Abstract

Athermal lasers dispose of their waste heat in the form of spontaneous fluorescence (i.e., by laser cooling) to avoid warming the medium. The thermodynamics of this process is discussed both qualitatively and quantitatively from the point of view of the first and second laws. The steady-state optical dynamics of an ytterbium-doped KGd(WO4)2 fiber is analyzed as a model radiation-balanced solid-state laser. A Carnot efficiency for all-optical amplification is derived in terms of the energy and entropy transported by the pump, fluorescence, and laser beams. This efficiency is compared with the performance of the model system.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
    [CrossRef]
  2. J. Fernández, A. Mendioriz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
    [CrossRef]
  3. A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
    [CrossRef]
  4. S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
    [CrossRef]
  5. R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
    [CrossRef]
  6. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
    [CrossRef] [PubMed]
  7. C. Zander and K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” in Advances in Photochemistry, D. C. Neckers, D. H. Volman, and G. von Bünau, eds. (Wiley, New York, 1995), Vol. 20, pp. 59–78.
  8. J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
    [CrossRef] [PubMed]
  9. H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
    [CrossRef]
  10. E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
    [CrossRef]
  11. C. E. Mungan and T. R. Gosnell, “Laser cooling of solids,” in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic, San Diego, Calif., 1999), Vol. 40, pp. 161–228.
  12. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
    [CrossRef]
  13. M. A. Weinstein, “Thermodynamic limitation on the conversion of heat into light,” J. Opt. Soc. Am. 50, 597–602 (1960).
    [CrossRef]
  14. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
    [CrossRef]
  15. G. Laufer, “Work and heat in the light of (thermal and laser) light,” Am. J. Phys. 51, 42–43 (1983).
    [CrossRef]
  16. W. H. Christiansen and A. Hertzberg, “Gasdynamic lasers and photon machines,” Proc. IEEE 61, 1060–1072 (1973).
    [CrossRef]
  17. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).
  18. O. Kafri and R. D. Levine, “Thermodynamics of adiabatic laser processes: optical heaters and refrigerators,” Opt. Commun. 12, 118–122 (1974).
    [CrossRef]
  19. P. T. Landsberg and G. Tonge, “Thermodynamic energy conversion efficiencies,” J. Appl. Phys. 51, R1–R20 (1980).
    [CrossRef]
  20. Th. Graf, J. E. Balmer, and H. P. Weber, “Entropy balance of optically pumped cw lasers,” Opt. Commun. 148, 256–260 (1998).
    [CrossRef]
  21. C. E. Mungan, S. R. Bowman, and T. R. Gosnell, “Solid-state laser cooling of ytterbium-doped tungstate crystals,” in Lasers 2000, V. J. Corcoran and T. A. Corcoran, eds. (STS, McLean, Va., 2001), pp. 819–826.
  22. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. P. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
    [CrossRef]
  23. An upper limit on the pump absorption is NσAPl=34%, where l=1 mm.
  24. Each pump source need not be a separate laser: The unabsorbed pump radiation can be recycled from one volume element to another.
  25. The pump lasers are assumed to have a bandwidth of ΔλP=4 nm. This value is typical for commercially available 100-W cw solid-state lasers at ~1-μm wavelength.
  26. In S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002), radiation-balanced lasing is calculated to be stable against perturbations in the intensities and wavelengths of the optical pump and amplified laser beams. The operating temperature of the tungstate crystal will change to reestablish balance. In addition, compared with the values used in the present paper, a slightly higher value of the radiative quantum efficiency (ηF=0.990) and a lower value of the excited-state lifetime (τ=334 μs) are measured for an Yb:KGW sample that is thin enough to avoid fluorescence reabsorption.
    [CrossRef]
  27. R. Kosloff and E. Geva, “Quantum refrigerators in quest of the absolute zero,” J. Appl. Phys. 87, 8093–8097 (2000).
    [CrossRef]
  28. B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998).
    [CrossRef]
  29. Yu. T. Mazurenko, “A thermodynamic treatment of the process of photoluminescence,” Opt. Spectrosc. (USSR) 18, 24–26 (1965).
  30. Yu. P. Chukova, “The region of thermodynamic admissibility of light efficiencies larger than unity,” Sov. Phys. JETP 41, 613–616 (1976).
  31. P. T. Landsberg and D. A. Evans, “Thermodynamic limits for some light-producing devices,” Phys. Rev. 166, 242–246 (1968).
    [CrossRef]

2002 (1)

