B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasiphase matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).

[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO_{3} quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).

[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO_{3} quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).

[CrossRef]

M. H. Chou, I. Brener, G. Lenz, and R. Scotti, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO_{3} waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).

[CrossRef]

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO_{3} quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundktter, R. Ricken, and W. Sohler, “Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO_{3} channel waveguides,” Opt. Lett. 24, 896–898 (1999).

[CrossRef]

K. Gallo and G. Assanto, “Analysis of lithium niobate all optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741–753 (1999).

[CrossRef]

C. Q. Xu, K. Fujita, Y. Ogawa, and T. Kamijoh, “Temperature and polarization dependence of LiNbO_{3} quasiphase-matched wavelength converters,” Appl. Phys. Lett. 74, 1933–1935 (1999).

[CrossRef]

H. F. Chou, C. F. Lin, and G. C. Wang, “An iterative finite difference beam propagation method for modeling second-order nonlinear effects in optical waveguides,” J. Lightwave Technol. 16, 1686–1693 (1998).

[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, “Frequency shifting through cascaded second-order processes in a N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).

[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO_{3} waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998).

[CrossRef]

F. A. Katsiku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using finite element method,” IEEE J. Quantum Electron. 33, 1727–1733 (1997).

[CrossRef]

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).

[CrossRef]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).

[CrossRef]

O. Gorbounova, Y. J. Ding, J. B. Khurgin, S. J. Lee, and A. E. Craig, “Optical frequency shifters based on cascaded second-order nonlinear processes,” Opt. Lett. 21, 558–560 (1996).

[CrossRef]
[PubMed]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).

[CrossRef]

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technnol. 14, 955–966 (1996).

[CrossRef]

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched different frequency generation,” Jpn. J. Appl. Phys. 34, L1543–L1545 (1995).

[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “Optical frequency conversions in nonlinear medium with periodically modulated linear and nonlinear optical parameters,” IEEE J. Quantum Electron. 31, 981–987 (1995).

[CrossRef]

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO_{3} waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).

[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5-μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO_{3} channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).

[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).

[CrossRef]

H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, “Measurement of refractive indices and thermal refractive-index coefficients of LiNbO_{3} crystal doped with 5 mol% MgO,” Appl. Opt. 31, 6695–6697 (1992).

[CrossRef]
[PubMed]

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).

[CrossRef]

B. Hermansson, D. Yevick, and L. Thylen, “A propagating beam method analysis of nonlinear effects in optical waveguides,” Opt. Quantum Electron. 16, 525–534 (1984).

[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).

[CrossRef]

K. Gallo and G. Assanto, “Analysis of lithium niobate all optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741–753 (1999).

[CrossRef]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).

[CrossRef]

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).

[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).

[CrossRef]

M. H. Chou, I. Brener, G. Lenz, and R. Scotti, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO_{3} waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).

[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).

[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).

[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasiphase matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).

[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO_{3} quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).

[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO_{3} quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).

[CrossRef]

M. H. Chou, I. Brener, G. Lenz, and R. Scotti, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO_{3} waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).

[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO_{3} waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998).

[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO_{3} waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998).

[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).

[CrossRef]

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO_{3} quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

C. Q. Xu, K. Fujita, Y. Ogawa, and T. Kamijoh, “Temperature and polarization dependence of LiNbO_{3} quasiphase-matched wavelength converters,” Appl. Phys. Lett. 74, 1933–1935 (1999).

[CrossRef]

K. Gallo and G. Assanto, “Analysis of lithium niobate all optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741–753 (1999).

[CrossRef]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).

[CrossRef]

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).

[CrossRef]

F. A. Katsiku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using finite element method,” IEEE J. Quantum Electron. 33, 1727–1733 (1997).

[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO_{3} quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).

[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO_{3} quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).

[CrossRef]

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).

[CrossRef]

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).

[CrossRef]

B. Hermansson, D. Yevick, and L. Thylen, “A propagating beam method analysis of nonlinear effects in optical waveguides,” Opt. Quantum Electron. 16, 525–534 (1984).

[CrossRef]

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).

[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).

[CrossRef]

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).

[CrossRef]

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO_{3} quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

C. Q. Xu, K. Fujita, Y. Ogawa, and T. Kamijoh, “Temperature and polarization dependence of LiNbO_{3} quasiphase-matched wavelength converters,” Appl. Phys. Lett. 74, 1933–1935 (1999).

[CrossRef]

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched different frequency generation,” Jpn. J. Appl. Phys. 34, L1543–L1545 (1995).

[CrossRef]

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).

[CrossRef]

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO_{3} waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).

[CrossRef]

F. A. Katsiku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using finite element method,” IEEE J. Quantum Electron. 33, 1727–1733 (1997).

[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “Optical frequency conversions in nonlinear medium with periodically modulated linear and nonlinear optical parameters,” IEEE J. Quantum Electron. 31, 981–987 (1995).

[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5-μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO_{3} channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).

[CrossRef]

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO_{3} waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).

[CrossRef]

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).

[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).

[CrossRef]

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).

[CrossRef]

M. H. Chou, I. Brener, G. Lenz, and R. Scotti, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO_{3} waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).

[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO_{3} quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).

[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).

[CrossRef]

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO_{3} waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).

[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO_{3} quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).

