Abstract

We demonstrate a cw, diode-pumped-Nd:YVO4 laser oscillator in a self-starting, adaptive loop configuration producing 20 W of phase-conjugate output for 66 W of diode pumping. The beam quality is TEM00 with a beam quality factor M21.1 despite strong thermally-induced lensing in the amplifier. An additional amplifier was introduced inside the adaptive oscillator, scaling the power to 33 W of phase-conjugate output with a total diode-pumping power of 103 W. A discussion is presented of the cavity stability and optimization of the phase-conjugation efficiency, including the use of relay-imaging optics.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996).
  2. Y. F. Chen, Y. P. Lan, and S. C. Wang, “High-power diode-end-pumped Nd:YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71, 827–830 (2000).
    [CrossRef]
  3. R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
    [CrossRef]
  4. J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, and R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron. Lett. 33, 775–777 (1997).
    [CrossRef]
  5. P. Zeller and P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the 4F3/2-4I9/2 transitions of Nd:YVO4 and Nd:YAG,” Opt. Lett. 25, 34–36 (2000).
    [CrossRef]
  6. G. Q. Yuan, T. C. Chong, and B. X. Xu, “YAG laser end and side pumped by a laser diode,” Appl. Opt. 37, 3971–3976 (1998).
    [CrossRef]
  7. R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
    [CrossRef]
  8. C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
    [CrossRef]
  9. M. J. Damzen, R. P. M. Green, and K. S. Syed, “Self-adaptive solid-state laser-oscillator formed by dynamic gain-grating holograms,” Opt. Lett. 20, 1704–1706 (1995).
    [CrossRef]
  10. G. J. Crofts, X. Banti, and M. J. Damzen, “Tunable phase-conjugation in a Ti:sapphire amplifier,” Opt. Lett. 20, 1634–1636 (1995).
    [CrossRef] [PubMed]
  11. R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Holographic laser resonators in Nd:YAG,” Opt. Lett. 19, 393–395 (1994).
    [PubMed]
  12. A. Minassian, G. J. Crofts, and M. J. Damzen, “Self-starting Ti:sapphire holographic laser oscillator,” Opt. Lett. 22, 697–699 (1997).
    [CrossRef] [PubMed]
  13. O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, and A. P. Zinoviev, “250 W average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
    [CrossRef]
  14. A. Brignon and J. P. Huignard, “Continuous-wave operation of saturable-gain degenerate 4-wave-mixing in a Nd:YVO4 amplifier,” Opt. Lett. 20, 2096–2098 (1995).
    [CrossRef] [PubMed]
  15. A. Brignon, G. Feugnet, J. P. Huignard, and J. P. Pocholle, “Multipass degenerate 4-wave-mixing in a diode-pumped Nd:YVO4 saturable amplifier,” J. Opt. Soc. Am. B 12, 1316–1325 (1995).
    [CrossRef]
  16. M. Trew, G. J. Crofts, M. J. Damzen, J. M. Hendricks, S. Mailis, D. P. Shepherd, A. C. Tropper, and R. W. Eason, “Multiwatt continuous-wave adaptive laser resonator,” Opt. Lett. 25, 1346–1348 (2000).
    [CrossRef]
  17. J. M. Hendricks, D. I. Hillier, S. J. Barrington, D. P. Shepherd, R. W. Eason, M. J. Damzen, A. Minassian, and B. A. Thompson, “Power scaling of continuous-wave adaptive gain-grating laser resonators,” Opt. Commun. 205, 197–205 (2002).
    [CrossRef]
  18. B. A. Thompson, A. Minassian, R. W. Eason, and M. J. Damzen, “Efficient operation of a solid-state adaptive laser oscillator,” Appl. Opt. 41, 5638–5644 (2002).
    [CrossRef] [PubMed]
  19. G. J. Crofts and M. J. Damzen, “Numerical modelling of continuous-wave holographic laser oscillators,” Opt. Commun. 175, 397–408 (2000).
    [CrossRef]
  20. Casix Inc., P.O. Box 1103, Fuzhou, Fujian 350014, China (http://www.casix.com).
  21. A. J. Alcock and J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 3–8 (1997).
    [CrossRef]
  22. J. E. Bernard and A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968–970 (1993).
    [CrossRef] [PubMed]
  23. M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
    [CrossRef]
  24. C. E. Hamilton, R. J. Beach, S. B. Sutton, L. H. Furu, and W. F. Krupke, “1-W average power levels and tunability from a diode-pumped 2.94μm Er:YAG oscillator,” Opt. Lett. 19, 1627–1629 (1994).
    [CrossRef] [PubMed]