In S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002), radiation-balanced lasing is calculated to be stable against perturbations in the intensities and wavelengths of the optical pump and amplified laser beams. The operating temperature of the tungstate crystal will change to reestablish balance. In addition, compared with the values used in the present paper, a slightly higher value of the radiative quantum efficiency (ηF=0.990) and a lower value of the excited-state lifetime (τ=334 μs) are measured for an Yb:KGW sample that is thin enough to avoid fluorescence reabsorption.
[CrossRef]

2001 (2)

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
[CrossRef]

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[CrossRef]

2000 (4)

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
[CrossRef]

J. Fernández, A. Mendioriz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

R. Kosloff and E. Geva, “Quantum refrigerators in quest of the absolute zero,” J. Appl. Phys. 87, 8093–8097 (2000).
[CrossRef]

1999 (2)

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
[CrossRef]

1998 (2)

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998).
[CrossRef]

Th. Graf, J. E. Balmer, and H. P. Weber, “Entropy balance of optically pumped cw lasers,” Opt. Commun. 148, 256–260 (1998).
[CrossRef]

1997 (2)

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

1996 (1)

J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
[CrossRef] [PubMed]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

1993 (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. P. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

1983 (1)

G. Laufer, “Work and heat in the light of (thermal and laser) light,” Am. J. Phys. 51, 42–43 (1983).
[CrossRef]

1980 (1)

P. T. Landsberg and G. Tonge, “Thermodynamic energy conversion efficiencies,” J. Appl. Phys. 51, R1–R20 (1980).
[CrossRef]

1976 (1)

Yu. P. Chukova, “The region of thermodynamic admissibility of light efficiencies larger than unity,” Sov. Phys. JETP 41, 613–616 (1976).

1974 (1)

O. Kafri and R. D. Levine, “Thermodynamics of adiabatic laser processes: optical heaters and refrigerators,” Opt. Commun. 12, 118–122 (1974).
[CrossRef]

1973 (1)

W. H. Christiansen and A. Hertzberg, “Gasdynamic lasers and photon machines,” Proc. IEEE 61, 1060–1072 (1973).
[CrossRef]

1968 (1)

P. T. Landsberg and D. A. Evans, “Thermodynamic limits for some light-producing devices,” Phys. Rev. 166, 242–246 (1968).
[CrossRef]

1965 (1)

Yu. T. Mazurenko, “A thermodynamic treatment of the process of photoluminescence,” Opt. Spectrosc. (USSR) 18, 24–26 (1965).

1960 (1)

1946 (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).

Adam, J. L.

J. Fernández, A. Mendioriz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

Balda, R.

J. Fernández, A. Mendioriz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

Balmer, J. E.

Th. Graf, J. E. Balmer, and H. P. Weber, “Entropy balance of optically pumped cw lasers,” Opt. Commun. 148, 256–260 (1998).
[CrossRef]

Bertness, K. A.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

Bowman, S. R.

In S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002), radiation-balanced lasing is calculated to be stable against perturbations in the intensities and wavelengths of the optical pump and amplified laser beams. The operating temperature of the tungstate crystal will change to reestablish balance. In addition, compared with the values used in the present paper, a slightly higher value of the radiative quantum efficiency (ηF=0.990) and a lower value of the excited-state lifetime (τ=334 μs) are measured for an Yb:KGW sample that is thin enough to avoid fluorescence reabsorption.
[CrossRef]

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
[CrossRef]

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
[CrossRef]

Brown, J. J.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
[CrossRef]

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

Buchwald, M. I.

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. P. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Christiansen, W. H.

W. H. Christiansen and A. Hertzberg, “Gasdynamic lasers and photon machines,” Proc. IEEE 61, 1060–1072 (1973).
[CrossRef]

Chukova, Yu. P.

Yu. P. Chukova, “The region of thermodynamic admissibility of light efficiencies larger than unity,” Sov. Phys. JETP 41, 613–616 (1976).

Clark, J. L.

J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
[CrossRef] [PubMed]

Cornell, E. A.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. P. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Edwards, B. C.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Epstein, R. I.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Evans, D. A.

P. T. Landsberg and D. A. Evans, “Thermodynamic limits for some light-producing devices,” Phys. Rev. 166, 242–246 (1968).
[CrossRef]

Feldman, B. J.

In S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002), radiation-balanced lasing is calculated to be stable against perturbations in the intensities and wavelengths of the optical pump and amplified laser beams. The operating temperature of the tungstate crystal will change to reestablish balance. In addition, compared with the values used in the present paper, a slightly higher value of the radiative quantum efficiency (ηF=0.990) and a lower value of the excited-state lifetime (τ=334 μs) are measured for an Yb:KGW sample that is thin enough to avoid fluorescence reabsorption.
[CrossRef]

Fernández, J.

