Abstract

By photoionizing cold, trapped atoms it is possible to produce ultracold plasmas with temperatures in the vicinity of 1 K, roughly 4 orders of magnitude colder than conventional cold plasmas. After the first photoelectrons leave, the resulting positive charge traps the remaining electrons in the plasma. Monitoring the dynamics of the expansion of these plasmas shows explicitly the flow of energy from electrons to the ionic motion, which is manifested as the expansion of the plasma. The electron energy can either be their initial energy from photoionization or can come from the energy redistribution inherent in recombination and superelastic scattering from recombined Rydberg atoms. If the cold atoms are excited to Rydberg states instead of being photoionized, the resulting cold Rydberg gas quickly evolves into an ultracold plasma. After a few percent of the atoms are ionized by collisions or blackbody radiation, electrons are trapped by the resulting positive charge, and they quickly lead to ionization of the Rydberg atoms, forming a plasma. While the source of this energy is not clear, a likely candidate is superelastic scattering, also thought to be important for the expansion of deliberately made plasmas.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics (Wiley, New York, 1971).
  2. X. P. Huang, J. J. Bollinger, T. B. Mitchell, and W. M. Itano, “Phase-locked rotation of crystallized non-neutral plasmas by rotating electric fields,” Phys. Rev. Lett. 80, 73–76 (1998).
    [CrossRef]
  3. T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, “Creation of an ultracold neutral plasma,” Phys. Rev. Lett. 83, 4776–4779 (1999).
    [CrossRef]
  4. S. Kulin, T. C. Killian, S. D. Bergeson, and S. L. Rolston, “Plasma oscillations and expansion of an ultracold neutral plasma,” Phys. Rev. Lett. 85, 318–321 (2000).
    [CrossRef] [PubMed]
  5. T. C. Killian, M. J. Lim, S. Kulin, R. Dumke, S. D. Bergeson, and S. L. Rolston, “Formation of Rydberg atoms in an expanding ultracold neutral plasma,” Phys. Rev. Lett. 86, 3759–3762 (2001).
    [CrossRef] [PubMed]
  6. S. Mazevet, L. A. Collins, and J. D. Kress, “Evolution of ultracold neutral plasmas,” Phys. Rev. Lett. 88, 055001 (2002).
    [CrossRef] [PubMed]
  7. F. Robicheaux and J. D. Hanson, “Simulation of the expansion of an ultracold plasma,” Phys. Rev. Lett. 88, 055002 (2002).
    [CrossRef]
  8. M. P. Robinson, B. Laburthe-Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of Rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85, 4466–4469 (2000).
    [CrossRef] [PubMed]
  9. G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gas of very excited atoms,” J. Phys. B 15, L49–L55 (1982).
    [CrossRef]
  10. R. R. Jones, Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (personal communication, 2001).
  11. M. P. Robinson, “Interactions in a frozen Rydberg gas,” Ph.D. thesis (University of Virginia, Charlottesville, Virginia, 2002).
  12. B. Laburthe-Tolra, “Atomes, molécules et plasmas ultra-froids: transition d’un gaz de Rydberg gelé vers un plasma ultra-froid.—Contro⁁le de collisions de photo association dans des schémas de resonance de Feshbach et de transition Raman stimulée,” Ph.D. thesis (Universite Paris-Sud, Paris, France, 2001).
  13. T. F. Gallagher, Rydberg Atoms (Cambridge University, Cambridge, UK, 1994).
  14. S. K. Dutta, D. Feldbaum, A. Walz-Flannigan, J. R. Guest, and G. Raithel, “High angular momentum states in cold Rydberg gases,” Phys. Rev. Lett. 86, 3993–3996 (2001).
    [CrossRef] [PubMed]
  15. A. Estrin, D. Tong, J. R. Ensher, C. H. Cheng, E. E. Eyler, and P. L. Gould, “Plasma formation followed by recombination in a gas of ultracold Rydberg atoms,” Bull. Am. Phys. Soc. 46, 46–47 (2001).
  16. W. P. Spencer, A. G. Vaidyanathan, D. Kleppner, and T. W. Ducas, “Temperature dependence of blackbody-radiation-induced transfer among highly excited states of sodium,” Phys. Rev. A 25, 380–384 (1982).
    [CrossRef]
  17. R. E. Olson, “Ionization cross sections for Rydberg atom–Rydberg atom collisions,” Phys. Rev. Lett. 43, 126–129 (1979).
    [CrossRef]
  18. I. Mourachko, D. Comparat, F. deTomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett. 80, 253–256 (1998).
    [CrossRef]
  19. W. R. Anderson, J. R. Veale, and T. F. Gallagher, “Resonant dipole–dipole energy transfer in a nearly frozen Rydberg gas,” Phys. Rev. Lett. 80, 249–253 (1998).
    [CrossRef]
  20. T. C. Killian, Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (personal communication, 2001).
  21. M. D. Lukin, M. Fleischauer, R. Cote, L. M. Duan, D. Jaksch, J. J. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
    [CrossRef] [PubMed]