2002 (2)

J. M. Hendricks, D. I. Hillier, S. J. Barrington, D. P. Shepherd, R. W. Eason, M. J. Damzen, A. Minassian, and B. A. Thompson, “Power scaling of continuous-wave adaptive gain-grating laser resonators,” Opt. Commun. 205, 197–205 (2002).
[CrossRef]

B. A. Thompson, A. Minassian, R. W. Eason, and M. J. Damzen, “Efficient operation of a solid-state adaptive laser oscillator,” Appl. Opt. 41, 5638–5644 (2002).
[CrossRef] [PubMed]

2001 (2)

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, and A. P. Zinoviev, “250 W average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

2000 (4)

M. Trew, G. J. Crofts, M. J. Damzen, J. M. Hendricks, S. Mailis, D. P. Shepherd, A. C. Tropper, and R. W. Eason, “Multiwatt continuous-wave adaptive laser resonator,” Opt. Lett. 25, 1346–1348 (2000).
[CrossRef]

G. J. Crofts and M. J. Damzen, “Numerical modelling of continuous-wave holographic laser oscillators,” Opt. Commun. 175, 397–408 (2000).
[CrossRef]

Y. F. Chen, Y. P. Lan, and S. C. Wang, “High-power diode-end-pumped Nd:YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71, 827–830 (2000).
[CrossRef]

P. Zeller and P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the 4F3/2-4I9/2 transitions of Nd:YVO4 and Nd:YAG,” Opt. Lett. 25, 34–36 (2000).
[CrossRef]

1999 (1)

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

1998 (1)

1997 (3)

A. J. Alcock and J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 3–8 (1997).
[CrossRef]

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, and R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron. Lett. 33, 775–777 (1997).
[CrossRef]

A. Minassian, G. J. Crofts, and M. J. Damzen, “Self-starting Ti:sapphire holographic laser oscillator,” Opt. Lett. 22, 697–699 (1997).
[CrossRef] [PubMed]

1995 (4)

1994 (3)

1993 (1)

1987 (1)

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Alcock, A. J.

A. J. Alcock and J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 3–8 (1997).
[CrossRef]

J. E. Bernard and A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968–970 (1993).
[CrossRef] [PubMed]

Antipov, O. L.

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, and A. P. Zinoviev, “250 W average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

Banti, X.

Barrington, S. J.

J. M. Hendricks, D. I. Hillier, S. J. Barrington, D. P. Shepherd, R. W. Eason, M. J. Damzen, A. Minassian, and B. A. Thompson, “Power scaling of continuous-wave adaptive gain-grating laser resonators,” Opt. Commun. 205, 197–205 (2002).
[CrossRef]

Baumann, M.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, and R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron. Lett. 33, 775–777 (1997).
[CrossRef]

Beach, R. J.

Bernard, J. E.

A. J. Alcock and J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 3–8 (1997).
[CrossRef]

J. E. Bernard and A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968–970 (1993).
[CrossRef] [PubMed]

Birnbaum, M.

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Brignon, A.

Chausov, D. V.

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, and A. P. Zinoviev, “250 W average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

Chen, Y. F.

Y. F. Chen, Y. P. Lan, and S. C. Wang, “High-power diode-end-pumped Nd:YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71, 827–830 (2000).
[CrossRef]

Chong, T. C.