J. Fernández, A. Mendioriz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

Finkeissen, E.

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

Friese, M. E. J.

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[CrossRef]

García, A. J.

J. Fernández, A. Mendioriz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

Gauck, H.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

Geva, E.

R. Kosloff and E. Geva, “Quantum refrigerators in quest of the absolute zero,” J. Appl. Phys. 87, 8093–8097 (2000).
[CrossRef]

Gfroerer, T. H.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

Gibbs, A.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
[CrossRef]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Graf, Th.

Th. Graf, J. E. Balmer, and H. P. Weber, “Entropy balance of optically pumped cw lasers,” Opt. Commun. 148, 256–260 (1998).
[CrossRef]

Heckenberg, N. R.

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[CrossRef]

Hertzberg, A.

W. H. Christiansen and A. Hertzberg, “Gasdynamic lasers and photon machines,” Proc. IEEE 61, 1060–1072 (1973).
[CrossRef]

Hoyt, C. W.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

Jenkins, N. W.

In S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002), radiation-balanced lasing is calculated to be stable against perturbations in the intensities and wavelengths of the optical pump and amplified laser beams. The operating temperature of the tungstate crystal will change to reestablish balance. In addition, compared with the values used in the present paper, a slightly higher value of the radiative quantum efficiency (ηF=0.990) and a lower value of the excited-state lifetime (τ=334 μs) are measured for an Yb:KGW sample that is thin enough to avoid fluorescence reabsorption.
[CrossRef]

Kafri, O.

O. Kafri and R. D. Levine, “Thermodynamics of adiabatic laser processes: optical heaters and refrigerators,” Opt. Commun. 12, 118–122 (1974).
[CrossRef]

Kosloff, R.

R. Kosloff and E. Geva, “Quantum refrigerators in quest of the absolute zero,” J. Appl. Phys. 87, 8093–8097 (2000).
[CrossRef]

Krupke, W. P.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. P. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. P. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Landau, L.

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).

Landsberg, P. T.

P. T. Landsberg and G. Tonge, “Thermodynamic energy conversion efficiencies,” J. Appl. Phys. 51, R1–R20 (1980).
[CrossRef]

P. T. Landsberg and D. A. Evans, “Thermodynamic limits for some light-producing devices,” Phys. Rev. 166, 242–246 (1968).
[CrossRef]

Laufer, G.

G. Laufer, “Work and heat in the light of (thermal and laser) light,” Am. J. Phys. 51, 42–43 (1983).
[CrossRef]

Levine, R. D.

O. Kafri and R. D. Levine, “Thermodynamics of adiabatic laser processes: optical heaters and refrigerators,” Opt. Commun. 12, 118–122 (1974).
[CrossRef]

Mazurenko, Yu. T.

Yu. T. Mazurenko, “A thermodynamic treatment of the process of photoluminescence,” Opt. Spectrosc. (USSR) 18, 24–26 (1965).

Mendioriz, A.

J. Fernández, A. Mendioriz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

Mungan, C. E.

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

O’Connor, S. P.

In S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002), radiation-balanced lasing is calculated to be stable against perturbations in the intensities and wavelengths of the optical pump and amplified laser beams. The operating temperature of the tungstate crystal will change to reestablish balance. In addition, compared with the values used in the present paper, a slightly higher value of the radiative quantum efficiency (ηF=0.990) and a lower value of the excited-state lifetime (τ=334 μs) are measured for an Yb:KGW sample that is thin enough to avoid fluorescence reabsorption.
[CrossRef]

Payne, S. A.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. P. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Potemski, M.

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

Rayner, A.

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[CrossRef]

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

Renn, M. J.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

Rubinsztein-Dunlop, H.

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[CrossRef]

Rumbles, G.

J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
[CrossRef] [PubMed]

Sheik-Bahae, M.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. P. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

Tonge, G.

P. T. Landsberg and G. Tonge, “Thermodynamic energy conversion efficiencies,” J. Appl. Phys. 51, R1–R20 (1980).
[CrossRef]

Truscott, A. G.

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[CrossRef]

Viña, L.

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

Weber, H. P.

Th. Graf, J. E. Balmer, and H. P. Weber, “Entropy balance of optically pumped cw lasers,” Opt. Commun. 148, 256–260 (1998).
[CrossRef]

Weimann, G.

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

Weinstein, M. A.

Wyder, P.

