Abstract

We have studied a general technique for laser cooling a cloud of polarized trapped atoms down to the Doppler temperature. A one-dimensional optical molasses created with polarized light cools the axial motional degree of freedom of the atoms in the trap. Cooling of the radial degrees of freedom can be modeled by reabsorption of scattered photons in the optically dense cloud. We present experimental results for a cloud of chromium atoms in a magnetic trap. A simple model based on rate equations shows quantitative agreement with the experimental results. This scheme allows us to readily prepare a dense cloud of atoms in a magnetic trap with good starting conditions for evaporative cooling.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B 6, 2084–2107 (1989).
    [CrossRef]
  2. W. Ketterle and N. van Druten, “Evaporative cooling of trapped atoms,” Adv. At. Mol. Opt. Phys. 37, 181–236 (1996).
    [CrossRef]
  3. J. R. Anglin and W. Ketterle, “Bose–Einstein condensation of atomic gases,” Nature 416, 211–218 (2002).
    [CrossRef] [PubMed]
  4. M. Inguscio, S. Stringari, and C. E. Wieman, eds., Bose–Einstein Condensation in Atomic Gases (International School of Physics “Enrico Fermi,” Varenna, Italy 1998).
  5. E. A. Cornell and C. E. Wieman, “Nobel lecture: Bose–Einstein condensation in a dilute gas: the first 70 years and some recent experiments,” Rev. Mod. Phys. 74, 875–893 (2002).
    [CrossRef]
  6. J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am. B 6, 2023–2045 (1989).
    [CrossRef]
  7. M. Barrett, J. Sauer, and M. Chapman, “All-optical formation of an atomic Bose–Einstein condensate,” Phys. Rev. Lett. 87, 010404 (2001).
    [CrossRef]
  8. D. Boiron, A. Michand, J. M. Fournier, L. Simard, M. Sprenger, G. Grynberg, and C. Salomon, “Cold and dense cesium clouds in far-detuned dipole traps,” Phys. Rev. A 57, R4106–4109 (1998).
    [CrossRef]
  9. D.-J. Han, S. Wolf, S. Oliver, C. McCormick, M. T. DePue, and D. S. Weiss, “3D Raman sideband cooling of cesium atoms at high density,” Phys. Rev. Lett. 85, 724–727 (2000).
    [CrossRef] [PubMed]
  10. A. J. Kerman, V. Vuletic, C. Chin, and S. Chu, “Beyond Optical Molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density,” Phys. Rev. Lett. 84, 439–442 (2000).
    [CrossRef] [PubMed]
  11. H. Katori, T. Ido, Y. Isoya, and M. Kutawa-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
    [CrossRef]
  12. T. Ido, Y. Isoya, and H. Katori, “Optical-dipole trapping of Sr atoms at a high phase-space density,” Phys. Rev. A 61, 061403(R) (2000).
    [CrossRef]
  13. D. J. Han, M. T. DePue, and D. S. Weiss, “Loading and compressing Cs atoms in a very far-off-resonant light trap,” Phys. Rev. A 63, 023405 (2001).
    [CrossRef]
  14. T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, “Bose–Einstein condensation of cesium,” Science 299, 232–235 (2003).
    [CrossRef]
  15. D. Pritchard and W. Ketterle, “Atom traps and atom optics,” in Laser Manipulation of Atoms and Ions, E. Arimondo, W. Phillips, and F. Strumia, eds., Proceedings of the International School of Physics “Enrico Fermi,” Course CXVIII (North-Holland, Amsterdam, 1992), pp. 473–496.
  16. N. Newbury, C. Myatt, E. Cornell, and C. Wieman, “Gravitational Sisyphus cooling of 87Rb in a magnetic trap,” Phys. Rev. Lett. 74, 2196–2199 (1995).
    [CrossRef] [PubMed]
  17. T. Hijmans, O. Luiten, I. Setija, and J. T. M. Walraven, “Optical cooling of atomic hydrogen in a magnetic trap,” J. Opt. Soc. Am. B 6, 2235–2243 (1989).
    [CrossRef]
  18. K. Helmerson, A. Martin, and D. E. Pritchard, “Laser cooling of magnetically trapped neutral atoms,” J. Opt. Soc. Am. B 9, 1988–1996 (1992).
    [CrossRef]
  19. I. D. Setija, H. Werij, O. J. Luiten, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Optical cooling of atomic hydrogen in a magnetic trap,” Phys. Rev. Lett. 70, 2257–2260 (1993).
    [CrossRef] [PubMed]
  20. F. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M.-O. Mewes, and C. Salomon, “Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy,” Phys. Rev. A 64, 011402 (2001).
    [CrossRef]
  21. D. Sesko, T. Walker, and C. Wieman, “Behavior of neutral atoms in a spontaneous force trap,” J. Opt. Soc. Am. B 8, 946–958 (1991).
    [CrossRef]
  22. G. Hillenbrand, C. J. Foot, and K. Burnett, “Heating due to long-range photon exchange interactions between cold atoms,” Phys. Rev. A 50, 1479–1489 (1994).
    [CrossRef] [PubMed]
  23. K. Ellinger and J. Cooper, “Many-particle effects in laser cooling of one-dimensional optical molasses,” Phys. Rev. A 55, 4351–4376 (1997).
    [CrossRef]
  24. Y. Castin, J. Cirac, and M. Lewenstein, “Reabsorption of light by trapped atoms,” Phys. Rev. Lett. 80, 5305–5308 (1998).
    [CrossRef]
  25. L. Khaykovich and N. Davidson, “Compression of a cold atomic cloud by on-resonance laser light,” J. Opt. Soc. Am. B 16, 702–709 (1999).
    [CrossRef]
  26. S. Wolf, S. J. Oliver, and D. S. Weiss, “Suppression of recoil heating by an optical lattice,” Phys. Rev. Lett. 85, 4249–4252 (2000).
    [CrossRef] [PubMed]
  27. L. Pruvost, I. Serre, H. T. Duong, and J. Jortner, “Expansion and cooling of a bright rubidium three-dimensional optical molasses,” Phys. Rev. A 61, 053408 (2000).
    [CrossRef]
  28. C. Sukumar, and D. Brink, “Spin-flip transitions in a magnetic trap,” Phys. Rev. A 56, 2451–2454 (1997).
    [CrossRef]
  29. In principle the same argument holds for a J=J transition; for simplicity we will concentrate on the situation above.
  30. J. Stuhler, “Kontinuierliches Laden einer Magnetfalle mit lasergekühlten Chromatomen,” Ph.D. dissertation, Universität Konstanz (Ufo-Verlag, Allensbach, 2002).
  31. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions, 1st ed. (Wiley, New York, 1992), pp. 93–97.
  32. T. Walker and P. Feng, “Measurements of collisions between laser-cooled atoms,” Adv. At. Mol. Opt. Phys. 34, 125–170 (1994).
    [CrossRef]
  33. T. Bergeman, G. Erez, and H. Metcalf, “Magnetostatic trapping fields for neutral atoms,” Phys. Rev. A 35, 1535–1546 (1987).
    [CrossRef] [PubMed]
  34. M.-O. Mewes, M. Andrews, N. van Druten, D. Kurn, D. Durfee, and W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996).
    [CrossRef] [PubMed]
  35. J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
    [CrossRef]
  36. P. O. Schmidt, S. Hensler, J. Werner, T. Binhammer, A. Görlitz, and T. Pfau, “Continuous loading of cold atoms into a Ioffe–Pritchard magnetic trap,” J. Opt. B (to be published); arXive e-print archive, http://xxx.lanl.gov/abs/quant-ph/0211032.
  37. A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
    [CrossRef]
  38. C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407 (2000).
    [CrossRef]
  39. S. Hensler, P. O. Schmidt, J. Werner, A. Griesmeier, A. Görlitz, and T. Pfau are preparing a manuscript to be called “Dipolar relaxation in ultracold dipolar gases.”
  40. J. D. Weinstein, R. deCarvalho, C. I. Hancox, and J. M. Doyle, “Evaporative cooling of atomic chromium,” Phys. Rev. A 65, 021604 (2002).
    [CrossRef]
  41. R. deCarvalho, C. I. Hancox, and J. M. Doyle, “Enhanced inelastic scattering rates of cold atomic chromium,” J. Opt. Soc. Am. B 20, 1131–1134 (2003).
    [CrossRef]

