Abstract

Difference-frequency generation (DFG) and cascaded second-order nonlinear interaction (χ(2)) based wavelength conversions in LiNbO3 quasi-phase-matched waveguides were studied systematically. The characteristics of the two conversion methods, such as conversion efficiency, conversion bandwidth, pump-wavelength tolerance, and temperature stability, were compared with both experimental and theoretical results of MgO-doped quasi-phase-matched waveguides. It was found that for shorter device length and lower pump power, DFG based wavelength converters had higher conversion efficiency, and the cascaded χ(2) based wavelength conversions had slightly wider 3-dB signal-conversion bandwidth. The 3-dB signal wavelength-conversion bandwidth decreased exponentially with an increase in device length. For long devices and high pump power, however, the efficiency difference between the cascaded χ(2) based conversions and DFG based ones was minor. Tolerance of pump wavelength for the cascaded χ(2) based wavelength conversions was approximately two times that of DFG-based ones, which decreases with the increase of device length. In both cases, the tolerance of pump wavelength exponentially decreased with an increase of device length. It was found that the temperature stability of the cascaded χ(2) based conversions was identical to that of DFG based conversions. These results are very helpful in choosing suitable wavelength converters for practical optical communication systems.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technnol. 14, 955–966 (1996).
    [CrossRef]
  2. T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).
    [CrossRef]
  3. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  4. K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
    [CrossRef]
  5. C. Q. Xu, H. Okayama, and M. Kawahara, “1.5-μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).
    [CrossRef]
  6. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
    [CrossRef]
  7. D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundktter, R. Ricken, and W. Sohler, “Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO3 channel waveguides,” Opt. Lett. 24, 896–898 (1999).
    [CrossRef]
  8. K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
    [CrossRef]
  9. O. Gorbounova, Y. J. Ding, J. B. Khurgin, S. J. Lee, and A. E. Craig, “Optical frequency shifters based on cascaded second-order nonlinear processes,” Opt. Lett. 21, 558–560 (1996).
    [CrossRef] [PubMed]
  10. G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, “Frequency shifting through cascaded second-order processes in a N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).
    [CrossRef]
  11. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998).
    [CrossRef]
  12. M. H. Chou, I. Brener, G. Lenz, and R. Scotti, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
    [CrossRef]
  13. C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched different frequency generation,” Jpn. J. Appl. Phys. 34, L1543–L1545 (1995).
    [CrossRef]
  14. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  15. C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO3 quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).
  16. B. Hermansson, D. Yevick, and L. Thylen, “A propagating beam method analysis of nonlinear effects in optical waveguides,” Opt. Quantum Electron. 16, 525–534 (1984).
    [CrossRef]
  17. K. Hayata and M. Koshiba, “Numerical study of guided-wave sum frequency generation through second-order nonlinear parametric processes,” J. Opt. Soc. Am. B 8, 449–458 (1991).
    [CrossRef]
  18. F. A. Katsiku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using finite element method,” IEEE J. Quantum Electron. 33, 1727–1733 (1997).
    [CrossRef]
  19. H. F. Chou, C. F. Lin, and G. C. Wang, “An iterative finite difference beam propagation method for modeling second-order nonlinear effects in optical waveguides,” J. Lightwave Technol. 16, 1686–1693 (1998).
    [CrossRef]
  20. K. Gallo and G. Assanto, “Analysis of lithium niobate all optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741–753 (1999).
    [CrossRef]
  21. C. Q. Xu, H. Okayama, and M. Kawahara, “Optical frequency conversions in nonlinear medium with periodically modulated linear and nonlinear optical parameters,” IEEE J. Quantum Electron. 31, 981–987 (1995).
    [CrossRef]
  22. B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasiphase matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
    [CrossRef]
  23. B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).
    [CrossRef]
  24. B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).
    [CrossRef]
  25. H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, “Measurement of refractive indices and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol% MgO,” Appl. Opt. 31, 6695–6697 (1992).
    [CrossRef] [PubMed]
  26. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
    [CrossRef]
  27. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient SHG in buried waveguides formed using annealed and reverse proton exchange in PPLN,” IEEE LEOS 2001 (Lasers and Electro-Optics Society, Piscataway, N.J., 2001), Vol. 2, pp. 752–753.
  28. C. Q. Xu, K. Fujita, Y. Ogawa, and T. Kamijoh, “Temperature and polarization dependence of LiNbO3 quasiphase-matched wavelength converters,” Appl. Phys. Lett. 74, 1933–1935 (1999).
    [CrossRef]