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

Am. J. Phys. (1)

G. Laufer, “Work and heat in the light of (thermal and laser) light,” Am. J. Phys. 51, 42–43 (1983).
[CrossRef]

Appl. Phys. A (1)

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

Appl. Phys. B (1)

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. P. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

In S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002), radiation-balanced lasing is calculated to be stable against perturbations in the intensities and wavelengths of the optical pump and amplified laser beams. The operating temperature of the tungstate crystal will change to reestablish balance. In addition, compared with the values used in the present paper, a slightly higher value of the radiative quantum efficiency (ηF=0.990) and a lower value of the excited-state lifetime (τ=334 μs) are measured for an Yb:KGW sample that is thin enough to avoid fluorescence reabsorption.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

J. Appl. Phys. (3)

R. Kosloff and E. Geva, “Quantum refrigerators in quest of the absolute zero,” J. Appl. Phys. 87, 8093–8097 (2000).
[CrossRef]

P. T. Landsberg and G. Tonge, “Thermodynamic energy conversion efficiencies,” J. Appl. Phys. 51, R1–R20 (1980).
[CrossRef]

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
[CrossRef]

J. Mod. Opt. (1)

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. (Moscow) (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Opt. Commun. (2)

O. Kafri and R. D. Levine, “Thermodynamics of adiabatic laser processes: optical heaters and refrigerators,” Opt. Commun. 12, 118–122 (1974).
[CrossRef]

Th. Graf, J. E. Balmer, and H. P. Weber, “Entropy balance of optically pumped cw lasers,” Opt. Commun. 148, 256–260 (1998).
[CrossRef]

Opt. Spectrosc. (USSR) (1)

Yu. T. Mazurenko, “A thermodynamic treatment of the process of photoluminescence,” Opt. Spectrosc. (USSR) 18, 24–26 (1965).

Phys. Rev. (1)

P. T. Landsberg and D. A. Evans, “Thermodynamic limits for some light-producing devices,” Phys. Rev. 166, 242–246 (1968).
[CrossRef]

Phys. Rev. B (1)

J. Fernández, A. Mendioriz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
[CrossRef] [PubMed]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

Proc. IEEE (1)

W. H. Christiansen and A. Hertzberg, “Gasdynamic lasers and photon machines,” Proc. IEEE 61, 1060–1072 (1973).
[CrossRef]

Rev. Sci. Instrum. (1)

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998).
[CrossRef]

Sov. Phys. JETP (1)

Yu. P. Chukova, “The region of thermodynamic admissibility of light efficiencies larger than unity,” Sov. Phys. JETP 41, 613–616 (1976).

Other (6)

C. E. Mungan, S. R. Bowman, and T. R. Gosnell, “Solid-state laser cooling of ytterbium-doped tungstate crystals,” in Lasers 2000, V. J. Corcoran and T. A. Corcoran, eds. (STS, McLean, Va., 2001), pp. 819–826.

An upper limit on the pump absorption is NσAPl=34%, where l=1 mm.

Each pump source need not be a separate laser: The unabsorbed pump radiation can be recycled from one volume element to another.

The pump lasers are assumed to have a bandwidth of ΔλP=4 nm. This value is typical for commercially available 100-W cw solid-state lasers at ~1-μm wavelength.

C. Zander and K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” in Advances in Photochemistry, D. C. Neckers, D. H. Volman, and G. von Bünau, eds. (Wiley, New York, 1995), Vol. 20, pp. 59–78.

C. E. Mungan and T. R. Gosnell, “Laser cooling of solids,” in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic, San Diego, Calif., 1999), Vol. 40, pp. 161–228.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Prototypical energy-level scheme for a radiation-balanced laser. Two bands of energy sublevels are indicated: the ground-state manifold, labeled 1, and the excited-state group, 2. For example, these bands could represent the 2F7/2 and 2F5/2 multiplets of Yb3+, the S0 and S1 singlet states of an organic dye, or the valence and conduction bands of an intrinsic semiconductor. The dashed lines represent centroids over the equilibrium population distributions in the two states, under the assumption that each multiplet has ample time to thermalize after any of the indicated optical transitions occurs. In that case, the mean fluorescence wavelength λF is independent of the optical pump and output lasing wavelengths, λP and λL, respectively.

Fig. 2
Fig. 2

Thermodynamic diagram of a conventional laser system. The pump source here is considered to perform work Wpump on the laser medium, for example by means of an electrical discharge. In this and Figs. 3 and 4, input work (W) is labeled at the left, output heat (Q) at the bottom, output work at the right, and input heat at the top of the circled device.