[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO_{3} quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).

[CrossRef]

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO_{3} quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

C. Q. Xu, K. Fujita, Y. Ogawa, and T. Kamijoh, “Temperature and polarization dependence of LiNbO_{3} quasiphase-matched wavelength converters,” Appl. Phys. Lett. 74, 1933–1935 (1999).

[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “Optical frequency conversions in nonlinear medium with periodically modulated linear and nonlinear optical parameters,” IEEE J. Quantum Electron. 31, 981–987 (1995).

[CrossRef]

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched different frequency generation,” Jpn. J. Appl. Phys. 34, L1543–L1545 (1995).

[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5-μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO_{3} channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).

[CrossRef]

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO_{3} quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

F. A. Katsiku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using finite element method,” IEEE J. Quantum Electron. 33, 1727–1733 (1997).

[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).

[CrossRef]

M. H. Chou, I. Brener, G. Lenz, and R. Scotti, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO_{3} waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).

[CrossRef]

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).

[CrossRef]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).

[CrossRef]

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).

[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasiphase matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).

[CrossRef]

B. Hermansson, D. Yevick, and L. Thylen, “A propagating beam method analysis of nonlinear effects in optical waveguides,” Opt. Quantum Electron. 16, 525–534 (1984).

[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasiphase matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).

[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO_{3} quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).

[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO_{3} quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).

[CrossRef]

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO_{3} quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

C. Q. Xu, K. Fujita, Y. Ogawa, and T. Kamijoh, “Temperature and polarization dependence of LiNbO_{3} quasiphase-matched wavelength converters,” Appl. Phys. Lett. 74, 1933–1935 (1999).

[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “Optical frequency conversions in nonlinear medium with periodically modulated linear and nonlinear optical parameters,” IEEE J. Quantum Electron. 31, 981–987 (1995).

[CrossRef]

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched different frequency generation,” Jpn. J. Appl. Phys. 34, L1543–L1545 (1995).

[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5-μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO_{3} channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).

[CrossRef]

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO_{3} waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).

[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO_{3} quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).

[CrossRef]

B. Hermansson, D. Yevick, and L. Thylen, “A propagating beam method analysis of nonlinear effects in optical waveguides,” Opt. Quantum Electron. 16, 525–534 (1984).

[CrossRef]

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technnol. 14, 955–966 (1996).

[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).

[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasiphase matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).

[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO_{3} quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).

[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO_{3} quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).

[CrossRef]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).

[CrossRef]

C. Q. Xu, K. Fujita, Y. Ogawa, and T. Kamijoh, “Temperature and polarization dependence of LiNbO_{3} quasiphase-matched wavelength converters,” Appl. Phys. Lett. 74, 1933–1935 (1999).

[CrossRef]

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO_{3} waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).

[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5-μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO_{3} channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).

[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).

[CrossRef]

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).

[CrossRef]

T. Kanetaka, K. Ishikawa, T. Hasegawa, T. Koda, K. Takoda, M. Hasegawa, K. Kubotera, and H. Kabayashi, “Nonlinear optical properties of highly oriented polydiacetylene evaporated films,” Appl. Phys. Lett. 54, 2287–2289 (1989).

[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).

[CrossRef]

F. A. Katsiku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using finite element method,” IEEE J. Quantum Electron. 33, 1727–1733 (1997).

[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “Optical frequency conversions in nonlinear medium with periodically modulated linear and nonlinear optical parameters,” IEEE J. Quantum Electron. 31, 981–987 (1995).

[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasiphase matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).

[CrossRef]

M. H. Chou, I. Brener, G. Lenz, and R. Scotti, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO_{3} waveguides,” IEEE Photon. Technol. Lett. 12, 82–84 (2000).

[CrossRef]

C. Q. Xu, K. Fujita, A. Pratt, Y. Ogawa, and T. Kamijoh, “Optimization of 1.5 μm-band LiNbO_{3} quasiphase matched wavelength converters for optical communication systems,” IEICE Trans. Electron. E83-C, 884–891 (2000).

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technnol. 14, 955–966 (1996).

[CrossRef]

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched different frequency generation,” Jpn. J. Appl. Phys. 34, L1543–L1545 (1995).

[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO_{3} quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796–L798 (2001).

[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO_{3} quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. 40, L612–L614 (2001).

[CrossRef]

O. Gorbounova, Y. J. Ding, J. B. Khurgin, S. J. Lee, and A. E. Craig, “Optical frequency shifters based on cascaded second-order nonlinear processes,” Opt. Lett. 21, 558–560 (1996).

[CrossRef]
[PubMed]

G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, “Frequency shifting through cascaded second-order processes in a N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).

[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO_{3} waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998).

[CrossRef]

D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundktter, R. Ricken, and W. Sohler, “Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO_{3} channel waveguides,” Opt. Lett. 24, 896–898 (1999).

[CrossRef]

B. Hermansson, D. Yevick, and L. Thylen, “A propagating beam method analysis of nonlinear effects in optical waveguides,” Opt. Quantum Electron. 16, 525–534 (1984).

[CrossRef]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient SHG in buried waveguides formed using annealed and reverse proton exchange in PPLN,” IEEE LEOS 2001 (Lasers and Electro-Optics Society, Piscataway, N.J., 2001), Vol. 2, pp. 752–753.