Abstract

Recent developments in cooling thulium-doped heavy-metal fluoride glass are presented. Thulium-doped fluorozirconate (ZBLANP) is cooled to 19 K below ambient with a multiple-pass pump scheme. This represents over an order of magnitude increase from the previously reported single-pass geometry. The results agree with a simple model for anti-Stokes fluorescence cooling that includes considerations of quantum efficiency and parasitic heating mechanisms. Issues relating to a practical optical refrigerator are examined, including a general model for the effects of multiple pump passes.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
    [CrossRef]
  2. J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
    [CrossRef] [PubMed]
  3. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
    [CrossRef]
  4. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).
  5. A. Kastler, “Quelues suggestions concernant la production optique et la detection optique d’une mégalité de population des niveaux de quantification spatiale des atomes: application à l’expérience de Stern et Gerlach et à la résonance magnetique,” J. Phys. Radium 11, 255–265 (1950).
    [CrossRef]
  6. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
    [CrossRef] [PubMed]
  7. J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
    [CrossRef]
  8. B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86, 6489–6493 (1999).
    [CrossRef]
  9. C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71, 1458–1460 (1997).
    [CrossRef]
  10. A. Rayner, M. Hirsch, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Distributed laser refrigeration,” Appl. Opt. 40, 5423–5429 (2001).
    [CrossRef]
  11. T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett. 24, 1041–1043 (1999).
    [CrossRef]
  12. S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
    [CrossRef]
  13. R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
    [CrossRef]
  14. A. Mendioroz, J. Fernández, M. Voda, M. Al-Saleh, and R. Balda, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002).
    [CrossRef]
  15. A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17, 471–479 (1996).
    [CrossRef]
  16. L. A. Rivlin and A. A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139, 219–222 (1997).
    [CrossRef]
  17. M. Sheik-Bahae, M. P. Hasselbeck, and R. I. Epstein, “Prospects for laser cooling in semiconductors,” in Quantum Electronics and Laser Science (QELS), Postconference Digest, Vol. 74, Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), p. 103.
  18. J. L. Clark, P. F. Miller, and G. Rumbles, “Red edge photophysics of ethanolic rhodamine 101 and the observation of laser cooling in the condensed phase,” J. Phys. Chem. A 102, 4428–4437 (1998).
    [CrossRef]
  19. H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
    [CrossRef]
  20. E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
    [CrossRef]
  21. L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 35–40 (1992).
    [CrossRef]
  22. R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).
    [CrossRef]
  23. C. B. Layne and M. J. Weber, “Multiphonon relaxation of rare-earth ions in beryllium-fluoride glass,” Phys. Rev. B 16, 3259–3261 (1977).
    [CrossRef]
  24. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
    [CrossRef]
  25. W. J. Miniscalco, “Optical and electronic properties of rare earth ions in glasses,” in Rare Earth Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, New York, 1993), Chap. 2.
  26. R. F. Barron, Cryogenic Systems, Monographs on Cryogenics, 2nd ed. (Oxford U. Press, New York, 1985).
  27. N. H. Balshaw, Practical Cryogenics: An Introduction to Laboratory Cryogenics, 1st ed. (Oxford Instruments, Oxon, England, 1996).
  28. B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998).
    [CrossRef]
  29. C. W. Hoyt, M. Sheik-Bahae, and M. Ebrahimzadeh, “High-power picosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27, 1543–1545 (2002).
    [CrossRef]
  30. J. M. Jewell, C. Askins, and I. D. Aggarwal, “Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients,” Appl. Opt. 30, 3656–3660 (1991).
    [CrossRef] [PubMed]
  31. S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
    [CrossRef]
  32. T. B. Carlson, S. M. Denzer, T. R. Greenlee, R. P. Groschen, R. W. Peterson, and G. M. Robinson, “Vibration-resistant direct-phase-detecting optical interferometers,” Appl. Opt. 36, 7162–7171 (1997).
    [CrossRef]
  33. R. Kristal and R. W. Peterson, “Bragg cell heterodyne interferometery of fast plasma events,” Rev. Sci. Instrum. 47, 1357–1359 (1976).
    [CrossRef]
  34. G. M. Robinson, D. M. Perry, and R. W. Peterson, “Optical interferometry of surfaces,” Sci. Am. 265, 66 (1991).
    [CrossRef]
  35. It is also possible that higher doping leads to fluorescence quenching because of the concomitant increased impurity concentration.
  36. A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B 41, 5364–5371 (1990).
    [CrossRef]
  37. J. McDougall, D. B. Hollis, and M. J. P. Payne, “Spectroscopic properties of Tm3+ in ZBLAN fluoride glass. Part 2. Judd-Ofelt parameters,” Phys. Chem. Glasses 36, 139–140 (1995).
  38. M. J. Weber, “Laser excited fluorescence spectroscopy in glass,” in Laser Spectroscopy of Solids, Vol. 49 of Topics in Applied Physics, 2nd ed. (Springer-Verlag, Berlin, 1986), pp. 189–239.
    [CrossRef]
  39. D. L. Huber, “Dynamics of incoherent transfer,” in Laser Spectroscopy of Solids, Vol. 49 of Topics in Applied Physics, 2nd ed. (Springer-Verlag, Berlin, 1986), pp. 83–111.
    [CrossRef]
  40. G. P. Morgan and W. M. Yen, “Optical energy transfer in insulators,” in Laser Spectroscopy of Solids II, Vol. 49 of Topics in Applied Physics, 1st ed. (Springer-Verlag, Berlin, 1989), pp. 77–122.
    [CrossRef]
  41. See Ref. 28; 1.46 W from intracavity to Ti:sapphire laser.
  42. G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
    [CrossRef]
  43. B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).
    [CrossRef]