2003 (2)

T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, “Bose–Einstein condensation of cesium,” Science 299, 232–235 (2003).
[CrossRef]

R. deCarvalho, C. I. Hancox, and J. M. Doyle, “Enhanced inelastic scattering rates of cold atomic chromium,” J. Opt. Soc. Am. B 20, 1131–1134 (2003).
[CrossRef]

2002 (3)

J. D. Weinstein, R. deCarvalho, C. I. Hancox, and J. M. Doyle, “Evaporative cooling of atomic chromium,” Phys. Rev. A 65, 021604 (2002).
[CrossRef]

J. R. Anglin and W. Ketterle, “Bose–Einstein condensation of atomic gases,” Nature 416, 211–218 (2002).
[CrossRef] [PubMed]

E. A. Cornell and C. E. Wieman, “Nobel lecture: Bose–Einstein condensation in a dilute gas: the first 70 years and some recent experiments,” Rev. Mod. Phys. 74, 875–893 (2002).
[CrossRef]

2001 (4)

D. J. Han, M. T. DePue, and D. S. Weiss, “Loading and compressing Cs atoms in a very far-off-resonant light trap,” Phys. Rev. A 63, 023405 (2001).
[CrossRef]

M. Barrett, J. Sauer, and M. Chapman, “All-optical formation of an atomic Bose–Einstein condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[CrossRef]

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

F. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M.-O. Mewes, and C. Salomon, “Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy,” Phys. Rev. A 64, 011402 (2001).
[CrossRef]

2000 (6)

C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407 (2000).
[CrossRef]

D.-J. Han, S. Wolf, S. Oliver, C. McCormick, M. T. DePue, and D. S. Weiss, “3D Raman sideband cooling of cesium atoms at high density,” Phys. Rev. Lett. 85, 724–727 (2000).
[CrossRef] [PubMed]

A. J. Kerman, V. Vuletic, C. Chin, and S. Chu, “Beyond Optical Molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density,” Phys. Rev. Lett. 84, 439–442 (2000).
[CrossRef] [PubMed]

T. Ido, Y. Isoya, and H. Katori, “Optical-dipole trapping of Sr atoms at a high phase-space density,” Phys. Rev. A 61, 061403(R) (2000).
[CrossRef]

S. Wolf, S. J. Oliver, and D. S. Weiss, “Suppression of recoil heating by an optical lattice,” Phys. Rev. Lett. 85, 4249–4252 (2000).
[CrossRef] [PubMed]

L. Pruvost, I. Serre, H. T. Duong, and J. Jortner, “Expansion and cooling of a bright rubidium three-dimensional optical molasses,” Phys. Rev. A 61, 053408 (2000).
[CrossRef]

1999 (3)

H. Katori, T. Ido, Y. Isoya, and M. Kutawa-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

L. Khaykovich and N. Davidson, “Compression of a cold atomic cloud by on-resonance laser light,” J. Opt. Soc. Am. B 16, 702–709 (1999).
[CrossRef]

