Abstract

The roles of the asymmetry of coherent light and of an active medium in squeezed-state generation in a weakly noncentrosymmetric semiconductor are discussed. It is suggested that origin of medium asymmetry lies in the parity indefiniteness of the transition states, whereas field asymmetry is due to the polarization property of light. Third-order nonlinear optical susceptibility is obtained from the semiclassical density matrix approach, whereas the light-squeezing process is studied by use of Heisenberg’s equation of motion. The analysis is applied to GaAs that has been duly irradiated by a tunable nanosecond pulsed Co:MgF2 laser with its photon energy off resonant below the semiconductor’s band edge. It has been found that the effect of asymmetry on squeezed-state generation and photon number is finite only when both of the asymmetries are present simultaneously. One may also notice that the asymmetry improves the squeezing level and reduces the time span of squeezed-light generation.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
    [CrossRef] [PubMed]
  2. S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
    [CrossRef] [PubMed]
  3. S. Machida and Y. Yamamoto, “Ultraband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–795 (1988).
    [CrossRef] [PubMed]
  4. S. Machida and Y. Yamamoto, “Observation of amplitude squeezing from semiconductor lasers by balanced direct detectors with a delay line,” Opt. Lett. 14, 1045–1047 (1989).
    [CrossRef] [PubMed]
  5. M. C. Teich, F. Capasso, and B. E. A. Saleh, “Photon-number-squeezed recombination radiation in semiconductors,” J. Opt. Soc. Am. B 4, 1663–1666 (1987).
    [CrossRef]
  6. W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and subpoissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
    [CrossRef] [PubMed]
  7. H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993).
    [CrossRef] [PubMed]
  8. Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
    [CrossRef] [PubMed]
  9. J. L. Vey and P. Gallion, “Semiclassical model of semiconductor laser noise and amplitude noise squeezing. II,” IEEE J. Quantum Electron. 33, 2105–2110 (1997).
    [CrossRef]
  10. D. C. Kilper, P. A. Roos, J. L. Carsten, and K. L. Lear, “Squeezed light generated by a microcavity laser,” Phys. Rev. A 55, R3323–R3326 (1997).
    [CrossRef]
  11. J. L. Vey and W. Elsasser, “Noise and amplitude-squeezing performance of two-polarization-mode semiconductor lasers,” Opt. Lett. 23, 721–723 (1998).
    [CrossRef]
  12. H. K. Gahir, P. Sen, J. T. Andrews, and R. R. Puri, “Effect of the polarization state on squeezed-state generation in GaAs,” J. Opt. B 2, 482–489 (2000).
    [CrossRef]
  13. H. K. Gahir and P. Sen, “Squeezed state generation in birefringent materials,” Nonlinear Opt. 2, 169–181 (2000).
  14. M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
    [CrossRef]
  15. J. Zhang, T. Zang, R. Dong, J. Zhang, J. Wang, C. Xie, and K. Peng, “Influence of birefringence induced at low temperature on balanced detection of polarization-dependent photon-number squeezing and its optical compensation,” J. Opt. Soc. Am. B 18, 1014–1018 (2001).
    [CrossRef]
  16. R. Tanas and S. Kielich, “Self-squeezing of light propagating through nonlinear optical isotropic media,” Opt. Commun. 45, 351–356 (1983).
    [CrossRef]
  17. W. A. Schroeder, D. S. McCallum, D. R. Harken, M. D. Dvorak, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Intrinsic and induced anisotropy of nonlinear absorption and refraction in a zinc blende semiconductor,” J. Opt. Soc. Am. B 12, 401–415 (1995).
    [CrossRef]
  18. S. Kielich, R. Tanas, and R. Zawodny, “Intensity-dependent Faraday effect as a tool for controlling the process of light self-squeezing,” Phys. Rev. A 36, 5670–5676 (1987).
    [CrossRef] [PubMed]
  19. A. G. White, P. K. Lam, D. E. McClelland, H. A. Bachor, and W. J. Munro, “Kerr noise reduction and squeezing,” J. Opt. B 2, 553–561 (2000).
    [CrossRef]
  20. N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, eds., Introduction to Semiconductor Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993), pp. 171–172.
  21. P. Sen, “Effect of non-centrosymmetry on nonlinear refraction in semiconductors,” Nonlinear Opt. 4, 21–30 (1993).
  22. H. Rabin and C. L. Tang, eds., Quantum Electronics: A Treatise (Academic, New York, 1975), p. 49.
  23. D. M. Rines, P. F. Moulton, D. Welford, and G. A. Rines, “High-energy operation of a Co:MgF2,” Opt. Lett. 19, 628–630 (1994).
    [CrossRef] [PubMed]