2002 (1)

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasiphase matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

2001 (2)

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).
[CrossRef]

2000 (2)

M. H. Chou, I. Brener, G. Lenz, and R. Scotti, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[CrossRef]

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO3 quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

1999 (3)

1998 (3)

1997 (3)

F. A. Katsiku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using finite element method,” IEEE J. Quantum Electron. 33, 1727–1733 (1997).
[CrossRef]

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

1996 (3)

O. Gorbounova, Y. J. Ding, J. B. Khurgin, S. J. Lee, and A. E. Craig, “Optical frequency shifters based on cascaded second-order nonlinear processes,” Opt. Lett. 21, 558–560 (1996).
[CrossRef] [PubMed]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technnol. 14, 955–966 (1996).
[CrossRef]

1995 (2)

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched different frequency generation,” Jpn. J. Appl. Phys. 34, L1543–L1545 (1995).
[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “Optical frequency conversions in nonlinear medium with periodically modulated linear and nonlinear optical parameters,” IEEE J. Quantum Electron. 31, 981–987 (1995).
[CrossRef]

1993 (2)

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5-μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).
[CrossRef]

1992 (2)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, “Measurement of refractive indices and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol% MgO,” Appl. Opt. 31, 6695–6697 (1992).
[CrossRef] [PubMed]

1991 (1)

1989 (1)

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).
[CrossRef]

1984 (1)

B. Hermansson, D. Yevick, and L. Thylen, “A propagating beam method analysis of nonlinear effects in optical waveguides,” Opt. Quantum Electron. 16, 525–534 (1984).
[CrossRef]

Antoniades, N.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Arbore, M. A.

Assanto, G.

K. Gallo and G. Assanto, “Analysis of lithium niobate all optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741–753 (1999).
[CrossRef]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

Banfi, G. P.

Bhat, R.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Brener, I.

M. H. Chou, I. Brener, G. Lenz, and R. Scotti, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Caneau, C.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Chen, B.

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasiphase matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).
[CrossRef]

Chou, H. F.

Chou, M. H.

M. H. Chou, I. Brener, G. Lenz, and R. Scotti, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998).
[CrossRef]

Craig, A. E.

Datta, P. K.

Degiorgio, V.

Ding, Y. J.

Donelli, G.

Fejer, M. M.

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Fortusini, D.

Fujita, K.

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO3 quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

C. Q. Xu, K. Fujita, Y. Ogawa, and T. Kamijoh, “Temperature and polarization dependence of LiNbO3 quasiphase-matched wavelength converters,” Appl. Phys. Lett. 74, 1933–1935 (1999).
[CrossRef]

Gallo, K.

K. Gallo and G. Assanto, “Analysis of lithium niobate all optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741–753 (1999).
[CrossRef]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

Gorbounova, O.

Grattan, K. T. V.

F. A. Katsiku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using finite element method,” IEEE J. Quantum Electron. 33, 1727–1733 (1997).
[CrossRef]

Grundktter, W.

Haase, C.

Harada, A.

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).
[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).
[CrossRef]

Hasegawa, M.

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).
[CrossRef]

Hasegawa, T.

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).
[CrossRef]

Hauden, J.

Hayata, K.

Hermansson, B.

B. Hermansson, D. Yevick, and L. Thylen, “A propagating beam method analysis of nonlinear effects in optical waveguides,” Opt. Quantum Electron. 16, 525–534 (1984).
[CrossRef]

Herrmann, H.