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

1998 (2)

Y. Castin, J. Cirac, and M. Lewenstein, “Reabsorption of light by trapped atoms,” Phys. Rev. Lett. 80, 5305–5308 (1998).
[CrossRef]

D. Boiron, A. Michand, J. M. Fournier, L. Simard, M. Sprenger, G. Grynberg, and C. Salomon, “Cold and dense cesium clouds in far-detuned dipole traps,” Phys. Rev. A 57, R4106–4109 (1998).
[CrossRef]

1997 (2)

C. Sukumar, and D. Brink, “Spin-flip transitions in a magnetic trap,” Phys. Rev. A 56, 2451–2454 (1997).
[CrossRef]

K. Ellinger and J. Cooper, “Many-particle effects in laser cooling of one-dimensional optical molasses,” Phys. Rev. A 55, 4351–4376 (1997).
[CrossRef]

1996 (2)

W. Ketterle and N. van Druten, “Evaporative cooling of trapped atoms,” Adv. At. Mol. Opt. Phys. 37, 181–236 (1996).
[CrossRef]

M.-O. Mewes, M. Andrews, N. van Druten, D. Kurn, D. Durfee, and W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996).
[CrossRef] [PubMed]

1995 (1)

N. Newbury, C. Myatt, E. Cornell, and C. Wieman, “Gravitational Sisyphus cooling of 87Rb in a magnetic trap,” Phys. Rev. Lett. 74, 2196–2199 (1995).
[CrossRef] [PubMed]

1994 (2)

G. Hillenbrand, C. J. Foot, and K. Burnett, “Heating due to long-range photon exchange interactions between cold atoms,” Phys. Rev. A 50, 1479–1489 (1994).
[CrossRef] [PubMed]

T. Walker and P. Feng, “Measurements of collisions between laser-cooled atoms,” Adv. At. Mol. Opt. Phys. 34, 125–170 (1994).
[CrossRef]

1993 (1)

I. D. Setija, H. Werij, O. J. Luiten, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Optical cooling of atomic hydrogen in a magnetic trap,” Phys. Rev. Lett. 70, 2257–2260 (1993).
[CrossRef] [PubMed]

1992 (1)

1991 (1)

1989 (3)

1987 (1)

T. Bergeman, G. Erez, and H. Metcalf, “Magnetostatic trapping fields for neutral atoms,” Phys. Rev. A 35, 1535–1546 (1987).
[CrossRef] [PubMed]

Anderson, W. R.

C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407 (2000).
[CrossRef]

Andrews, M.

M.-O. Mewes, M. Andrews, N. van Druten, D. Kurn, D. Durfee, and W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996).
[CrossRef] [PubMed]

Anglin, J. R.

J. R. Anglin and W. Ketterle, “Bose–Einstein condensation of atomic gases,” Nature 416, 211–218 (2002).
[CrossRef] [PubMed]

Barrett, M.

M. Barrett, J. Sauer, and M. Chapman, “All-optical formation of an atomic Bose–Einstein condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[CrossRef]

Bell, A. S.

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

Bergeman, T.

T. Bergeman, G. Erez, and H. Metcalf, “Magnetostatic trapping fields for neutral atoms,” Phys. Rev. A 35, 1535–1546 (1987).
[CrossRef] [PubMed]

Boiron, D.

D. Boiron, A. Michand, J. M. Fournier, L. Simard, M. Sprenger, G. Grynberg, and C. Salomon, “Cold and dense cesium clouds in far-detuned dipole traps,” Phys. Rev. A 57, R4106–4109 (1998).
[CrossRef]

Bradley, C. C.

C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407 (2000).
[CrossRef]

Brink, D.

C. Sukumar, and D. Brink, “Spin-flip transitions in a magnetic trap,” Phys. Rev. A 56, 2451–2454 (1997).
[CrossRef]

Burnett, K.

G. Hillenbrand, C. J. Foot, and K. Burnett, “Heating due to long-range photon exchange interactions between cold atoms,” Phys. Rev. A 50, 1479–1489 (1994).
[CrossRef] [PubMed]

Castin, Y.

Y. Castin, J. Cirac, and M. Lewenstein, “Reabsorption of light by trapped atoms,” Phys. Rev. Lett. 80, 5305–5308 (1998).
[CrossRef]

Celotta, R. J.

C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407 (2000).
[CrossRef]

Chapman, M.

M. Barrett, J. Sauer, and M. Chapman, “All-optical formation of an atomic Bose–Einstein condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[CrossRef]

Chin, C.

A. J. Kerman, V. Vuletic, C. Chin, and S. Chu, “Beyond Optical Molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density,” Phys. Rev. Lett. 84, 439–442 (2000).
[CrossRef] [PubMed]

Chu, S.

A. J. Kerman, V. Vuletic, C. Chin, and S. Chu, “Beyond Optical Molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density,” Phys. Rev. Lett. 84, 439–442 (2000).
[CrossRef] [PubMed]

Cirac, J.

Y. Castin, J. Cirac, and M. Lewenstein, “Reabsorption of light by trapped atoms,” Phys. Rev. Lett. 80, 5305–5308 (1998).
[CrossRef]

Cohen-Tannoudji, C.

Cooper, J.

K. Ellinger and J. Cooper, “Many-particle effects in laser cooling of one-dimensional optical molasses,” Phys. Rev. A 55, 4351–4376 (1997).
[CrossRef]

Cornell, E.

N. Newbury, C. Myatt, E. Cornell, and C. Wieman, “Gravitational Sisyphus cooling of 87Rb in a magnetic trap,” Phys. Rev. Lett. 74, 2196–2199 (1995).
[CrossRef] [PubMed]

Cornell, E. A.