2002 (2)

S. Mazevet, L. A. Collins, and J. D. Kress, “Evolution of ultracold neutral plasmas,” Phys. Rev. Lett. 88, 055001 (2002).
[CrossRef] [PubMed]

F. Robicheaux and J. D. Hanson, “Simulation of the expansion of an ultracold plasma,” Phys. Rev. Lett. 88, 055002 (2002).
[CrossRef]

2001 (4)

T. C. Killian, M. J. Lim, S. Kulin, R. Dumke, S. D. Bergeson, and S. L. Rolston, “Formation of Rydberg atoms in an expanding ultracold neutral plasma,” Phys. Rev. Lett. 86, 3759–3762 (2001).
[CrossRef] [PubMed]

S. K. Dutta, D. Feldbaum, A. Walz-Flannigan, J. R. Guest, and G. Raithel, “High angular momentum states in cold Rydberg gases,” Phys. Rev. Lett. 86, 3993–3996 (2001).
[CrossRef] [PubMed]

A. Estrin, D. Tong, J. R. Ensher, C. H. Cheng, E. E. Eyler, and P. L. Gould, “Plasma formation followed by recombination in a gas of ultracold Rydberg atoms,” Bull. Am. Phys. Soc. 46, 46–47 (2001).

M. D. Lukin, M. Fleischauer, R. Cote, L. M. Duan, D. Jaksch, J. J. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[CrossRef] [PubMed]

2000 (2)

S. Kulin, T. C. Killian, S. D. Bergeson, and S. L. Rolston, “Plasma oscillations and expansion of an ultracold neutral plasma,” Phys. Rev. Lett. 85, 318–321 (2000).
[CrossRef] [PubMed]

M. P. Robinson, B. Laburthe-Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of Rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85, 4466–4469 (2000).
[CrossRef] [PubMed]

1999 (1)

T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, “Creation of an ultracold neutral plasma,” Phys. Rev. Lett. 83, 4776–4779 (1999).
[CrossRef]

1998 (3)

X. P. Huang, J. J. Bollinger, T. B. Mitchell, and W. M. Itano, “Phase-locked rotation of crystallized non-neutral plasmas by rotating electric fields,” Phys. Rev. Lett. 80, 73–76 (1998).
[CrossRef]

I. Mourachko, D. Comparat, F. deTomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett. 80, 253–256 (1998).
[CrossRef]

W. R. Anderson, J. R. Veale, and T. F. Gallagher, “Resonant dipole–dipole energy transfer in a nearly frozen Rydberg gas,” Phys. Rev. Lett. 80, 249–253 (1998).
[CrossRef]

1982 (2)

W. P. Spencer, A. G. Vaidyanathan, D. Kleppner, and T. W. Ducas, “Temperature dependence of blackbody-radiation-induced transfer among highly excited states of sodium,” Phys. Rev. A 25, 380–384 (1982).
[CrossRef]

G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gas of very excited atoms,” J. Phys. B 15, L49–L55 (1982).
[CrossRef]

1979 (1)

R. E. Olson, “Ionization cross sections for Rydberg atom–Rydberg atom collisions,” Phys. Rev. Lett. 43, 126–129 (1979).
[CrossRef]

Akulin, V. M.

I. Mourachko, D. Comparat, F. deTomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett. 80, 253–256 (1998).
[CrossRef]

Anderson, W. R.

W. R. Anderson, J. R. Veale, and T. F. Gallagher, “Resonant dipole–dipole energy transfer in a nearly frozen Rydberg gas,” Phys. Rev. Lett. 80, 249–253 (1998).
[CrossRef]

Bergeson, S. D.