2002 (3)

2001 (2)

A. Rayner, M. Hirsch, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Distributed laser refrigeration,” Appl. Opt. 40, 5423–5429 (2001).
[CrossRef]

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
[CrossRef]

2000 (4)

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
[CrossRef]

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

1999 (3)

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86, 6489–6493 (1999).
[CrossRef]

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett. 24, 1041–1043 (1999).
[CrossRef]

1998 (3)

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

J. L. Clark, P. F. Miller, and G. Rumbles, “Red edge photophysics of ethanolic rhodamine 101 and the observation of laser cooling in the condensed phase,” J. Phys. Chem. A 102, 4428–4437 (1998).
[CrossRef]

1997 (4)

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

L. A. Rivlin and A. A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139, 219–222 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71, 1458–1460 (1997).
[CrossRef]

T. B. Carlson, S. M. Denzer, T. R. Greenlee, R. P. Groschen, R. W. Peterson, and G. M. Robinson, “Vibration-resistant direct-phase-detecting optical interferometers,” Appl. Opt. 36, 7162–7171 (1997).
[CrossRef]

1996 (2)

A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17, 471–479 (1996).
[CrossRef]

J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
[CrossRef] [PubMed]

1995 (2)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

J. McDougall, D. B. Hollis, and M. J. P. Payne, “Spectroscopic properties of Tm3+ in ZBLAN fluoride glass. Part 2. Judd-Ofelt parameters,” Phys. Chem. Glasses 36, 139–140 (1995).

1992 (1)

L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 35–40 (1992).
[CrossRef]

1991 (3)

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).
[CrossRef]

G. M. Robinson, D. M. Perry, and R. W. Peterson, “Optical interferometry of surfaces,” Sci. Am. 265, 66 (1991).
[CrossRef]

J. M. Jewell, C. Askins, and I. D. Aggarwal, “Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients,” Appl. Opt. 30, 3656–3660 (1991).
[CrossRef] [PubMed]

1990 (1)

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B 41, 5364–5371 (1990).
[CrossRef]

1977 (2)

C. B. Layne and M. J. Weber, “Multiphonon relaxation of rare-earth ions in beryllium-fluoride glass,” Phys. Rev. B 16, 3259–3261 (1977).
[CrossRef]

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

1976 (1)

R. Kristal and R. W. Peterson, “Bragg cell heterodyne interferometery of fast plasma events,” Rev. Sci. Instrum. 47, 1357–1359 (1976).
[CrossRef]

1950 (1)

A. Kastler, “Quelues suggestions concernant la production optique et la detection optique d’une mégalité de population des niveaux de quantification spatiale des atomes: application à l’expérience de Stern et Gerlach et à la résonance magnetique,” J. Phys. Radium 11, 255–265 (1950).
[CrossRef]

1946 (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).