E. A. Cornell and C. E. Wieman, “Nobel lecture: Bose–Einstein condensation in a dilute gas: the first 70 years and some recent experiments,” Rev. Mod. Phys. 74, 875–893 (2002).
[CrossRef]

Corwin, K. L.

F. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M.-O. Mewes, and C. Salomon, “Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy,” Phys. Rev. A 64, 011402 (2001).
[CrossRef]

Cubizolles, J.

F. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M.-O. Mewes, and C. Salomon, “Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy,” Phys. Rev. A 64, 011402 (2001).
[CrossRef]

Dalibard, J.

Davidson, N.

deCarvalho, R.

R. deCarvalho, C. I. Hancox, and J. M. Doyle, “Enhanced inelastic scattering rates of cold atomic chromium,” J. Opt. Soc. Am. B 20, 1131–1134 (2003).
[CrossRef]

J. D. Weinstein, R. deCarvalho, C. I. Hancox, and J. M. Doyle, “Evaporative cooling of atomic chromium,” Phys. Rev. A 65, 021604 (2002).
[CrossRef]

DePue, M. T.

D. J. Han, M. T. DePue, and D. S. Weiss, “Loading and compressing Cs atoms in a very far-off-resonant light trap,” Phys. Rev. A 63, 023405 (2001).
[CrossRef]

D.-J. Han, S. Wolf, S. Oliver, C. McCormick, M. T. DePue, and D. S. Weiss, “3D Raman sideband cooling of cesium atoms at high density,” Phys. Rev. Lett. 85, 724–727 (2000).
[CrossRef] [PubMed]

Doyle, J. M.

R. deCarvalho, C. I. Hancox, and J. M. Doyle, “Enhanced inelastic scattering rates of cold atomic chromium,” J. Opt. Soc. Am. B 20, 1131–1134 (2003).
[CrossRef]

J. D. Weinstein, R. deCarvalho, C. I. Hancox, and J. M. Doyle, “Evaporative cooling of atomic chromium,” Phys. Rev. A 65, 021604 (2002).
[CrossRef]

Duong, H. T.

L. Pruvost, I. Serre, H. T. Duong, and J. Jortner, “Expansion and cooling of a bright rubidium three-dimensional optical molasses,” Phys. Rev. A 61, 053408 (2000).
[CrossRef]

Durfee, D.

M.-O. Mewes, M. Andrews, N. van Druten, D. Kurn, D. Durfee, and W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996).
[CrossRef] [PubMed]

Ellinger, K.

K. Ellinger and J. Cooper, “Many-particle effects in laser cooling of one-dimensional optical molasses,” Phys. Rev. A 55, 4351–4376 (1997).
[CrossRef]

Erez, G.

T. Bergeman, G. Erez, and H. Metcalf, “Magnetostatic trapping fields for neutral atoms,” Phys. Rev. A 35, 1535–1546 (1987).
[CrossRef] [PubMed]

Feng, P.

T. Walker and P. Feng, “Measurements of collisions between laser-cooled atoms,” Adv. At. Mol. Opt. Phys. 34, 125–170 (1994).
[CrossRef]

Ferrari, G.

F. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M.-O. Mewes, and C. Salomon, “Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy,” Phys. Rev. A 64, 011402 (2001).
[CrossRef]

Foot, C. J.

G. Hillenbrand, C. J. Foot, and K. Burnett, “Heating due to long-range photon exchange interactions between cold atoms,” Phys. Rev. A 50, 1479–1489 (1994).
[CrossRef] [PubMed]

Fournier, J. M.

D. Boiron, A. Michand, J. M. Fournier, L. Simard, M. Sprenger, G. Grynberg, and C. Salomon, “Cold and dense cesium clouds in far-detuned dipole traps,” Phys. Rev. A 57, R4106–4109 (1998).
[CrossRef]

Grimm, R.

T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, “Bose–Einstein condensation of cesium,” Science 299, 232–235 (2003).
[CrossRef]

Grynberg, G.

D. Boiron, A. Michand, J. M. Fournier, L. Simard, M. Sprenger, G. Grynberg, and C. Salomon, “Cold and dense cesium clouds in far-detuned dipole traps,” Phys. Rev. A 57, R4106–4109 (1998).
[CrossRef]

Han, D. J.

D. J. Han, M. T. DePue, and D. S. Weiss, “Loading and compressing Cs atoms in a very far-off-resonant light trap,” Phys. Rev. A 63, 023405 (2001).
[CrossRef]

Han, D.-J.

D.-J. Han, S. Wolf, S. Oliver, C. McCormick, M. T. DePue, and D. S. Weiss, “3D Raman sideband cooling of cesium atoms at high density,” Phys. Rev. Lett. 85, 724–727 (2000).
[CrossRef] [PubMed]

Hancox, C. I.

R. deCarvalho, C. I. Hancox, and J. M. Doyle, “Enhanced inelastic scattering rates of cold atomic chromium,” J. Opt. Soc. Am. B 20, 1131–1134 (2003).
[CrossRef]

J. D. Weinstein, R. deCarvalho, C. I. Hancox, and J. M. Doyle, “Evaporative cooling of atomic chromium,” Phys. Rev. A 65, 021604 (2002).
[CrossRef]

Helmerson, K.

Hensler, S.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

Herbig, J.

T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, “Bose–Einstein condensation of cesium,” Science 299, 232–235 (2003).
[CrossRef]

Hijmans, T.

Hijmans, T. W.

I. D. Setija, H. Werij, O. J. Luiten, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Optical cooling of atomic hydrogen in a magnetic trap,” Phys. Rev. Lett. 70, 2257–2260 (1993).
[CrossRef] [PubMed]

Hillenbrand, G.