Crofts, G. J.

Damzen, M. J.

J. M. Hendricks, D. I. Hillier, S. J. Barrington, D. P. Shepherd, R. W. Eason, M. J. Damzen, A. Minassian, and B. A. Thompson, “Power scaling of continuous-wave adaptive gain-grating laser resonators,” Opt. Commun. 205, 197–205 (2002).
[CrossRef]

B. A. Thompson, A. Minassian, R. W. Eason, and M. J. Damzen, “Efficient operation of a solid-state adaptive laser oscillator,” Appl. Opt. 41, 5638–5644 (2002).
[CrossRef] [PubMed]

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

G. J. Crofts and M. J. Damzen, “Numerical modelling of continuous-wave holographic laser oscillators,” Opt. Commun. 175, 397–408 (2000).
[CrossRef]

M. Trew, G. J. Crofts, M. J. Damzen, J. M. Hendricks, S. Mailis, D. P. Shepherd, A. C. Tropper, and R. W. Eason, “Multiwatt continuous-wave adaptive laser resonator,” Opt. Lett. 25, 1346–1348 (2000).
[CrossRef]

A. Minassian, G. J. Crofts, and M. J. Damzen, “Self-starting Ti:sapphire holographic laser oscillator,” Opt. Lett. 22, 697–699 (1997).
[CrossRef] [PubMed]

G. J. Crofts, X. Banti, and M. J. Damzen, “Tunable phase-conjugation in a Ti:sapphire amplifier,” Opt. Lett. 20, 1634–1636 (1995).
[CrossRef] [PubMed]

M. J. Damzen, R. P. M. Green, and K. S. Syed, “Self-adaptive solid-state laser-oscillator formed by dynamic gain-grating holograms,” Opt. Lett. 20, 1704–1706 (1995).
[CrossRef]

R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Holographic laser resonators in Nd:YAG,” Opt. Lett. 19, 393–395 (1994).
[PubMed]

Du, K. M.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, and R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron. Lett. 33, 775–777 (1997).
[CrossRef]

Eason, R. W.

Falter, S.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, and R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron. Lett. 33, 775–777 (1997).
[CrossRef]

Feugnet, G.

Fields, R. A.

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Fincher, C. L.

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Furu, L. H.

Green, R. P. M.

Gruber, R.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Hamilton, C. E.

Hendricks, J. M.

J. M. Hendricks, D. I. Hillier, S. J. Barrington, D. P. Shepherd, R. W. Eason, M. J. Damzen, A. Minassian, and B. A. Thompson, “Power scaling of continuous-wave adaptive gain-grating laser resonators,” Opt. Commun. 205, 197–205 (2002).
[CrossRef]

M. Trew, G. J. Crofts, M. J. Damzen, J. M. Hendricks, S. Mailis, D. P. Shepherd, A. C. Tropper, and R. W. Eason, “Multiwatt continuous-wave adaptive laser resonator,” Opt. Lett. 25, 1346–1348 (2000).
[CrossRef]

Hillier, D. I.

J. M. Hendricks, D. I. Hillier, S. J. Barrington, D. P. Shepherd, R. W. Eason, M. J. Damzen, A. Minassian, and B. A. Thompson, “Power scaling of continuous-wave adaptive gain-grating laser resonators,” Opt. Commun. 205, 197–205 (2002).
[CrossRef]

Huignard, J. P.

Krupke, W. F.

Kuzhelev, A. S.

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, and A. P. Zinoviev, “250 W average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

Lan, Y. P.

Y. F. Chen, Y. P. Lan, and S. C. Wang, “High-power diode-end-pumped Nd:YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71, 827–830 (2000).
[CrossRef]

Liao, Y.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, and R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron. Lett. 33, 775–777 (1997).
[CrossRef]

Loosen, P.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, and R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron. Lett. 33, 775–777 (1997).
[CrossRef]

Mailis, S.