2001 (1)

2000 (3)

H. K. Gahir, P. Sen, J. T. Andrews, and R. R. Puri, “Effect of the polarization state on squeezed-state generation in GaAs,” J. Opt. B 2, 482–489 (2000).
[CrossRef]

H. K. Gahir and P. Sen, “Squeezed state generation in birefringent materials,” Nonlinear Opt. 2, 169–181 (2000).

A. G. White, P. K. Lam, D. E. McClelland, H. A. Bachor, and W. J. Munro, “Kerr noise reduction and squeezing,” J. Opt. B 2, 553–561 (2000).
[CrossRef]

1998 (1)

1997 (2)

J. L. Vey and P. Gallion, “Semiclassical model of semiconductor laser noise and amplitude noise squeezing. II,” IEEE J. Quantum Electron. 33, 2105–2110 (1997).
[CrossRef]

D. C. Kilper, P. A. Roos, J. L. Carsten, and K. L. Lear, “Squeezed light generated by a microcavity laser,” Phys. Rev. A 55, R3323–R3326 (1997).
[CrossRef]

1996 (1)

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
[CrossRef]

1995 (1)

1994 (1)

1993 (2)

P. Sen, “Effect of non-centrosymmetry on nonlinear refraction in semiconductors,” Nonlinear Opt. 4, 21–30 (1993).

H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993).
[CrossRef] [PubMed]

1991 (1)

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and subpoissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

1989 (1)

1988 (1)

S. Machida and Y. Yamamoto, “Ultraband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–795 (1988).
[CrossRef] [PubMed]

1987 (3)

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

M. C. Teich, F. Capasso, and B. E. A. Saleh, “Photon-number-squeezed recombination radiation in semiconductors,” J. Opt. Soc. Am. B 4, 1663–1666 (1987).
[CrossRef]

S. Kielich, R. Tanas, and R. Zawodny, “Intensity-dependent Faraday effect as a tool for controlling the process of light self-squeezing,” Phys. Rev. A 36, 5670–5676 (1987).
[CrossRef] [PubMed]

1986 (1)

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

1985 (1)

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[CrossRef] [PubMed]

1983 (1)

R. Tanas and S. Kielich, “Self-squeezing of light propagating through nonlinear optical isotropic media,” Opt. Commun. 45, 351–356 (1983).
[CrossRef]

Andersen, D. R.

Andrews, J. T.

H. K. Gahir, P. Sen, J. T. Andrews, and R. R. Puri, “Effect of the polarization state on squeezed-state generation in GaAs,” J. Opt. B 2, 482–489 (2000).
[CrossRef]

Bachor, H. A.

A. G. White, P. K. Lam, D. E. McClelland, H. A. Bachor, and W. J. Munro, “Kerr noise reduction and squeezing,” J. Opt. B 2, 553–561 (2000).
[CrossRef]

Capasso, F.

Carsten, J. L.

D. C. Kilper, P. A. Roos, J. L. Carsten, and K. L. Lear, “Squeezed light generated by a microcavity laser,” Phys. Rev. A 55, R3323–R3326 (1997).
[CrossRef]

Dabbicco, M.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
[CrossRef]

Dong, R.

Dvorak, M. D.

Elsasser, W.

Fox, A. M.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
[CrossRef]

Freeman, M. J.

H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993).
[CrossRef] [PubMed]

Gahir, H. K.

H. K. Gahir and P. Sen, “Squeezed state generation in birefringent materials,” Nonlinear Opt. 2, 169–181 (2000).

H. K. Gahir, P. Sen, J. T. Andrews, and R. R. Puri, “Effect of the polarization state on squeezed-state generation in GaAs,” J. Opt. B 2, 482–489 (2000).
[CrossRef]

Gallion, P.

J. L. Vey and P. Gallion, “Semiclassical model of semiconductor laser noise and amplitude noise squeezing. II,” IEEE J. Quantum Electron. 33, 2105–2110 (1997).
[CrossRef]

Harken, D. R.

Hollberg, L. W.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[CrossRef] [PubMed]

Itaya, Y.

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

Kielich, S.