G. Hillenbrand, C. J. Foot, and K. Burnett, “Heating due to long-range photon exchange interactions between cold atoms,” Phys. Rev. A 50, 1479–1489 (1994).
[CrossRef] [PubMed]

Ido, T.

T. Ido, Y. Isoya, and H. Katori, “Optical-dipole trapping of Sr atoms at a high phase-space density,” Phys. Rev. A 61, 061403(R) (2000).
[CrossRef]

H. Katori, T. Ido, Y. Isoya, and M. Kutawa-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Isoya, Y.

T. Ido, Y. Isoya, and H. Katori, “Optical-dipole trapping of Sr atoms at a high phase-space density,” Phys. Rev. A 61, 061403(R) (2000).
[CrossRef]

H. Katori, T. Ido, Y. Isoya, and M. Kutawa-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Jortner, J.

L. Pruvost, I. Serre, H. T. Duong, and J. Jortner, “Expansion and cooling of a bright rubidium three-dimensional optical molasses,” Phys. Rev. A 61, 053408 (2000).
[CrossRef]

Katori, H.

T. Ido, Y. Isoya, and H. Katori, “Optical-dipole trapping of Sr atoms at a high phase-space density,” Phys. Rev. A 61, 061403(R) (2000).
[CrossRef]

H. Katori, T. Ido, Y. Isoya, and M. Kutawa-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Kerman, A. J.

A. J. Kerman, V. Vuletic, C. Chin, and S. Chu, “Beyond Optical Molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density,” Phys. Rev. Lett. 84, 439–442 (2000).
[CrossRef] [PubMed]

Ketterle, W.

J. R. Anglin and W. Ketterle, “Bose–Einstein condensation of atomic gases,” Nature 416, 211–218 (2002).
[CrossRef] [PubMed]

M.-O. Mewes, M. Andrews, N. van Druten, D. Kurn, D. Durfee, and W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996).
[CrossRef] [PubMed]

W. Ketterle and N. van Druten, “Evaporative cooling of trapped atoms,” Adv. At. Mol. Opt. Phys. 37, 181–236 (1996).
[CrossRef]

Khaykovich, L.

F. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M.-O. Mewes, and C. Salomon, “Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy,” Phys. Rev. A 64, 011402 (2001).
[CrossRef]

L. Khaykovich and N. Davidson, “Compression of a cold atomic cloud by on-resonance laser light,” J. Opt. Soc. Am. B 16, 702–709 (1999).
[CrossRef]

Kurn, D.

M.-O. Mewes, M. Andrews, N. van Druten, D. Kurn, D. Durfee, and W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996).
[CrossRef] [PubMed]

Kutawa-Gonokami, M.

H. Katori, T. Ido, Y. Isoya, and M. Kutawa-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Lett, P. D.

Lewenstein, M.

Y. Castin, J. Cirac, and M. Lewenstein, “Reabsorption of light by trapped atoms,” Phys. Rev. Lett. 80, 5305–5308 (1998).
[CrossRef]

Locher, S.

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

Luiten, O.

Luiten, O. J.

I. D. Setija, H. Werij, O. J. Luiten, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Optical cooling of atomic hydrogen in a magnetic trap,” Phys. Rev. Lett. 70, 2257–2260 (1993).
[CrossRef] [PubMed]

Mark, M.

T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, “Bose–Einstein condensation of cesium,” Science 299, 232–235 (2003).
[CrossRef]

Martin, A.

McClelland, J. J.

C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407 (2000).
[CrossRef]

McCormick, C.

D.-J. Han, S. Wolf, S. Oliver, C. McCormick, M. T. DePue, and D. S. Weiss, “3D Raman sideband cooling of cesium atoms at high density,” Phys. Rev. Lett. 85, 724–727 (2000).
[CrossRef] [PubMed]

Metcalf, H.

T. Bergeman, G. Erez, and H. Metcalf, “Magnetostatic trapping fields for neutral atoms,” Phys. Rev. A 35, 1535–1546 (1987).
[CrossRef] [PubMed]

Mewes, M.-O.

F. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M.-O. Mewes, and C. Salomon, “Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy,” Phys. Rev. A 64, 011402 (2001).
[CrossRef]

M.-O. Mewes, M. Andrews, N. van Druten, D. Kurn, D. Durfee, and W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996).
[CrossRef] [PubMed]

Michand, A.

D. Boiron, A. Michand, J. M. Fournier, L. Simard, M. Sprenger, G. Grynberg, and C. Salomon, “Cold and dense cesium clouds in far-detuned dipole traps,” Phys. Rev. A 57, R4106–4109 (1998).
[CrossRef]

Mlynek, J.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

Myatt, C.

N. Newbury, C. Myatt, E. Cornell, and C. Wieman, “Gravitational Sisyphus cooling of 87Rb in a magnetic trap,” Phys. Rev. Lett. 74, 2196–2199 (1995).
[CrossRef] [PubMed]

Nagerl, H.-C.

T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, “Bose–Einstein condensation of cesium,” Science 299, 232–235 (2003).
[CrossRef]

Newbury, N.

N. Newbury, C. Myatt, E. Cornell, and C. Wieman, “Gravitational Sisyphus cooling of 87Rb in a magnetic trap,” Phys. Rev. Lett. 74, 2196–2199 (1995).
[CrossRef] [PubMed]

Oliver, S.

D.-J. Han, S. Wolf, S. Oliver, C. McCormick, M. T. DePue, and D. S. Weiss, “3D Raman sideband cooling of cesium atoms at high density,” Phys. Rev. Lett. 85, 724–727 (2000).
[CrossRef] [PubMed]

Oliver, S. J.