Merazzi, S.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Minassian, A.

J. M. Hendricks, D. I. Hillier, S. J. Barrington, D. P. Shepherd, R. W. Eason, M. J. Damzen, A. Minassian, and B. A. Thompson, “Power scaling of continuous-wave adaptive gain-grating laser resonators,” Opt. Commun. 205, 197–205 (2002).
[CrossRef]

B. A. Thompson, A. Minassian, R. W. Eason, and M. J. Damzen, “Efficient operation of a solid-state adaptive laser oscillator,” Appl. Opt. 41, 5638–5644 (2002).
[CrossRef] [PubMed]

A. Minassian, G. J. Crofts, and M. J. Damzen, “Self-starting Ti:sapphire holographic laser oscillator,” Opt. Lett. 22, 697–699 (1997).
[CrossRef] [PubMed]

Neuenschwander, B.

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

Peuser, P.

Pfistner, C.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Pocholle, J. P.

Poprawe, R.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, and R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron. Lett. 33, 775–777 (1997).
[CrossRef]

Quade, M.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, and R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron. Lett. 33, 775–777 (1997).
[CrossRef]

Rosas, E.

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

Shepherd, D. P.

J. M. Hendricks, D. I. Hillier, S. J. Barrington, D. P. Shepherd, R. W. Eason, M. J. Damzen, A. Minassian, and B. A. Thompson, “Power scaling of continuous-wave adaptive gain-grating laser resonators,” Opt. Commun. 205, 197–205 (2002).
[CrossRef]

M. Trew, G. J. Crofts, M. J. Damzen, J. M. Hendricks, S. Mailis, D. P. Shepherd, A. C. Tropper, and R. W. Eason, “Multiwatt continuous-wave adaptive laser resonator,” Opt. Lett. 25, 1346–1348 (2000).
[CrossRef]

Sutton, S. B.

Syed, K. S.

Thompson, B. A.

J. M. Hendricks, D. I. Hillier, S. J. Barrington, D. P. Shepherd, R. W. Eason, M. J. Damzen, A. Minassian, and B. A. Thompson, “Power scaling of continuous-wave adaptive gain-grating laser resonators,” Opt. Commun. 205, 197–205 (2002).
[CrossRef]

B. A. Thompson, A. Minassian, R. W. Eason, and M. J. Damzen, “Efficient operation of a solid-state adaptive laser oscillator,” Appl. Opt. 41, 5638–5644 (2002).
[CrossRef] [PubMed]

Trew, M.

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

M. Trew, G. J. Crofts, M. J. Damzen, J. M. Hendricks, S. Mailis, D. P. Shepherd, A. C. Tropper, and R. W. Eason, “Multiwatt continuous-wave adaptive laser resonator,” Opt. Lett. 25, 1346–1348 (2000).
[CrossRef]

Tropper, A. C.

Vorob’ev, V. A.

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, and A. P. Zinoviev, “250 W average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

Wang, S. C.

Y. F. Chen, Y. P. Lan, and S. C. Wang, “High-power diode-end-pumped Nd:YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71, 827–830 (2000).
[CrossRef]

Weber, H. P.

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Weber, R.

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Xu, B. X.

Yuan, G. Q.

Zeller, P.

Zhang, J.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, and R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron. Lett. 33, 775–777 (1997).
[CrossRef]

Zinoviev, A. P.