Fig. 3
Fig. 3

Cartoon of an idealized athermal laser pumped by an optical source of work. No net heat is deposited in the host; the spontaneously emitted radiation is assumed eventually to escape the medium and get dumped onto some externally shielded absorber.

Fig. 4
Fig. 4

Energy-flow diagram for a practical radiation-balanced laser. To make contact with the subsequent quantitative analysis, note that the output laser energy is EL=Wbeam per cycle.

Fig. 5
Fig. 5

Single-pass edge-pumped athermal amplifier in the shape of a 1 mm×1 mm×110 mm fiber of KGW+3.5 at. % Yb3+. A set of 110 pump beams is distributed uniformly along its bottom face. The amplified beam and each pump beam have 1 mm×1 mm top-hat spatial profiles. For clarity the fluorescence is shown escaping from the top side of the slab only.

Fig. 6
Fig. 6

IL, IP, and IF versus z for the laser amplifier sketched in Fig. 5. The fluorescence intensity (expanded vertically by a factor of 10) is that which crosses the surface of the fiber and is taken to be hemispherically isotropic; the spectral shift that is due to photon recycling by repeated absorption and reemission is neglected.

Fig. 7
Fig. 7

Energy and entropy transported optically into and out of an athermal laser. The dots denote time derivatives; i.e., E˙ is power in units of watts, whereas S˙ has units of watts per kelvin, both sometimes referred to as fluxes.

Fig. 8
Fig. 8

Carnot efficiency ηc for the athermal amplifier sketched in Fig. 5 as a function of IP(0)/IPmin. When the system is pumped at its minimum operational intensity, 410 W of pump power is absorbed and ηc=38%. The pump intensity saturates when IPsat/IPmin=(βP-βL)/βL=4.45; at this point, it requires 640 W of pump power to run the Yb:KGW laser and ηc=59%. In the limit as IP(0), the system absorbs only another 50 W of power, and its Carnot efficiency barely increases to 62%.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

EF= EIνFh-1ν-1dνIνFh-1ν-1dνλF= λIλFdλIλFdλ.
IPhνP (N1σAP-N2σEP)=ILhνL (N2σEL-N1σAL)+N2τ.
IP(N1σAP-N2σEP)=IL(N2σEL-N1σAL)+N2hνFτ.
dILdz=IL(N2σEL-N1σAL).
IL(z)IL(0)=ILminIL(0)βP-βLβPlnIL(z)IL(0)+NσALz+1.
IPminIP=1-ILminIL,
NN2=1βL+1βP-1βLILminIL.
IPmin=βPβLβP-βLhνPσAPτνF-νLνP-νL,
ILmin=βPβLβP-βLhνLσALτνF-νPνP-νL,
IF=hνFN2τδVδAs=hνFN2l4τ,
E˙P=E˙L+E˙F,
S˙L+S˙F-S˙P0.
ηE˙LE˙P1-TF/TP1-TF/TL1-TF1TP-1TL.
E˙F=IFdAs=4 IFdA.
S˙F=4kc [(1+nF)ln(1+nF)-nFln nF]γdE cos θdΩdA=8πkc [(1+nF)ln(1+nF)-nFln nF]λ-4dλdA,
IλFdλ=c EnFγ cos θdΩdE=2πhc2nFλ-5dλ
nF=IFλ52πhc2IλFnIλFndλ,
E˙P=IP(N1σAP-N2σEP)ldA,
S˙P=4πkc [(1+nPin)ln(1+nPin)-nPinln nPin]λ-4dλdA-4πkc [(1+nPout)ln(1+nPout)-nPoutln nPout]λ-4dλdA.
nPin=IPλ54πhc2ΔλPλΔλP0otherwise,
nPout=nPin(1-N1σAPl+N2σEPl).
TP=λP4l  IP(zi)αi4πkcΔλP sPi.
TF=λmax4 IF(zi)2πkcΔλF sFi.
αi=N1(zi)σAP-N2(zi)σEP,
sFi=(1+nFi)ln(1+nFi)-nFiln nFi,
sPi=(1+nPiin)ln(1+nPiin)-nPiinln nPiin-(1+nPiout)ln(1+nPiout)+nPioutln nPiout,
nPiin=IP(zi)λP54πhc2ΔλP,nPiout=nPiin(1-αil),
nFi=IF(zi)λmax52πhc2ΔλF.
ηo=IL(11 cm)-IL(0)IP(zi)αil=17%,
ηoIL(N2σEL-N1σAL)IP(N1σAP-N2σEP)=λP-λFλL-λF

Metrics