1929 (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Adam, J. L.

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B 41, 5364–5371 (1990).
[CrossRef]

Aggarwal, I. D.

Al-Saleh, M.

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86, 6489–6493 (1999).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

Askins, C.

Baesso, M. L.

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

Balda, R.

A. Mendioroz, J. Fernández, M. Voda, M. Al-Saleh, and R. Balda, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002).
[CrossRef]

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

Bento, A. C.

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

Bertness, K. A.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

Bowman, S. R.

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
[CrossRef]

Brenier, A.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B 41, 5364–5371 (1990).
[CrossRef]

Brown, J. J.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
[CrossRef]

Buchwald, M. I.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71, 1458–1460 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Carlson, T. B.

Carter, J. N.

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).
[CrossRef]

Catunda, T.

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

Clark, J. L.

J. L. Clark, P. F. Miller, and G. Rumbles, “Red edge photophysics of ethanolic rhodamine 101 and the observation of laser cooling in the condensed phase,” J. Phys. Chem. A 102, 4428–4437 (1998).
[CrossRef]

J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
[CrossRef] [PubMed]

Cornell, E. A.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

DeBarber, P. A.

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).
[CrossRef]

Denzer, S. M.

Ebrahimzadeh, M.

Edwards, B. C.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86, 6489–6493 (1999).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71, 1458–1460 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Epstein, R. I.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86, 6489–6493 (1999).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71, 1458–1460 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Fernandez, J.

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

Fernández, J.

Finkeißen, E.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

Garcia, A. J.

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

Gauck, H.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

Gfroerer, T. H.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

Gibbs, A.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
[CrossRef]

Gosnell, T. R.

T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett. 24, 1041–1043 (1999).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71, 1458–1460 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Greenlee, T. R.

Groschen, R. P.

Hanna, D. C.

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).
[CrossRef]

Heckenberg, N. R.

Heeg, B.

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).
[CrossRef]

Hirsch, M.

Hollis, D. B.

J. McDougall, D. B. Hollis, and M. J. P. Payne, “Spectroscopic properties of Tm3+ in ZBLAN fluoride glass. Part 2. Judd-Ofelt parameters,” Phys. Chem. Glasses 36, 139–140 (1995).

Hoyt, C. W.

C. W. Hoyt, M. Sheik-Bahae, and M. Ebrahimzadeh, “High-power picosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27, 1543–1545 (2002).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

Jewell, J. M.

Kastler, A.

A. Kastler, “Quelues suggestions concernant la production optique et la detection optique d’une mégalité de population des niveaux de quantification spatiale des atomes: application à l’expérience de Stern et Gerlach et à la résonance magnetique,” J. Phys. Radium 11, 255–265 (1950).
[CrossRef]

Khizhnyak, A.

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).
[CrossRef]

Kristal, R.

R. Kristal and R. W. Peterson, “Bragg cell heterodyne interferometery of fast plasma events,” Rev. Sci. Instrum. 47, 1357–1359 (1976).
[CrossRef]

Landau, L.

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).

Layne, C. B.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

C. B. Layne and M. J. Weber, “Multiphonon relaxation of rare-earth ions in beryllium-fluoride glass,” Phys. Rev. B 16, 3259–3261 (1977).
[CrossRef]

Lei, G.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

Lima, S. M.

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

Lowdermilk, W. H.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

McDougall, J.

J. McDougall, D. B. Hollis, and M. J. P. Payne, “Spectroscopic properties of Tm3+ in ZBLAN fluoride glass. Part 2. Judd-Ofelt parameters,” Phys. Chem. Glasses 36, 139–140 (1995).