S. Kielich, R. Tanas, and R. Zawodny, “Intensity-dependent Faraday effect as a tool for controlling the process of light self-squeezing,” Phys. Rev. A 36, 5670–5676 (1987).
[CrossRef] [PubMed]

R. Tanas and S. Kielich, “Self-squeezing of light propagating through nonlinear optical isotropic media,” Opt. Commun. 45, 351–356 (1983).
[CrossRef]

Kilper, D. C.

D. C. Kilper, P. A. Roos, J. L. Carsten, and K. L. Lear, “Squeezed light generated by a microcavity laser,” Phys. Rev. A 55, R3323–R3326 (1997).
[CrossRef]

Lam, P. K.

A. G. White, P. K. Lam, D. E. McClelland, H. A. Bachor, and W. J. Munro, “Kerr noise reduction and squeezing,” J. Opt. B 2, 553–561 (2000).
[CrossRef]

Lear, K. L.

D. C. Kilper, P. A. Roos, J. L. Carsten, and K. L. Lear, “Squeezed light generated by a microcavity laser,” Phys. Rev. A 55, R3323–R3326 (1997).
[CrossRef]

Machida, S.

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and subpoissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

S. Machida and Y. Yamamoto, “Observation of amplitude squeezing from semiconductor lasers by balanced direct detectors with a delay line,” Opt. Lett. 14, 1045–1047 (1989).
[CrossRef] [PubMed]

S. Machida and Y. Yamamoto, “Ultraband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–795 (1988).
[CrossRef] [PubMed]

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

McCallum, D. S.

McClelland, D. E.

A. G. White, P. K. Lam, D. E. McClelland, H. A. Bachor, and W. J. Munro, “Kerr noise reduction and squeezing,” J. Opt. B 2, 553–561 (2000).
[CrossRef]

Mertz, J. C.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[CrossRef] [PubMed]

Moulton, P. F.

Munro, W. J.

A. G. White, P. K. Lam, D. E. McClelland, H. A. Bachor, and W. J. Munro, “Kerr noise reduction and squeezing,” J. Opt. B 2, 553–561 (2000).
[CrossRef]

Nilsson, O.

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

Peng, K.

Puri, R. R.

H. K. Gahir, P. Sen, J. T. Andrews, and R. R. Puri, “Effect of the polarization state on squeezed-state generation in GaAs,” J. Opt. B 2, 482–489 (2000).
[CrossRef]

Richardson, W. H.

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and subpoissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

Rines, D. M.

Rines, G. A.

Roos, P. A.

D. C. Kilper, P. A. Roos, J. L. Carsten, and K. L. Lear, “Squeezed light generated by a microcavity laser,” Phys. Rev. A 55, R3323–R3326 (1997).
[CrossRef]

Ryan, J. F.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
[CrossRef]

Saleh, B. E. A.

Schroeder, W. A.

Sen, P.

H. K. Gahir and P. Sen, “Squeezed state generation in birefringent materials,” Nonlinear Opt. 2, 169–181 (2000).

H. K. Gahir, P. Sen, J. T. Andrews, and R. R. Puri, “Effect of the polarization state on squeezed-state generation in GaAs,” J. Opt. B 2, 482–489 (2000).
[CrossRef]

P. Sen, “Effect of non-centrosymmetry on nonlinear refraction in semiconductors,” Nonlinear Opt. 4, 21–30 (1993).

Slusher, R. E.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[CrossRef] [PubMed]

Smirl, A. L.

Steel, D. G.

H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993).
[CrossRef] [PubMed]

Tanas, R.

S. Kielich, R. Tanas, and R. Zawodny, “Intensity-dependent Faraday effect as a tool for controlling the process of light self-squeezing,” Phys. Rev. A 36, 5670–5676 (1987).
[CrossRef] [PubMed]

R. Tanas and S. Kielich, “Self-squeezing of light propagating through nonlinear optical isotropic media,” Opt. Commun. 45, 351–356 (1983).
[CrossRef]

Teich, M. C.

Valley, J. F.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[CrossRef] [PubMed]

Vey, J. L.

J. L. Vey and W. Elsasser, “Noise and amplitude-squeezing performance of two-polarization-mode semiconductor lasers,” Opt. Lett. 23, 721–723 (1998).
[CrossRef]

J. L. Vey and P. Gallion, “Semiclassical model of semiconductor laser noise and amplitude noise squeezing. II,” IEEE J. Quantum Electron. 33, 2105–2110 (1997).
[CrossRef]

von Plessen, G.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
[CrossRef]

Wang, H.