S. Wolf, S. J. Oliver, and D. S. Weiss, “Suppression of recoil heating by an optical lattice,” Phys. Rev. Lett. 85, 4249–4252 (2000).
[CrossRef] [PubMed]

Pfau, T.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

Phillips, W. D.

Pritchard, D. E.

Pruvost, L.

L. Pruvost, I. Serre, H. T. Duong, and J. Jortner, “Expansion and cooling of a bright rubidium three-dimensional optical molasses,” Phys. Rev. A 61, 053408 (2000).
[CrossRef]

Reynolds, M. W.

I. D. Setija, H. Werij, O. J. Luiten, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Optical cooling of atomic hydrogen in a magnetic trap,” Phys. Rev. Lett. 70, 2257–2260 (1993).
[CrossRef] [PubMed]

Rolston, S. L.

Salomon, C.

F. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M.-O. Mewes, and C. Salomon, “Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy,” Phys. Rev. A 64, 011402 (2001).
[CrossRef]

D. Boiron, A. Michand, J. M. Fournier, L. Simard, M. Sprenger, G. Grynberg, and C. Salomon, “Cold and dense cesium clouds in far-detuned dipole traps,” Phys. Rev. A 57, R4106–4109 (1998).
[CrossRef]

Sauer, J.

M. Barrett, J. Sauer, and M. Chapman, “All-optical formation of an atomic Bose–Einstein condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[CrossRef]

Schmidt, P. O.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

Schreck, F.

F. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M.-O. Mewes, and C. Salomon, “Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy,” Phys. Rev. A 64, 011402 (2001).
[CrossRef]

Serre, I.

L. Pruvost, I. Serre, H. T. Duong, and J. Jortner, “Expansion and cooling of a bright rubidium three-dimensional optical molasses,” Phys. Rev. A 61, 053408 (2000).
[CrossRef]

Sesko, D.

Setija, I.

Setija, I. D.

I. D. Setija, H. Werij, O. J. Luiten, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Optical cooling of atomic hydrogen in a magnetic trap,” Phys. Rev. Lett. 70, 2257–2260 (1993).
[CrossRef] [PubMed]

Simard, L.

D. Boiron, A. Michand, J. M. Fournier, L. Simard, M. Sprenger, G. Grynberg, and C. Salomon, “Cold and dense cesium clouds in far-detuned dipole traps,” Phys. Rev. A 57, R4106–4109 (1998).
[CrossRef]

Sprenger, M.

D. Boiron, A. Michand, J. M. Fournier, L. Simard, M. Sprenger, G. Grynberg, and C. Salomon, “Cold and dense cesium clouds in far-detuned dipole traps,” Phys. Rev. A 57, R4106–4109 (1998).
[CrossRef]

Stuhler, J.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

Sukumar, C.

C. Sukumar, and D. Brink, “Spin-flip transitions in a magnetic trap,” Phys. Rev. A 56, 2451–2454 (1997).
[CrossRef]

Tanner, C. E.

van Druten, N.

W. Ketterle and N. van Druten, “Evaporative cooling of trapped atoms,” Adv. At. Mol. Opt. Phys. 37, 181–236 (1996).
[CrossRef]

M.-O. Mewes, M. Andrews, N. van Druten, D. Kurn, D. Durfee, and W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996).
[CrossRef] [PubMed]

Vuletic, V.

A. J. Kerman, V. Vuletic, C. Chin, and S. Chu, “Beyond Optical Molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density,” Phys. Rev. Lett. 84, 439–442 (2000).
[CrossRef] [PubMed]

Walker, T.

T. Walker and P. Feng, “Measurements of collisions between laser-cooled atoms,” Adv. At. Mol. Opt. Phys. 34, 125–170 (1994).
[CrossRef]

D. Sesko, T. Walker, and C. Wieman, “Behavior of neutral atoms in a spontaneous force trap,” J. Opt. Soc. Am. B 8, 946–958 (1991).
[CrossRef]

Walraven, J. T. M.

I. D. Setija, H. Werij, O. J. Luiten, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Optical cooling of atomic hydrogen in a magnetic trap,” Phys. Rev. Lett. 70, 2257–2260 (1993).
[CrossRef] [PubMed]

T. Hijmans, O. Luiten, I. Setija, and J. T. M. Walraven, “Optical cooling of atomic hydrogen in a magnetic trap,” J. Opt. Soc. Am. B 6, 2235–2243 (1989).
[CrossRef]

Watts, R. N.

Weber, T.

T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, “Bose–Einstein condensation of cesium,” Science 299, 232–235 (2003).
[CrossRef]

Weinstein, J. D.

J. D. Weinstein, R. deCarvalho, C. I. Hancox, and J. M. Doyle, “Evaporative cooling of atomic chromium,” Phys. Rev. A 65, 021604 (2002).
[CrossRef]

Weiss, D. S.

D. J. Han, M. T. DePue, and D. S. Weiss, “Loading and compressing Cs atoms in a very far-off-resonant light trap,” Phys. Rev. A 63, 023405 (2001).
[CrossRef]

D.-J. Han, S. Wolf, S. Oliver, C. McCormick, M. T. DePue, and D. S. Weiss, “3D Raman sideband cooling of cesium atoms at high density,” Phys. Rev. Lett. 85, 724–727 (2000).
[CrossRef] [PubMed]

S. Wolf, S. J. Oliver, and D. S. Weiss, “Suppression of recoil heating by an optical lattice,” Phys. Rev. Lett. 85, 4249–4252 (2000).
[CrossRef] [PubMed]

Werij, H.

I. D. Setija, H. Werij, O. J. Luiten, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Optical cooling of atomic hydrogen in a magnetic trap,” Phys. Rev. Lett. 70, 2257–2260 (1993).
[CrossRef] [PubMed]

Werner, J.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

Westbrook, C. I.