T. C. Killian, M. J. Lim, S. Kulin, R. Dumke, S. D. Bergeson, and S. L. Rolston, “Formation of Rydberg atoms in an expanding ultracold neutral plasma,” Phys. Rev. Lett. 86, 3759–3762 (2001).
[CrossRef] [PubMed]

S. Kulin, T. C. Killian, S. D. Bergeson, and S. L. Rolston, “Plasma oscillations and expansion of an ultracold neutral plasma,” Phys. Rev. Lett. 85, 318–321 (2000).
[CrossRef] [PubMed]

T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, “Creation of an ultracold neutral plasma,” Phys. Rev. Lett. 83, 4776–4779 (1999).
[CrossRef]

Bollinger, J. J.

X. P. Huang, J. J. Bollinger, T. B. Mitchell, and W. M. Itano, “Phase-locked rotation of crystallized non-neutral plasmas by rotating electric fields,” Phys. Rev. Lett. 80, 73–76 (1998).
[CrossRef]

Cheng, C. H.

A. Estrin, D. Tong, J. R. Ensher, C. H. Cheng, E. E. Eyler, and P. L. Gould, “Plasma formation followed by recombination in a gas of ultracold Rydberg atoms,” Bull. Am. Phys. Soc. 46, 46–47 (2001).

Cirac, J. J.

M. D. Lukin, M. Fleischauer, R. Cote, L. M. Duan, D. Jaksch, J. J. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[CrossRef] [PubMed]

Collins, L. A.

S. Mazevet, L. A. Collins, and J. D. Kress, “Evolution of ultracold neutral plasmas,” Phys. Rev. Lett. 88, 055001 (2002).
[CrossRef] [PubMed]

Comparat, D.

I. Mourachko, D. Comparat, F. deTomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett. 80, 253–256 (1998).
[CrossRef]

Cote, R.

M. D. Lukin, M. Fleischauer, R. Cote, L. M. Duan, D. Jaksch, J. J. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[CrossRef] [PubMed]

deTomasi, F.

I. Mourachko, D. Comparat, F. deTomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett. 80, 253–256 (1998).
[CrossRef]

Duan, L. M.

M. D. Lukin, M. Fleischauer, R. Cote, L. M. Duan, D. Jaksch, J. J. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[CrossRef] [PubMed]

Ducas, T. W.

W. P. Spencer, A. G. Vaidyanathan, D. Kleppner, and T. W. Ducas, “Temperature dependence of blackbody-radiation-induced transfer among highly excited states of sodium,” Phys. Rev. A 25, 380–384 (1982).
[CrossRef]

Dumke, R.

T. C. Killian, M. J. Lim, S. Kulin, R. Dumke, S. D. Bergeson, and S. L. Rolston, “Formation of Rydberg atoms in an expanding ultracold neutral plasma,” Phys. Rev. Lett. 86, 3759–3762 (2001).
[CrossRef] [PubMed]

Dutta, S. K.

S. K. Dutta, D. Feldbaum, A. Walz-Flannigan, J. R. Guest, and G. Raithel, “High angular momentum states in cold Rydberg gases,” Phys. Rev. Lett. 86, 3993–3996 (2001).
[CrossRef] [PubMed]

Ensher, J. R.

A. Estrin, D. Tong, J. R. Ensher, C. H. Cheng, E. E. Eyler, and P. L. Gould, “Plasma formation followed by recombination in a gas of ultracold Rydberg atoms,” Bull. Am. Phys. Soc. 46, 46–47 (2001).

Estrin, A.

A. Estrin, D. Tong, J. R. Ensher, C. H. Cheng, E. E. Eyler, and P. L. Gould, “Plasma formation followed by recombination in a gas of ultracold Rydberg atoms,” Bull. Am. Phys. Soc. 46, 46–47 (2001).

Eyler, E. E.

A. Estrin, D. Tong, J. R. Ensher, C. H. Cheng, E. E. Eyler, and P. L. Gould, “Plasma formation followed by recombination in a gas of ultracold Rydberg atoms,” Bull. Am. Phys. Soc. 46, 46–47 (2001).

Feldbaum, D.

S. K. Dutta, D. Feldbaum, A. Walz-Flannigan, J. R. Guest, and G. Raithel, “High angular momentum states in cold Rydberg gases,” Phys. Rev. Lett. 86, 3993–3996 (2001).
[CrossRef] [PubMed]

Fioretti, A.