Mendioroz, A.

A. Mendioroz, J. Fernández, M. Voda, M. Al-Saleh, and R. Balda, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002).
[CrossRef]

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

Miller, P. F.

J. L. Clark, P. F. Miller, and G. Rumbles, “Red edge photophysics of ethanolic rhodamine 101 and the observation of laser cooling in the condensed phase,” J. Phys. Chem. A 102, 4428–4437 (1998).
[CrossRef]

Mills, G. L.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86, 6489–6493 (1999).
[CrossRef]

Miranda, L. C. M.

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

Moine, B.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B 41, 5364–5371 (1990).
[CrossRef]

Mord, A. J.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86, 6489–6493 (1999).
[CrossRef]

Mungan, C. E.

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71, 1458–1460 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Oraevsky, A. N.

A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17, 471–479 (1996).
[CrossRef]

Payne, M. J. P.

J. McDougall, D. B. Hollis, and M. J. P. Payne, “Spectroscopic properties of Tm3+ in ZBLAN fluoride glass. Part 2. Judd-Ofelt parameters,” Phys. Chem. Glasses 36, 139–140 (1995).

Pedrini, C.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B 41, 5364–5371 (1990).
[CrossRef]

Perry, D. M.

G. M. Robinson, D. M. Perry, and R. W. Peterson, “Optical interferometry of surfaces,” Sci. Am. 265, 66 (1991).
[CrossRef]

Peterson, R. W.

T. B. Carlson, S. M. Denzer, T. R. Greenlee, R. P. Groschen, R. W. Peterson, and G. M. Robinson, “Vibration-resistant direct-phase-detecting optical interferometers,” Appl. Opt. 36, 7162–7171 (1997).
[CrossRef]

G. M. Robinson, D. M. Perry, and R. W. Peterson, “Optical interferometry of surfaces,” Sci. Am. 265, 66 (1991).
[CrossRef]

R. Kristal and R. W. Peterson, “Bragg cell heterodyne interferometery of fast plasma events,” Rev. Sci. Instrum. 47, 1357–1359 (1976).
[CrossRef]

Pledel, C.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B 41, 5364–5371 (1990).
[CrossRef]

Potemski, M.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

Pringsheim, P.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Rayner, A.

Renn, M. J.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

Rivlin, L. A.

L. A. Rivlin and A. A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139, 219–222 (1997).
[CrossRef]

Robinson, G. M.

Rubinsztein-Dunlop, H.

Rumbles, G.

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).
[CrossRef]

J. L. Clark, P. F. Miller, and G. Rumbles, “Red edge photophysics of ethanolic rhodamine 101 and the observation of laser cooling in the condensed phase,” J. Phys. Chem. A 102, 4428–4437 (1998).
[CrossRef]

J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
[CrossRef] [PubMed]

Sampaio, J. A.

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

Sheik-Bahae, M.

C. W. Hoyt, M. Sheik-Bahae, and M. Ebrahimzadeh, “High-power picosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27, 1543–1545 (2002).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

Smart, R. G.

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).
[CrossRef]

Tobben, H.

L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 35–40 (1992).
[CrossRef]

Tropper, A. C.

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).
[CrossRef]

Vina, L.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

Voda, M.

Weber, M. J.

C. B. Layne and M. J. Weber, “Multiphonon relaxation of rare-earth ions in beryllium-fluoride glass,” Phys. Rev. B 16, 3259–3261 (1977).
[CrossRef]

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Weimann, G.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

West, G. F.

L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 35–40 (1992).
[CrossRef]

Wetenkamp, L.

L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 35–40 (1992).
[CrossRef]

Wyder, P.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

Zadernovsky, A. A.

