin, S. B. Papp, B. DeMarco, and D. S. Jin, “Two-species magneto-optical trap with 40K and 87Rb,” Phys. Rev. A 65, 021402 (2002).
[CrossRef]

M.-O. Mewes, G. Ferrari, F. Schreck, A. Sinatra, and C. Salomon, “Simultaneous magneto-optical trapping of two lithium isotopes,” Phys. Rev. A 61, 011403 (1999).
[CrossRef]

S. G. Crane, X. Zhao, W. Taylor, and D. J. Vieira, “Trapping an isotopic mixture of fermionic 84Rb and bosonic 87Rb atoms,” Phys. Rev. A 62, 011402 (1999).
[CrossRef]

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Simultaneous multi-isotope trapping of ytterbium,” Phys. Rev. A 63, 053401 (2001).
[CrossRef]

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (10)

L. R. Hunter, W. A. Walker, and D. S. Weiss, “Observation of an atomic Stark-electric quadrupole interference,” Phys. Rev. Lett. 56, 823–826 (1986).
[CrossRef] [PubMed]

G. Zinner, T. Binnewies, F. Riehle, and E. Tiemann, “Photoassociation of cold Ca atoms,” Phys. Rev. Lett. 85, 2292–2295 (2000).
[CrossRef] [PubMed]

A. Derevianko, “Feasibility of cooling and trapping metastable alkaline-earth atoms,” Phys. Rev. Lett. 87, 023002 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. H. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[CrossRef]

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniature, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
[CrossRef] [PubMed]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
[CrossRef] [PubMed]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Rev. Mod. Phys. (2)

S. Stenholm, “The semiclassical theory of laser cooling,” Rev. Mod. Phys. 58, 699–739 (1986).
[CrossRef]

J. Weiner, V. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
[CrossRef]

Other (2)

H. Katori, “Spectroscopy of strontium atoms in the Lamb–Dicke confinement,” in Proceedings of the 6th Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 323–330.

K. Vogel, Ph.D. thesis (University of Colorado, Boulder, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Simplified energy level diagram for 88Sr showing the main cooling transition at 461 nm, radiative decay channels for the 1P1 excited state, and the relevant repumping scheme. Numbers in parentheses give the transition Einstein A coefficients. ωL (Δ) is the 1S01P1 MOT cooling-laser frequency (detuning).

Fig. 2
Fig. 2

1S01P1 vapor-cell Sr MOT. AOM, acousto-optic modulator; CCD, charge-coupled-device camera; PMT, photomultiplier tube; PD, photodiode; ECLD, external-cavity laser diode; PBS, polarizing beam splitter. Experimental results reported in this paper are obtained with appropriate modifications to this basic setup.

Fig. 3
Fig. 3

Measured 88Sr MOT loss rate versus trapping-beam intensity for a fixed detuning of -40 MHz. Filled squares are data and the curve is a least-squares fit according to Eq. (1).

Fig. 4
Fig. 4

Dependence of the 88Sr MOT density on (a) trapping-beam intensity and (b) trapping-beam detuning. Theoretical predictions are shown as the solid curves.

Fig. 5
Fig. 5

Effect of the repumping lasers on the 88Sr MOT population and lifetime for It=27 mW/cm2, δ=-46 MHz, and Bz=44 G/cm. Nss is the steady-state MOT population (×10-7). The numbers in parentheses are the corresponding trap lifetimes.

Fig. 6
Fig. 6

Damped 88Sr MOT oscillation signals during a pushing-beam chopping cycle for three different detunings. The intensity of the trapping beam is 27 mW/cm2 and B/z=53 G/cm.

Fig. 7
Fig. 7

Dependence of the trap temperature on (a) the trapping-beam intensity and (b) detuning as determined from the measured κ values and trap sizes. Fits are shown by solid curves. Predictions based on Doppler theory are shown as dashed curves. In (a) the measured slope is 0.076 (0.005) while the theoretical slope is 0.0036 (0.0007) mK/(mWcm-2).

Fig. 8
Fig. 8

Hyperfine structure of the 1S01P1 fermionic 87Sr cooling and trapping transition. ωL (Δ) is the 1S01P1 MOT cooling-laser frequency (detuning). The 1S01P1 Einstein A coefficient is given in parentheses.

Fig. 9
Fig. 9

Measured 87Sr MOT loss rate versus trapping-beam intensity for δ=-40 MHz. The solid curve is a least-squares fit according to Eq. (1).

Fig. 10
Fig. 10

Sub-Doppler cooling of 87Sr in a 1S01P1 MOT. The dependence of the trap temperature is shown with respect to (a) trapping beam intensity and (b) detuning. For comparison, the Doppler cooling limit for each case is displayed as a dashed curve.

Fig. 11
Fig. 11

Image of 87Sr-88Sr fermion-boson, dual-isotope MOT. The two isotopes are deliberately separated in space for viewing clarity.

Fig. 12
Fig. 12

Partial 88Sr energy-level diagram showing transitions relevant to magnetic trapping in the 3P2 state. The probing scheme is also shown, with a 707-nm probe laser and fluorescence collection at 688 nm and 689 nm. The inset presents the magnetic-trap loading and detection-timing diagram.

Fig. 13
Fig. 13

Measured magnetic-trap lifetime for two different values of Sr vapor density.

Fig. 14
Fig. 14

Magnetic trap (a) number and (b) lifetime versus the ratio of trap depth over sample temperature. The solid curve in (a) is a theoretical prediction based on loading a Maxwell–Boltzmann energy distribution into a magnetic trap of depth kBTMD.

Fig. 15
Fig. 15

Blackbody radiation processes that induce magnetic-trap loss. In (a) excitation of the 3P24d3D3 transition depolarizes the magnetically trapped gas while in (b) and (c), excitation of the 3P24d3D2 and 3P24d3D1 transitions depolarizes the gas and permits transitions to untrapped fine-structure states. Magnetically trapped 3P2 substates are shown as dotted lines while absorption (spontaneous emission) events that induce trap loss are shown as gray (black) arrows.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

RL=R0+It/2Is1+It/Is+4(Δ/Γ)2 A1P11D2B1D23P2,
τ=1.56(0.05)×10-31+1+4(Δ/Γ)2It/Is s.
TD=Γ8kB1+It/Is+4(Δ/Γ)2|Δ|/T.
f(t)=ζ1exp-ζ2r02+2vrms2t2,
Nnorm=ErfTMDTMOT1/2-2TMDπTMOT1/2exp-TMDTMOT,
RB=Γ1exp-ω1kBTB,

Metrics