I. Mourachko, D. Comparat, F. deTomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett. 80, 253–256 (1998).
[CrossRef]

Fleischauer, M.

M. D. Lukin, M. Fleischauer, R. Cote, L. M. Duan, D. Jaksch, J. J. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[CrossRef] [PubMed]

Gallagher, T. F.

M. P. Robinson, B. Laburthe-Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of Rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85, 4466–4469 (2000).
[CrossRef] [PubMed]

W. R. Anderson, J. R. Veale, and T. F. Gallagher, “Resonant dipole–dipole energy transfer in a nearly frozen Rydberg gas,” Phys. Rev. Lett. 80, 249–253 (1998).
[CrossRef]

Gould, P. L.

A. Estrin, D. Tong, J. R. Ensher, C. H. Cheng, E. E. Eyler, and P. L. Gould, “Plasma formation followed by recombination in a gas of ultracold Rydberg atoms,” Bull. Am. Phys. Soc. 46, 46–47 (2001).

Gross, M.

G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gas of very excited atoms,” J. Phys. B 15, L49–L55 (1982).
[CrossRef]

Guest, J. R.

S. K. Dutta, D. Feldbaum, A. Walz-Flannigan, J. R. Guest, and G. Raithel, “High angular momentum states in cold Rydberg gases,” Phys. Rev. Lett. 86, 3993–3996 (2001).
[CrossRef] [PubMed]

Hanson, J. D.

F. Robicheaux and J. D. Hanson, “Simulation of the expansion of an ultracold plasma,” Phys. Rev. Lett. 88, 055002 (2002).
[CrossRef]

Haroche, S.

G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gas of very excited atoms,” J. Phys. B 15, L49–L55 (1982).
[CrossRef]

Huang, X. P.

X. P. Huang, J. J. Bollinger, T. B. Mitchell, and W. M. Itano, “Phase-locked rotation of crystallized non-neutral plasmas by rotating electric fields,” Phys. Rev. Lett. 80, 73–76 (1998).
[CrossRef]

Itano, W. M.

X. P. Huang, J. J. Bollinger, T. B. Mitchell, and W. M. Itano, “Phase-locked rotation of crystallized non-neutral plasmas by rotating electric fields,” Phys. Rev. Lett. 80, 73–76 (1998).
[CrossRef]

Jaksch, D.

M. D. Lukin, M. Fleischauer, R. Cote, L. M. Duan, D. Jaksch, J. J. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[CrossRef] [PubMed]

Killian, T. C.

T. C. Killian, M. J. Lim, S. Kulin, R. Dumke, S. D. Bergeson, and S. L. Rolston, “Formation of Rydberg atoms in an expanding ultracold neutral plasma,” Phys. Rev. Lett. 86, 3759–3762 (2001).
[CrossRef] [PubMed]

S. Kulin, T. C. Killian, S. D. Bergeson, and S. L. Rolston, “Plasma oscillations and expansion of an ultracold neutral plasma,” Phys. Rev. Lett. 85, 318–321 (2000).
[CrossRef] [PubMed]

T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, “Creation of an ultracold neutral plasma,” Phys. Rev. Lett. 83, 4776–4779 (1999).
[CrossRef]

Kleppner, D.

W. P. Spencer, A. G. Vaidyanathan, D. Kleppner, and T. W. Ducas, “Temperature dependence of blackbody-radiation-induced transfer among highly excited states of sodium,” Phys. Rev. A 25, 380–384 (1982).
[CrossRef]

Kress, J. D.

S. Mazevet, L. A. Collins, and J. D. Kress, “Evolution of ultracold neutral plasmas,” Phys. Rev. Lett. 88, 055001 (2002).
[CrossRef] [PubMed]

Kulin, S.

T. C. Killian, M. J. Lim, S. Kulin, R. Dumke, S. D. Bergeson, and S. L. Rolston, “Formation of Rydberg atoms in an expanding ultracold neutral plasma,” Phys. Rev. Lett. 86, 3759–3762 (2001).
[CrossRef] [PubMed]

S. Kulin, T. C. Killian, S. D. Bergeson, and S. L. Rolston, “Plasma oscillations and expansion of an ultracold neutral plasma,” Phys. Rev. Lett. 85, 318–321 (2000).
[CrossRef] [PubMed]

T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, “Creation of an ultracold neutral plasma,” Phys. Rev. Lett. 83, 4776–4779 (1999).
[CrossRef]

Laburthe-Tolra, B.