L. A. Rivlin and A. A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139, 219–222 (1997).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[CrossRef]

Appl. Phys. B (1)

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71, 1458–1460 (1997).
[CrossRef]

J. Appl. Phys. (3)

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
[CrossRef]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86, 6489–6493 (1999).
[CrossRef]

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).
[CrossRef]

J. Non-Cryst. Solids (2)

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 35–40 (1992).
[CrossRef]

J. Phys. (Moscow) (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).

J. Phys. Chem. A (1)

J. L. Clark, P. F. Miller, and G. Rumbles, “Red edge photophysics of ethanolic rhodamine 101 and the observation of laser cooling in the condensed phase,” J. Phys. Chem. A 102, 4428–4437 (1998).
[CrossRef]

J. Phys. Radium (1)

A. Kastler, “Quelues suggestions concernant la production optique et la detection optique d’une mégalité de population des niveaux de quantification spatiale des atomes: application à l’expérience de Stern et Gerlach et à la résonance magnetique,” J. Phys. Radium 11, 255–265 (1950).
[CrossRef]

J. Russ. Laser Res. (1)

A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17, 471–479 (1996).
[CrossRef]

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Opt. Commun. (2)

L. A. Rivlin and A. A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139, 219–222 (1997).
[CrossRef]

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).
[CrossRef]

Opt. Lett. (3)

Phys. Chem. Glasses (1)

J. McDougall, D. B. Hollis, and M. J. P. Payne, “Spectroscopic properties of Tm3+ in ZBLAN fluoride glass. Part 2. Judd-Ofelt parameters,” Phys. Chem. Glasses 36, 139–140 (1995).

Phys. Rev. B (5)

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B 41, 5364–5371 (1990).
[CrossRef]

J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[CrossRef]

C. B. Layne and M. J. Weber, “Multiphonon relaxation of rare-earth ions in beryllium-fluoride glass,” Phys. Rev. B 16, 3259–3261 (1977).
[CrossRef]

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
[CrossRef] [PubMed]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998).
[CrossRef]

R. Kristal and R. W. Peterson, “Bragg cell heterodyne interferometery of fast plasma events,” Rev. Sci. Instrum. 47, 1357–1359 (1976).
[CrossRef]

Sci. Am. (1)

G. M. Robinson, D. M. Perry, and R. W. Peterson, “Optical interferometry of surfaces,” Sci. Am. 265, 66 (1991).
[CrossRef]

Z. Phys. (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Other (9)

M. Sheik-Bahae, M. P. Hasselbeck, and R. I. Epstein, “Prospects for laser cooling in semiconductors,” in Quantum Electronics and Laser Science (QELS), Postconference Digest, Vol. 74, Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), p. 103.

W. J. Miniscalco, “Optical and electronic properties of rare earth ions in glasses,” in Rare Earth Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, New York, 1993), Chap. 2.

R. F. Barron, Cryogenic Systems, Monographs on Cryogenics, 2nd ed. (Oxford U. Press, New York, 1985).

N. H. Balshaw, Practical Cryogenics: An Introduction to Laboratory Cryogenics, 1st ed. (Oxford Instruments, Oxon, England, 1996).

It is also possible that higher doping leads to fluorescence quenching because of the concomitant increased impurity concentration.

M. J. Weber, “Laser excited fluorescence spectroscopy in glass,” in Laser Spectroscopy of Solids, Vol. 49 of Topics in Applied Physics, 2nd ed. (Springer-Verlag, Berlin, 1986), pp. 189–239.
[CrossRef]

D. L. Huber, “Dynamics of incoherent transfer,” in Laser Spectroscopy of Solids, Vol. 49 of Topics in Applied Physics, 2nd ed. (Springer-Verlag, Berlin, 1986), pp. 83–111.
[CrossRef]

G. P. Morgan and W. M. Yen, “Optical energy transfer in insulators,” in Laser Spectroscopy of Solids II, Vol. 49 of Topics in Applied Physics, 1st ed. (Springer-Verlag, Berlin, 1989), pp. 77–122.
[CrossRef]

See Ref. 28; 1.46 W from intracavity to Ti:sapphire laser.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Energy manifold diagram of Tm3+:ZBLANP, after Refs. 21 and 22. The dopant ensemble is excited by the pump from the top of the ground-state manifold (3H6) to the bottom of the excited-state manifold (3F4). The atoms thermalize in both manifolds by absorbing vibrational energy from the host, and the subsequent fluorescence, on average, removes an energy hνf-hν for each absorbed photon.