Hofmann, D.

Ishikawa, K.

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Kabayashi, H.

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).
[CrossRef]

Kamijoh, T.

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO3 quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

C. Q. Xu, K. Fujita, Y. Ogawa, and T. Kamijoh, “Temperature and polarization dependence of LiNbO3 quasiphase-matched wavelength converters,” Appl. Phys. Lett. 74, 1933–1935 (1999).
[CrossRef]

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched different frequency generation,” Jpn. J. Appl. Phys. 34, L1543–L1545 (1995).
[CrossRef]

Kanetaka, T.

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).
[CrossRef]

Kato, M.

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

Katsiku, F. A.

F. A. Katsiku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using finite element method,” IEEE J. Quantum Electron. 33, 1727–1733 (1997).
[CrossRef]

Kawahara, M.

C. Q. Xu, H. Okayama, and M. Kawahara, “Optical frequency conversions in nonlinear medium with periodically modulated linear and nonlinear optical parameters,” IEEE J. Quantum Electron. 31, 981–987 (1995).
[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5-μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).
[CrossRef]

Khurgin, J. B.

Kitaoka, Y.

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

Koda, T.

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).
[CrossRef]

Koshiba, M.

Koza, M. A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Kubotera, K.

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).
[CrossRef]

Lee, S. J.

Lenz, G.

M. H. Chou, I. Brener, G. Lenz, and R. Scotti, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[CrossRef]

Lin, C. F.

Lin, W. X.

Lu, C.

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Mizuuchi, K.

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

Nihei, Y.

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).
[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).
[CrossRef]

Ogawa, Y.

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO3 quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

C. Q. Xu, K. Fujita, Y. Ogawa, and T. Kamijoh, “Temperature and polarization dependence of LiNbO3 quasiphase-matched wavelength converters,” Appl. Phys. Lett. 74, 1933–1935 (1999).
[CrossRef]

Okayama, H.

C. Q. Xu, H. Okayama, and M. Kawahara, “Optical frequency conversions in nonlinear medium with periodically modulated linear and nonlinear optical parameters,” IEEE J. Quantum Electron. 31, 981–987 (1995).
[CrossRef]

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched different frequency generation,” Jpn. J. Appl. Phys. 34, L1543–L1545 (1995).
[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5-μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).
[CrossRef]

Pratt, A.

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO3 quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

Rahman, B. M. A.

F. A. Katsiku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using finite element method,” IEEE J. Quantum Electron. 33, 1727–1733 (1997).
[CrossRef]

Rajhel, A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Ricken, R.

Schreiber, G.

Scotti, R.

M. H. Chou, I. Brener, G. Lenz, and R. Scotti, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[CrossRef]

Shen, H. Y.

Sherwood, J. N.

Sohler, W.

Stegeman, G.

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

Stegeman, G. I.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

Takoda, K.

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).
[CrossRef]

Tang, X. H.

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasiphase matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

Thylen, L.

B. Hermansson, D. Yevick, and L. Thylen, “A propagating beam method analysis of nonlinear effects in optical waveguides,” Opt. Quantum Electron. 16, 525–534 (1984).
[CrossRef]

Wang, G. C.

Wu, R. F.

Xu, C. Q.

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasiphase matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).
[CrossRef]

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO3 quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

C. Q. Xu, K. Fujita, Y. Ogawa, and T. Kamijoh, “Temperature and polarization dependence of LiNbO3 quasiphase-matched wavelength converters,” Appl. Phys. Lett. 74, 1933–1935 (1999).
[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “Optical frequency conversions in nonlinear medium with periodically modulated linear and nonlinear optical parameters,” IEEE J. Quantum Electron. 31, 981–987 (1995).
[CrossRef]

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched different frequency generation,” Jpn. J. Appl. Phys. 34, L1543–L1545 (1995).
[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5-μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).
[CrossRef]

Xu, G. F.

Xu, H.

Yamamoto, K.

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

Yang, X. F.

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).
[CrossRef]

Yevick, D.