H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993).
[CrossRef] [PubMed]

Wang, J.

Welford, D.

Wherrett, B. S.

White, A. G.

A. G. White, P. K. Lam, D. E. McClelland, H. A. Bachor, and W. J. Munro, “Kerr noise reduction and squeezing,” J. Opt. B 2, 553–561 (2000).
[CrossRef]

Xie, C.

Yamamoto, Y.

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and subpoissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

S. Machida and Y. Yamamoto, “Observation of amplitude squeezing from semiconductor lasers by balanced direct detectors with a delay line,” Opt. Lett. 14, 1045–1047 (1989).
[CrossRef] [PubMed]

S. Machida and Y. Yamamoto, “Ultraband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–795 (1988).
[CrossRef] [PubMed]

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

Yurke, B.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[CrossRef] [PubMed]

Zang, T.

Zawodny, R.

S. Kielich, R. Tanas, and R. Zawodny, “Intensity-dependent Faraday effect as a tool for controlling the process of light self-squeezing,” Phys. Rev. A 36, 5670–5676 (1987).
[CrossRef] [PubMed]

Zhang, J.

IEEE J. Quantum Electron. (1)

J. L. Vey and P. Gallion, “Semiclassical model of semiconductor laser noise and amplitude noise squeezing. II,” IEEE J. Quantum Electron. 33, 2105–2110 (1997).
[CrossRef]

J. Opt. B (2)

H. K. Gahir, P. Sen, J. T. Andrews, and R. R. Puri, “Effect of the polarization state on squeezed-state generation in GaAs,” J. Opt. B 2, 482–489 (2000).
[CrossRef]

A. G. White, P. K. Lam, D. E. McClelland, H. A. Bachor, and W. J. Munro, “Kerr noise reduction and squeezing,” J. Opt. B 2, 553–561 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nonlinear Opt. (2)

P. Sen, “Effect of non-centrosymmetry on nonlinear refraction in semiconductors,” Nonlinear Opt. 4, 21–30 (1993).

H. K. Gahir and P. Sen, “Squeezed state generation in birefringent materials,” Nonlinear Opt. 2, 169–181 (2000).

Opt. Commun. (1)

R. Tanas and S. Kielich, “Self-squeezing of light propagating through nonlinear optical isotropic media,” Opt. Commun. 45, 351–356 (1983).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (3)

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

S. Kielich, R. Tanas, and R. Zawodny, “Intensity-dependent Faraday effect as a tool for controlling the process of light self-squeezing,” Phys. Rev. A 36, 5670–5676 (1987).
[CrossRef] [PubMed]

D. C. Kilper, P. A. Roos, J. L. Carsten, and K. L. Lear, “Squeezed light generated by a microcavity laser,” Phys. Rev. A 55, R3323–R3326 (1997).
[CrossRef]

Phys. Rev. B (1)

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
[CrossRef]

Phys. Rev. Lett. (5)

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[CrossRef] [PubMed]

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

S. Machida and Y. Yamamoto, “Ultraband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–795 (1988).
[CrossRef] [PubMed]

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and subpoissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993).
[CrossRef] [PubMed]

Other (2)

N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, eds., Introduction to Semiconductor Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993), pp. 171–172.

H. Rabin and C. L. Tang, eds., Quantum Electronics: A Treatise (Academic, New York, 1975), p. 49.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Quadrature variance Δx22 as a function of time t in a GaAs crystal (a) with finite asymmetry and (b) in the absence of asymmetry, with the field kept asymmetric in both cases.

Fig. 2
Fig. 2

Quadrature variance Δx22 as a function of time t in a GaAs crystal for (a) an asymmetric field and (b) a symmetric field, with the medium kept asymmetric in both cases.