Fig. 2
Fig. 2

Absorptivity and fluorescence spectra of 1-wt. % Tm3+:ZBLANP at room temperature. The dotted curve is absorptivity data obtained with a Fourier-transform infrared photospectrometer, and the solid curve is fluorescence data obtained with a monochromater and PbS detector. The vertical solid line marks the mean fluorescent wavelength at 1.803 μm, and the shaded area indicates the pump wavelength region where cooling is expected.

Fig. 3
Fig. 3

Nonradiative decay rates versus energy gap for various host materials, after Ref. 21. The vertical dashed line marks the energy gap for the 3H63F4 transition.

Fig. 4
Fig. 4

Diagram of the calibrated Mach–Zehnder heterodyne interferometer used for noncontact temperature measurement. The phase of the 40-MHz beat signal at the detector changes as the sample temperature changes. The interferometer is placed in an enclosure to reduce fluctuations from air movement. AOM, acousto-optic modulator.

Fig. 5
Fig. 5

Temperature change, normalized to incident power, versus pump wavelength for a 2-wt. % Tm3+:ZBLANP sample. The solid curve is a theoretical fit from approximation (9) with λf=1.803 μm, αb=0.0004 cm-1, and ηq˜=97.5%. The insets are thermal images corresponding to different pump wavelengths. Bright areas indicate cooling and dark areas indicate heating.

Fig. 6
Fig. 6

Cooling efficiency versus pump wavelength for two Tm3+:ZBLANP samples. The solid squares correspond to single-pass data for a 1-wt. % sample, and open squares correspond to a 2-wt. % sample. Error bars are omitted from the open squares for clarity. The solid line corresponds to ideal cooling efficiency adjusted for nonunity external quantum efficiency, and the dashed curve also includes background absorption. The vertical line corresponds to the mean fluorescent wavelength.

Fig. 7
Fig. 7

Cooling efficiency as a function of the pump frequency. The abscissa is the difference of mean fluorescent and pump photon energies as a fraction of room-temperature thermal energy (kBT). Solid squares correspond to single-pass data for a 1-wt. % Tm3+:ZBLANP sample, and the open triangles correspond to single-pass bulk cooling data obtained by Epstein et al. in ytterbium-doped ZBLANP.1 Slopes are 2.5 and 1.75, respectively. Error bars are omitted for clarity.

Fig. 8
Fig. 8

Cooling data for multiple pump passes through a 1-wt. % Tm3+:ZBLANP sample. Raw data are recorded as phase change in the Mach–Zehnder interferometer. Both the cold sample and the hot mirror mounts can be seen in the inset, which is a thermal image taken from above the experiment. Bright areas correspond to cooling, dark areas correspond to heating. RT, room temperature.  

Tables (2)

Tables Icon

Table 2 Rare-Earth Comparison a

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Pcool=Pabshνf-hνhν=Pabsλ-λfλf,
Wnr=W0exp(-αΔE).
dNdt=Pabsrhν-WradN-WnrN+(1-ηe)WradN,
Pnet=Pabsr+Pabsb-ηeNsshνfWrad.
Pnet=(Pin{1-exp[-αtotal(ν)L]})×αb+(1-ηq˜)αr(ν)-αr(ν)ηq˜ hνf-hνhναtotal(ν).
 
ηq˜ηeWradηeWrad+Wnr.
ηcool=ηq˜ λλf1+αbαr(λ)-1-1.
ηq˜>1-(kBT/hνf)
ΔTPinκαb+αr(λ)(1-ηq˜)-αr(λ)ηq˜ λ-λfλf,
Pcool=11+χ (Tc4-Ts4)sσAs,
Pcool4σAsTc3ΔT,
dLdT=LdndT+β(n-1).
κL/4sAsTc3.
M=(1-SN)/(1-S).

Metrics