Wieman, C.

N. Newbury, C. Myatt, E. Cornell, and C. Wieman, “Gravitational Sisyphus cooling of 87Rb in a magnetic trap,” Phys. Rev. Lett. 74, 2196–2199 (1995).
[CrossRef] [PubMed]

D. Sesko, T. Walker, and C. Wieman, “Behavior of neutral atoms in a spontaneous force trap,” J. Opt. Soc. Am. B 8, 946–958 (1991).
[CrossRef]

Wieman, C. E.

E. A. Cornell and C. E. Wieman, “Nobel lecture: Bose–Einstein condensation in a dilute gas: the first 70 years and some recent experiments,” Rev. Mod. Phys. 74, 875–893 (2002).
[CrossRef]

Wolf, S.

D.-J. Han, S. Wolf, S. Oliver, C. McCormick, M. T. DePue, and D. S. Weiss, “3D Raman sideband cooling of cesium atoms at high density,” Phys. Rev. Lett. 85, 724–727 (2000).
[CrossRef] [PubMed]

S. Wolf, S. J. Oliver, and D. S. Weiss, “Suppression of recoil heating by an optical lattice,” Phys. Rev. Lett. 85, 4249–4252 (2000).
[CrossRef] [PubMed]

Adv. At. Mol. Opt. Phys. (2)

W. Ketterle and N. van Druten, “Evaporative cooling of trapped atoms,” Adv. At. Mol. Opt. Phys. 37, 181–236 (1996).
[CrossRef]

T. Walker and P. Feng, “Measurements of collisions between laser-cooled atoms,” Adv. At. Mol. Opt. Phys. 34, 125–170 (1994).
[CrossRef]

Europhys. Lett. (1)

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

J. Opt. Soc. Am. B (7)

Nature (1)

J. R. Anglin and W. Ketterle, “Bose–Einstein condensation of atomic gases,” Nature 416, 211–218 (2002).
[CrossRef] [PubMed]

Phys. Rev. A (12)

G. Hillenbrand, C. J. Foot, and K. Burnett, “Heating due to long-range photon exchange interactions between cold atoms,” Phys. Rev. A 50, 1479–1489 (1994).
[CrossRef] [PubMed]

K. Ellinger and J. Cooper, “Many-particle effects in laser cooling of one-dimensional optical molasses,” Phys. Rev. A 55, 4351–4376 (1997).
[CrossRef]

D. Boiron, A. Michand, J. M. Fournier, L. Simard, M. Sprenger, G. Grynberg, and C. Salomon, “Cold and dense cesium clouds in far-detuned dipole traps,” Phys. Rev. A 57, R4106–4109 (1998).
[CrossRef]

T. Ido, Y. Isoya, and H. Katori, “Optical-dipole trapping of Sr atoms at a high phase-space density,” Phys. Rev. A 61, 061403(R) (2000).
[CrossRef]

D. J. Han, M. T. DePue, and D. S. Weiss, “Loading and compressing Cs atoms in a very far-off-resonant light trap,” Phys. Rev. A 63, 023405 (2001).
[CrossRef]

C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407 (2000).
[CrossRef]

J. D. Weinstein, R. deCarvalho, C. I. Hancox, and J. M. Doyle, “Evaporative cooling of atomic chromium,” Phys. Rev. A 65, 021604 (2002).
[CrossRef]

T. Bergeman, G. Erez, and H. Metcalf, “Magnetostatic trapping fields for neutral atoms,” Phys. Rev. A 35, 1535–1546 (1987).
[CrossRef] [PubMed]

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405 (2001).
[CrossRef]

L. Pruvost, I. Serre, H. T. Duong, and J. Jortner, “Expansion and cooling of a bright rubidium three-dimensional optical molasses,” Phys. Rev. A 61, 053408 (2000).
[CrossRef]

C. Sukumar, and D. Brink, “Spin-flip transitions in a magnetic trap,” Phys. Rev. A 56, 2451–2454 (1997).
[CrossRef]

F. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M.-O. Mewes, and C. Salomon, “Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy,” Phys. Rev. A 64, 011402 (2001).
[CrossRef]

Phys. Rev. Lett. (9)

M.-O. Mewes, M. Andrews, N. van Druten, D. Kurn, D. Durfee, and W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996).
[CrossRef] [PubMed]

I. D. Setija, H. Werij, O. J. Luiten, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Optical cooling of atomic hydrogen in a magnetic trap,” Phys. Rev. Lett. 70, 2257–2260 (1993).
[CrossRef] [PubMed]

D.-J. Han, S. Wolf, S. Oliver, C. McCormick, M. T. DePue, and D. S. Weiss, “3D Raman sideband cooling of cesium atoms at high density,” Phys. Rev. Lett. 85, 724–727 (2000).
[CrossRef] [PubMed]

A. J. Kerman, V. Vuletic, C. Chin, and S. Chu, “Beyond Optical Molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density,” Phys. Rev. Lett. 84, 439–442 (2000).
[CrossRef] [PubMed]

H. Katori, T. Ido, Y. Isoya, and M. Kutawa-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Y. Castin, J. Cirac, and M. Lewenstein, “Reabsorption of light by trapped atoms,” Phys. Rev. Lett. 80, 5305–5308 (1998).
[CrossRef]

S. Wolf, S. J. Oliver, and D. S. Weiss, “Suppression of recoil heating by an optical lattice,” Phys. Rev. Lett. 85, 4249–4252 (2000).
[CrossRef] [PubMed]

M. Barrett, J. Sauer, and M. Chapman, “All-optical formation of an atomic Bose–Einstein condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[CrossRef]