M. P. Robinson, B. Laburthe-Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of Rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85, 4466–4469 (2000).
[CrossRef] [PubMed]

Lim, M. J.

T. C. Killian, M. J. Lim, S. Kulin, R. Dumke, S. D. Bergeson, and S. L. Rolston, “Formation of Rydberg atoms in an expanding ultracold neutral plasma,” Phys. Rev. Lett. 86, 3759–3762 (2001).
[CrossRef] [PubMed]

Lukin, M. D.

M. D. Lukin, M. Fleischauer, R. Cote, L. M. Duan, D. Jaksch, J. J. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[CrossRef] [PubMed]

Mazevet, S.

S. Mazevet, L. A. Collins, and J. D. Kress, “Evolution of ultracold neutral plasmas,” Phys. Rev. Lett. 88, 055001 (2002).
[CrossRef] [PubMed]

Mitchell, T. B.

X. P. Huang, J. J. Bollinger, T. B. Mitchell, and W. M. Itano, “Phase-locked rotation of crystallized non-neutral plasmas by rotating electric fields,” Phys. Rev. Lett. 80, 73–76 (1998).
[CrossRef]

Mourachko, I.

I. Mourachko, D. Comparat, F. deTomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett. 80, 253–256 (1998).
[CrossRef]

Noel, M. W.

M. P. Robinson, B. Laburthe-Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of Rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85, 4466–4469 (2000).
[CrossRef] [PubMed]

Nosbaum, P.

I. Mourachko, D. Comparat, F. deTomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett. 80, 253–256 (1998).
[CrossRef]

Olson, R. E.

R. E. Olson, “Ionization cross sections for Rydberg atom–Rydberg atom collisions,” Phys. Rev. Lett. 43, 126–129 (1979).
[CrossRef]

Orozco, L. A.

T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, “Creation of an ultracold neutral plasma,” Phys. Rev. Lett. 83, 4776–4779 (1999).
[CrossRef]

Orzel, C.

T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, “Creation of an ultracold neutral plasma,” Phys. Rev. Lett. 83, 4776–4779 (1999).
[CrossRef]

Pillet, P.

M. P. Robinson, B. Laburthe-Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of Rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85, 4466–4469 (2000).
[CrossRef] [PubMed]

I. Mourachko, D. Comparat, F. deTomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett. 80, 253–256 (1998).
[CrossRef]

Raimond, J. M.

G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gas of very excited atoms,” J. Phys. B 15, L49–L55 (1982).
[CrossRef]

Raithel, G.

S. K. Dutta, D. Feldbaum, A. Walz-Flannigan, J. R. Guest, and G. Raithel, “High angular momentum states in cold Rydberg gases,” Phys. Rev. Lett. 86, 3993–3996 (2001).
[CrossRef] [PubMed]

Robicheaux, F.

F. Robicheaux and J. D. Hanson, “Simulation of the expansion of an ultracold plasma,” Phys. Rev. Lett. 88, 055002 (2002).
[CrossRef]

Robinson, M. P.

M. P. Robinson, B. Laburthe-Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of Rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85, 4466–4469 (2000).
[CrossRef] [PubMed]

Rolston, S. L.

T. C. Killian, M. J. Lim, S. Kulin, R. Dumke, S. D. Bergeson, and S. L. Rolston, “Formation of Rydberg atoms in an expanding ultracold neutral plasma,” Phys. Rev. Lett. 86, 3759–3762 (2001).
[CrossRef] [PubMed]

S. Kulin, T. C. Killian, S. D. Bergeson, and S. L. Rolston, “Plasma oscillations and expansion of an ultracold neutral plasma,” Phys. Rev. Lett. 85, 318–321 (2000).
[CrossRef] [PubMed]

T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, “Creation of an ultracold neutral plasma,” Phys. Rev. Lett. 83, 4776–4779 (1999).
[CrossRef]

Spencer, W. P.

W. P. Spencer, A. G. Vaidyanathan, D. Kleppner, and T. W. Ducas, “Temperature dependence of blackbody-radiation-induced transfer among highly excited states of sodium,” Phys. Rev. A 25, 380–384 (1982).
[CrossRef]

Tong, D.

A. Estrin, D. Tong, J. R. Ensher, C. H. Cheng, E. E. Eyler, and P. L. Gould, “Plasma formation followed by recombination in a gas of ultracold Rydberg atoms,” Bull. Am. Phys. Soc. 46, 46–47 (2001).