Tables (1)

Tables Icon

Table 1 Evolution of Photon Number

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

μˆ=-ψn*μˆψgdτ.
μ^(j)=Tr[μˆρ(j)],μˆ=jμ^(j),
ρ(0)=ρgg(0)ρgn(0)ρng(0)ρnn(0).
i ρ(j)t=[H, ρ(j)]+iΓρ(j),
H0=ωv00ωc,HI=-μggEμgnEμngE*μnnE*.
E(z, t)=E0exp[-i(kz-ωt)].
ρng(1)=[ρgg(0)-ρnn(0)]Ωng+ρng(0)ΩΔ+iΓ,
ρgg(1)=-ρnn(1)=[ρgn(0)Ωng-ρng(0)Ωgn]ω-iΓ,
ρng(2)=22(Δ+iΓ)(ω-iΓ) [ρgn(0)μng2(E*)2-ρng(0)μgnμng|E|2]+12(Δ+iΓ)2({[ρgg(0)-ρnn(0)][μngμnn(E*)2-μngμgg|E|2]}+ρng(0)(μnnE*-μggE)2),
ρgg(2)=-ρnn(2)=-12(ω-iΓ)(Δ+iΓ) {[ρgg(0)-ρnn(0)]μngμgn|E|2+ρng(0)(μnnμgn|E|2-μggμgnE2)},
ρng(3)=-13(Δ+iΓ)2×[ρgg(0)-ρnn(0)]2μng2μgnω-iΓ+μngμggμnnΔ+iΓ+ρng(0)2μnnμgnμngω-iΓ-μnn2μggΔ+iΓE*EE*+[ρgg(0)-ρnn(0)]μngμnnμggΔ+iΓ+2ρgn(0)μng2μggω-iΓ+ρng(0)μnn2μggΔ+iΓE*E*E,
ρgg(3)=-ρnn(3)=-13(ω-iΓ)(Δ+iΓ)2ρgn(0)μng2μgnω-iΓ+[ρgg(0)-ρnn(0)]μngμgnμnnΔ+iΓ+ρng(0)μnn2μgn(Δ+iΓ)E*E*E,
P±(3)=(N Trμρ(3))=ε0(n+2E+n-2E±),
n+2=-Nμgn03(Δ+iΓ)2 {[ρgg(0)-ρnn(0)]μng+ρng(0)μnn}×2|μgn|2ω-iΓ+μnnμggΔ+iΓ(|1|2+|2|2),
n-2=-N03(Δ+iΓ)2ρgn(0)μng2μgnω-iΓ×μgg-μnnω-iΓ+μggΔ+iΓ+ρng(0)μnn2Δ+iΓ(μgg-μnn)μgnω-iΓ+μgnμggΔ+iΓ+[ρgg(0)-ρnn(0)]μngμnnμgnΔ+iΓ×μgg-μnnω-iΓ-μgnΔ+iΓ[(1*)2-(2*)2].
E(z, t)=i(2πω/η02V)1/2(axˆ+byˆ),
H= p2 [(a+)2+(b+)2](a2+b2)+ q2:(a+a+b+b)2:,
p=-4πω2V0η02 n-2,q=-4π2ω2V0η02 n+2.
a±(t)=exp{-it[q(a++a++a-+a-)+2pa+a]}a±.
a(t)=a+(t)+a-(t)2,b(t)=a+(t)-a-(t)2,
a±(t)|α+, α-=α±|α+exp(-iθ±t), α-exp(-iθt),
α±=|α|exp(iξ1)±i|β|exp(iξ2)2,
a+(t)a(t)=1/2{|α|2+|β|2+[(|α|2-|β|2)×cos x(t)-2|α||β|cos Δξ sin x(t)]×exp[-2(|α|2+|β|2)sin2 pt]},
x1(t)=a(t)+a+(t)2,x2(t)=a(t)-a+(t)2i.
Δx12(t)=1/4+a+(t)a(t)+1/2[Re(a2(t)-a(t)2)-|a(t)|2],
Δx22(t)=1/4+a+(t)a(t)-1/2[Re(a2(t)-a(t)2)+|a(t)|2].
a2(t)=1/4(b1cos b3+2ib2sin b3)×exp{-iqt-(|α|2+|β|2)×[1-exp(-iθt)cos 2pt]}+2[|α|2exp(2iξ1)+|β|2exp(2iξ2)]exp{-i(q+2p)t-(|α|2+|β|2)[1-exp(-iθt)]}),
a(t)=(α cos b4-β sin b4)exp{-(|α|2+|β|2)×[1-exp(-iθt/2)cos pt]}.
b1=|α|2exp(2iξ1)-|β|2exp(2iξ2),b2=2i|α||β|exp(iϕ),
b3=2|α||β|exp(-iθt)sin Δξ sin 2pt,b4=2|α||β|exp(-iθt/2)sin Δξ sin pt,
θ=2(q+p),ϕ=ξ1+ξ2.

Metrics