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, and A. P. Zinoviev, “250 W average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

Y. F. Chen, Y. P. Lan, and S. C. Wang, “High-power diode-end-pumped Nd:YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71, 827–830 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Electron. Lett. (1)

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, and R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron. Lett. 33, 775–777 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, and A. P. Zinoviev, “250 W average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. J. Alcock and J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 3–8 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

J. M. Hendricks, D. I. Hillier, S. J. Barrington, D. P. Shepherd, R. W. Eason, M. J. Damzen, A. Minassian, and B. A. Thompson, “Power scaling of continuous-wave adaptive gain-grating laser resonators,” Opt. Commun. 205, 197–205 (2002).
[CrossRef]

G. J. Crofts and M. J. Damzen, “Numerical modelling of continuous-wave holographic laser oscillators,” Opt. Commun. 175, 397–408 (2000).
[CrossRef]

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

Opt. Lett. (9)

C. E. Hamilton, R. J. Beach, S. B. Sutton, L. H. Furu, and W. F. Krupke, “1-W average power levels and tunability from a diode-pumped 2.94μm Er:YAG oscillator,” Opt. Lett. 19, 1627–1629 (1994).
[CrossRef] [PubMed]

J. E. Bernard and A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968–970 (1993).
[CrossRef] [PubMed]

M. Trew, G. J. Crofts, M. J. Damzen, J. M. Hendricks, S. Mailis, D. P. Shepherd, A. C. Tropper, and R. W. Eason, “Multiwatt continuous-wave adaptive laser resonator,” Opt. Lett. 25, 1346–1348 (2000).
[CrossRef]

A. Brignon and J. P. Huignard, “Continuous-wave operation of saturable-gain degenerate 4-wave-mixing in a Nd:YVO4 amplifier,” Opt. Lett. 20, 2096–2098 (1995).
[CrossRef] [PubMed]

M. J. Damzen, R. P. M. Green, and K. S. Syed, “Self-adaptive solid-state laser-oscillator formed by dynamic gain-grating holograms,” Opt. Lett. 20, 1704–1706 (1995).
[CrossRef]

G. J. Crofts, X. Banti, and M. J. Damzen, “Tunable phase-conjugation in a Ti:sapphire amplifier,” Opt. Lett. 20, 1634–1636 (1995).
[CrossRef] [PubMed]

R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Holographic laser resonators in Nd:YAG,” Opt. Lett. 19, 393–395 (1994).
[PubMed]

A. Minassian, G. J. Crofts, and M. J. Damzen, “Self-starting Ti:sapphire holographic laser oscillator,” Opt. Lett. 22, 697–699 (1997).
[CrossRef] [PubMed]

P. Zeller and P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the 4F3/2-4I9/2 transitions of Nd:YVO4 and Nd:YAG,” Opt. Lett. 25, 34–36 (2000).
[CrossRef]

Opt. Mater. (1)

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

Other (2)

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996).

Casix Inc., P.O. Box 1103, Fuzhou, Fujian 350014, China (http://www.casix.com).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Self-starting, adaptive, holographic, laser resonator schematic showing intersecting beams (A1A4) within the adaptive loop mirror, the nonreciprocal transmission element NRTE, and the output coupler OC. T+ and T- denote transmission in forward and backward direction. (b) Horizontal laser mode size with propagation through the resonator.

Fig. 2
Fig. 2

Experimental self-starting, adaptive, holographic, laser resonator. NRTE, nonreciprocal transmission element; HWP, half-wave plate; P1 and P2, Glan air-polarizers; FR, Faraday rotator; HCL1 and HCL2, horizontal cylindrical lenses; VCL1 and VCL2, vertical cylindrical lenses.

Fig. 3
Fig. 3

Experimental graph of output power Ppc of adaptive laser oscillator (symbols) and optical efficiency (solid curve) as a function of diode pump power Ppump.

Fig. 4
Fig. 4

Experimental adaptive laser oscillator with (a) external amplifier module and (b) intracavity amplifier module. VCL3 and VCL4, vertical cylindrical lenses.

Fig. 5
Fig. 5

Amplified phase-conjugate power Ppca (symbols) and amplifier efficiency (solid curve) as a function of amplifier diode pumping power Ppump (amplifier).

Fig. 6
Fig. 6

Phase-conjugate output power Ppc as a function of intracavity-amplifier diode pumping power Ppump (amplifier).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ralm=ρRt-g1-ρTt-+ρRt+g1-ρTt+.
ralmroc=+1,

Metrics