Vaidyanathan, A. G.

W. P. Spencer, A. G. Vaidyanathan, D. Kleppner, and T. W. Ducas, “Temperature dependence of blackbody-radiation-induced transfer among highly excited states of sodium,” Phys. Rev. A 25, 380–384 (1982).
[CrossRef]

Veale, J. R.

W. R. Anderson, J. R. Veale, and T. F. Gallagher, “Resonant dipole–dipole energy transfer in a nearly frozen Rydberg gas,” Phys. Rev. Lett. 80, 249–253 (1998).
[CrossRef]

Vitrant, G.

G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gas of very excited atoms,” J. Phys. B 15, L49–L55 (1982).
[CrossRef]

Walz-Flannigan, A.

S. K. Dutta, D. Feldbaum, A. Walz-Flannigan, J. R. Guest, and G. Raithel, “High angular momentum states in cold Rydberg gases,” Phys. Rev. Lett. 86, 3993–3996 (2001).
[CrossRef] [PubMed]

Zoller, P.

M. D. Lukin, M. Fleischauer, R. Cote, L. M. Duan, D. Jaksch, J. J. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[CrossRef] [PubMed]

Bull. Am. Phys. Soc. (1)

A. Estrin, D. Tong, J. R. Ensher, C. H. Cheng, E. E. Eyler, and P. L. Gould, “Plasma formation followed by recombination in a gas of ultracold Rydberg atoms,” Bull. Am. Phys. Soc. 46, 46–47 (2001).

J. Phys. B (1)

G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gas of very excited atoms,” J. Phys. B 15, L49–L55 (1982).
[CrossRef]

Phys. Rev. A (1)

W. P. Spencer, A. G. Vaidyanathan, D. Kleppner, and T. W. Ducas, “Temperature dependence of blackbody-radiation-induced transfer among highly excited states of sodium,” Phys. Rev. A 25, 380–384 (1982).
[CrossRef]

Phys. Rev. Lett. (12)

R. E. Olson, “Ionization cross sections for Rydberg atom–Rydberg atom collisions,” Phys. Rev. Lett. 43, 126–129 (1979).
[CrossRef]

I. Mourachko, D. Comparat, F. deTomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett. 80, 253–256 (1998).
[CrossRef]

W. R. Anderson, J. R. Veale, and T. F. Gallagher, “Resonant dipole–dipole energy transfer in a nearly frozen Rydberg gas,” Phys. Rev. Lett. 80, 249–253 (1998).
[CrossRef]

S. K. Dutta, D. Feldbaum, A. Walz-Flannigan, J. R. Guest, and G. Raithel, “High angular momentum states in cold Rydberg gases,” Phys. Rev. Lett. 86, 3993–3996 (2001).
[CrossRef] [PubMed]

M. D. Lukin, M. Fleischauer, R. Cote, L. M. Duan, D. Jaksch, J. J. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[CrossRef] [PubMed]

X. P. Huang, J. J. Bollinger, T. B. Mitchell, and W. M. Itano, “Phase-locked rotation of crystallized non-neutral plasmas by rotating electric fields,” Phys. Rev. Lett. 80, 73–76 (1998).
[CrossRef]

T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, “Creation of an ultracold neutral plasma,” Phys. Rev. Lett. 83, 4776–4779 (1999).
[CrossRef]

S. Kulin, T. C. Killian, S. D. Bergeson, and S. L. Rolston, “Plasma oscillations and expansion of an ultracold neutral plasma,” Phys. Rev. Lett. 85, 318–321 (2000).
[CrossRef] [PubMed]

T. C. Killian, M. J. Lim, S. Kulin, R. Dumke, S. D. Bergeson, and S. L. Rolston, “Formation of Rydberg atoms in an expanding ultracold neutral plasma,” Phys. Rev. Lett. 86, 3759–3762 (2001).
[CrossRef] [PubMed]

S. Mazevet, L. A. Collins, and J. D. Kress, “Evolution of ultracold neutral plasmas,” Phys. Rev. Lett. 88, 055001 (2002).
[CrossRef] [PubMed]

F. Robicheaux and J. D. Hanson, “Simulation of the expansion of an ultracold plasma,” Phys. Rev. Lett. 88, 055002 (2002).
[CrossRef]

M. P. Robinson, B. Laburthe-Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of Rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85, 4466–4469 (2000).
[CrossRef] [PubMed]

Other (6)

R. R. Jones, Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (personal communication, 2001).

M. P. Robinson, “Interactions in a frozen Rydberg gas,” Ph.D. thesis (University of Virginia, Charlottesville, Virginia, 2002).