B. Hermansson, D. Yevick, and L. Thylen, “A propagating beam method analysis of nonlinear effects in optical waveguides,” Opt. Quantum Electron. 16, 525–534 (1984).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technnol. 14, 955–966 (1996).
[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Zeng, Z. D.

Zhou, B.

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasiphase matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

C. Q. Xu, K. Fujita, Y. Ogawa, and T. Kamijoh, “Temperature and polarization dependence of LiNbO3 quasiphase-matched wavelength converters,” Appl. Phys. Lett. 74, 1933–1935 (1999).
[CrossRef]

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5-μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).
[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

F. A. Katsiku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using finite element method,” IEEE J. Quantum Electron. 33, 1727–1733 (1997).
[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “Optical frequency conversions in nonlinear medium with periodically modulated linear and nonlinear optical parameters,” IEEE J. Quantum Electron. 31, 981–987 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasiphase matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. H. Chou, I. Brener, G. Lenz, and R. Scotti, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).
[CrossRef]

IEICE Trans. Electron. (1)

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO3 quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

J. Lightwave Technnol. (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technnol. 14, 955–966 (1996).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (3)

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched different frequency generation,” Jpn. J. Appl. Phys. 34, L1543–L1545 (1995).
[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).
[CrossRef]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

B. Hermansson, D. Yevick, and L. Thylen, “A propagating beam method analysis of nonlinear effects in optical waveguides,” Opt. Quantum Electron. 16, 525–534 (1984).
[CrossRef]

Other (2)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient SHG in buried waveguides formed using annealed and reverse proton exchange in PPLN,” IEEE LEOS 2001 (Lasers and Electro-Optics Society, Piscataway, N.J., 2001), Vol. 2, pp. 752–753.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Operating principle of (a) difference-frequency generation and (b) cascaded χ(2) based wavelength converters.

Fig. 2
Fig. 2

Conversion efficiency difference (ηcas-ηDFG) between the cascaded χ(2) interaction and DFG based wavelength conversion as a function of pump power.

Fig. 3
Fig. 3

Signal-wavelength dependence of conversion efficiency for (a) DFG at a pump level of +7.5 dBm and (b) cascaded χ(2) based wavelength conversions at a pump level of +15 dBm. The solid curves represent the simulation results, and the circles correspond to the measured results.

Fig. 4
Fig. 4

Simulation results of 3-dB bandwidth versus device length for the DFG based and cascaded χ(2) based wavelength conversions.

Fig. 5
Fig. 5

Conversion efficiency versus pump wavelength at a fixed signal wavelength of 1559 nm for (a) DFG based and (b) cascaded χ(2) based wavelength conversions, respectively. The FWHM of the pump-tuning curve based on DFG is 0.15 nm, and that based on the cascaded χ(2) interaction is 0.3 nm.

Fig. 6
Fig. 6

Pump-wavelength tolerance versus device length. The solid curve and the dashed curve represent the results for DFG and cascaded χ(2) based conversions, respectively.

Fig. 7
Fig. 7

Black-box conversion efficiency as a function of temperature for (a) DFG (b) cascaded χ(2) based conversions. In the simulations, a device length of 45 mm and a signal power of 0 dBm were used. Pump power injected into the waveguide was assumed to be +20 dBm, for both the DFG and cascaded χ(2) based conversions.

Fig. 8
Fig. 8

Temperature tolerance versus device length. The squares and the triangles represent the results for the DFG and cascaded χ(2) based conversions, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ρj(ωc=ωp±ωs)=ε0djklEk(ωp)El(ωs)
(j, k, l=x, y, z),
Pc(NΛ)=32ωc2Pp PsdDFG2(nc+1)2npnsc3Aeffε0N2|Δk|2,
Pc(NΛ)=64ωc2ωpp2Pp2PsdSHG2dDFG2(nc+1)2np2npp2nsc6Aeff2ε02×1ΔkppΔksc2N2(N+1)2,
η=10 logPcPs(indB),

Metrics