N. Newbury, C. Myatt, E. Cornell, and C. Wieman, “Gravitational Sisyphus cooling of 87Rb in a magnetic trap,” Phys. Rev. Lett. 74, 2196–2199 (1995).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

E. A. Cornell and C. E. Wieman, “Nobel lecture: Bose–Einstein condensation in a dilute gas: the first 70 years and some recent experiments,” Rev. Mod. Phys. 74, 875–893 (2002).
[CrossRef]

Science (1)

T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, “Bose–Einstein condensation of cesium,” Science 299, 232–235 (2003).
[CrossRef]

Other (7)

D. Pritchard and W. Ketterle, “Atom traps and atom optics,” in Laser Manipulation of Atoms and Ions, E. Arimondo, W. Phillips, and F. Strumia, eds., Proceedings of the International School of Physics “Enrico Fermi,” Course CXVIII (North-Holland, Amsterdam, 1992), pp. 473–496.

M. Inguscio, S. Stringari, and C. E. Wieman, eds., Bose–Einstein Condensation in Atomic Gases (International School of Physics “Enrico Fermi,” Varenna, Italy 1998).

S. Hensler, P. O. Schmidt, J. Werner, A. Griesmeier, A. Görlitz, and T. Pfau are preparing a manuscript to be called “Dipolar relaxation in ultracold dipolar gases.”

P. O. Schmidt, S. Hensler, J. Werner, T. Binhammer, A. Görlitz, and T. Pfau, “Continuous loading of cold atoms into a Ioffe–Pritchard magnetic trap,” J. Opt. B (to be published); arXive e-print archive, http://xxx.lanl.gov/abs/quant-ph/0211032.

In principle the same argument holds for a J=J transition; for simplicity we will concentrate on the situation above.

J. Stuhler, “Kontinuierliches Laden einer Magnetfalle mit lasergekühlten Chromatomen,” Ph.D. dissertation, Universität Konstanz (Ufo-Verlag, Allensbach, 2002).

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions, 1st ed. (Wiley, New York, 1992), pp. 93–97.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Part of the Zeeman substructure of 52Cr as an example of a JJ+1 transition. Shown is the transition from the electronic ground state 7S3 to 7P4 with a wavelength of λatom=425.55 nm, a saturation intensity Is=85.2 W/m2 and a linewidth of Γ=2π×5.02 MHz. Numbers next to the transitions are the squares of the Clebsch–Gordan coefficients.

Fig. 2
Fig. 2

Temperatures in the axial (z) and radial (y) direction as a function of trap aspect ratio for N=108 atoms and a peak density of n0=5×1010 cm-3.

Fig. 3
Fig. 3

Typical evolution of the temperatures in the axial (z) and radial (y) direction as a function of cooling time. Intensity of the cooling laser was 4×10-3 Isat. Inset shows another measurement with finer resolution of the initial decrease in temperature. Curves in the inset are least-squares fits of an exponential decay to the data with a typical uncertainty in the time constants of below 10%.

Fig. 4
Fig. 4

Evolution of the number of atoms and the phase-space density for the same data set as shown in Fig. 3. Statistical error in the data of 20% has been omitted for clarity.

Fig. 5
Fig. 5

Radial cooling rate 1/τycool as a function of measured cooling-light intensity of a single beam. Corresponding cooling rates in the axial direction are larger by a factor of at least five for each data point.

Fig. 6
Fig. 6

Radial steady-state temperature as a function of cooling-light intensity. The curve is a fit of Eq. (17) to the data, which are from the same experimental run as in Fig. 5.

Fig. 7
Fig. 7

Steady-state temperature in the radial direction as a function of optical density (OD) in this direction. The error bar represents the typical error from the temperature fit to the time-of-flight data. The theory curve is a plot of Eq. (18) with the results of the fit from Fig. 6.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

V(x, y, z)=μBxx22+Byy22+Bzz22+B0.
Rdep=Γ22IC331+4Δdep2Γ22IC341+4Δpol2=Rpol,
dTzdt=2ERkBτzheat-Tzτzcool,
dTydt=2ERkBτyheat-Tyτycool,
Iz,yeff=2Iκz,y2Iκz,y*ODz,y.
κy=VdV0Vsin2 ϑdrdϑdϕκ0(r0, r, ϑ, ϕ)|sin ϕ|,
κz=VdV0Vsin ϑdrdϑdϕκ0(r0, r, ϑ, ϕ)|cos ϑ|,
κ0(r0, r, ϑ, ϕ)=3Psc(r0)32πI0 (1+cos2 ϑ)2n(r0)n(r0, r, ϑ, ϕ).
κ=VdV0Vsin ϑdrdϑdϕκ0(r0, r, ϑ, ϕ).
1τzcool=-Γ 32Δpol(1+κz)2I(1+4Δpol2)2ERΓ,
1τycool=-Γ 32Δpolκy2I(1+4Δpol2)2ERΓ.
1τzheat=(1+κz)+25 (1+κ)2IΓ1+4Δpol2,
1τyheat=κy+310 (1+κ)2IΓ1+4Δpol2.
Tz=τzcoolτzheat2ERkB=1+κz+(2/5)(1+κ)1+κzTD2,
Ty=τycoolτyheat2ERkB=κy+(3/10)(1+κ)κyTD2,
Tzmin=(7/10)TD,
Tz,y(t)=Tz,y+(Tz,y0-Tz,y)exp(-t/τz,ycool),
ODy1σzσyκy.
Ty=κy+310 (1+κ)+RERΓIκyTD2.
Ty=κy*ODy+310 (1+κ*ODy)+RERΓIκy*ODyTD2.

Metrics