B. Laburthe-Tolra, “Atomes, molécules et plasmas ultra-froids: transition d’un gaz de Rydberg gelé vers un plasma ultra-froid.—Contro⁁le de collisions de photo association dans des schémas de resonance de Feshbach et de transition Raman stimulée,” Ph.D. thesis (Universite Paris-Sud, Paris, France, 2001).

T. F. Gallagher, Rydberg Atoms (Cambridge University, Cambridge, UK, 1994).

E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics (Wiley, New York, 1971).

T. C. Killian, Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (personal communication, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Electron signals for four different dye-laser pulse energies, which produced charged-particle densities from 105107 cm-3. The laser fires at t=0, and the initial kinetic energy of the photoelectrons is 0.4 cm-1. Also shown is the field ramp applied 1.6 μs after the laser pulse. The signal at 1 μs is the prompt photoelectron signal, and the signal after 2 μs is from the plasma (from Ref. 3).

Fig. 2
Fig. 2

(a) Fraction of electrons trapped versus number of photons created for different initial photoelectron energies, given in Kelvin. (b) Scaled plot using N/N+ for all photoelectron energies (from Ref. 3).

Fig. 3
Fig. 3

Electron signals from plasmas created at t=0: (a) 3×104 atoms are photoionized with photoelectron initial energy of 360 cm-1, resulting in the plasma signals shown with and without a 5-MHz rf field; (b) electron signals from plasmas initially containing 8×104 ions and electrons of 18 cm-1 initial energy. In (b) the differences between the traces with and without the rf field are displayed. The plasma response to frequencies from 5–40 MHz is shown in signals that are normalized for clarity. Movement of the plasma response to later times at lower frequencies indicates the expansion of the plasma (from Ref. 4).

Fig. 4
Fig. 4

Expansion velocities of the plasmas versus the initial energy of the photoelectrons Ee, expressed here as a temperature. For EC/kB>0 it is clear that the initial electron energy is converted to the expansion of the plasma (from Ref. 4).

Fig. 5
Fig. 5

Oscilloscope traces for three different interaction times showing the evolution of Rb 36b atoms at a density of 1.5×109 cm-3 to a cold plasma. From top to bottom, the traces correspond to a time delay between excitation and field ionization of 2, 5, and 12 μs. In the upper trace there is very little early ion signal and a large late Rydberg atom signal, while the reverse is true for the lower trace, indicating the formation of a plasma (from Refs. 8 and 11).

Fig. 6
Fig. 6

Electron signal observed after excitation of the Cs 39d state (from Refs. 8, 12).

Fig. 7
Fig. 7

Ion population as a function of initial population of the 36d Rydberg state for two time delays: ♦, 2 μs, the lower trace, and ▲, 12 μs, the upper trace (from Refs. 8, 11).

Fig. 8
Fig. 8

Ion population as a function of interaction time for two initial populations of the 40d Rydberg state: ★, upper trace, 3.3×105 atoms, or 10.5×109 cm-3; ♦, lower trace, 2.4×105 atoms or 7.6×109 cm-3, offset by 1 μs (from Refs. 8 and 11).

Fig. 9
Fig. 9

Electric field dependence of the ion signal for the Rb 41d state; several different initial Rydberg population densities are shown for a 10-μs interaction time (from Ref. 11).

Fig. 10
Fig. 10

Comparison between observed and simulated density dependence of the ion signal for a time delay of 10 μs for, top to bottom, Rb 44d, 42d, and 40d states. For all curves a 3.6% hot atom fraction is assumed, and the fit parameter B is found to be 0.244, 0.230, and 0.217, respectively (from Ref. 11).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

λD=20kTNe21/2,
V=-1rexp(-r/λD).
N+e2R=Ee.
R=R02+(v0t)2,
e-(E)+e-(E)+Xe+Xe*(-E)+e-(E+E),
e-(E)+e-(E)+Xe+Xe*(-E)+e-(2E),
e-(E)+Xe*(-E)Xe*(-E-E)+e-(E+E).
E=1/16n4,
Up=12 mv¯2=F24ω2.

Metrics