Abstract

The construction of short-pulse tunable soft x-ray free electron laser sources based on the self-amplified spontaneous emission process will provide a major advance in capability for dense plasma-related and warm dense matter (WDM) research. The sources will provide 1013 photons in a 200-fs duration pulse that is tunable from approximately 6 to 100 nm. Here we discuss only two of the many applications made possible for WDM that has been severely hampered by the fact that laser-based methods have been unavailable because visible light will not propagate at electron densities of ne1022 cm-3. The next-generation light sources will remove these restrictions.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Liboff, “Criteria for physical domains in laboratory and solid-state plasmas,” J. Appl. Phys. 56, 2530-2535 (1984).
    [CrossRef]
  2. F. Perrot and M. W. C. Dharma-Wardana, “Spin-polarized electron liquid at arbitrary temperatures: exchange-correlation energies, electron-distribution functions, and the static response functions,” Phys. Rev. B 62, 16536-16548 (2000).
    [CrossRef]
  3. For general references to the concepts of laser-produced plasmas and plasma physics, see M. N. Rosenbluth and R. Z. Sagdeev, eds., Handbook of Plasma Physics, Vol. 3 of Physics of Laser Plasmas (Elsevier, Amsterdam, 1991).
  4. H.-J. Kunze, “The laser as a tool for plasma diagnostics,” in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (North-Holland, Amsterdam, 1968).
  5. J. Sheffield, Plasma Scattering of Electromagnetic Radiation (Academic, New York, 1975), and references therein.
  6. C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Measurement of resonance fluorescence in a laser-produced AlXII plasma,” Phys. Rev. Lett. 63, 1471-1474 (1989).
    [CrossRef] [PubMed]
  7. C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Photopumping and fluorescence in a laser-produced plasma. I. Experimental results,” Phys. Rev. A 44, 6730-6742 (1991).
    [CrossRef] [PubMed]
  8. J. Koch, R. Lee, J. Nilsen, J. Moreno, B. MacGowan, and L. Da Silva, “X-ray lasers as sources for resonance-fluorescence experiments,” Appl. Phys. B 58, 7-11 (1994). Note that to date in higher density plasmas only the total emitted fluorescence has been studied in photopumping experiments of ion emitters.
    [CrossRef]
  9. See, for example, A. Bar-Shalom, M. Klapisch, and J. Oreg, “Electron collision excitations in complex spectra of ionized heavy atoms,” Phys. Rev. A 38, 1773-1784 (1988).
    [CrossRef] [PubMed]
  10. M. E. Foord, S. H. Glenzer, R. S. Thoe, K. L. Wong, K. B. Fournier, J. R. Albritton, B. G. Wilson, and P. T. Springer, “Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma,” J. Quant. Spectrosc. Radiat. Transfer 65, 231-241 (2000).
    [CrossRef]
  11. S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
    [CrossRef]
  12. See the website http://www-ssrl.slac.stanford.edu/LCLS/for information on the LCLS facility.
  13. See the website http://www-hasylab.desy.de/facility/fel/for information on the TESLA facility and the TTF, a soft x-ray FEL facility.
  14. G. J. Kalman, Strongly Coupled Coulomb Systems (Plenum, New York, 1998) and the references therein.
  15. For information on effects at 1 Mbar for hydrogen-bearing astrophysical objects. See H. M. Van Horn, “Dense astrophysical plasmas,” Science 252, 384-389 (1991).
    [CrossRef] [PubMed]
  16. R. Smoluchowski, “Internal structure and energy emission of Jupiter,” Nature 215, 691-695 (1967).
    [CrossRef]
  17. W. B. Hubbard, “Interiors of giant planets,” Science 214, 145-149 (1981).
    [CrossRef] [PubMed]
  18. G. Chabrier, D. Saumon, W. B. Hubbard, and J. I. Lunine, “The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn,” Astrophys. J. 391, 817-826 (1992).
    [CrossRef]
  19. For Jovian planets see W. J. Nellis, M. Ross, and N. C. Holmes, “Temperature measurements of shock-compressed liquid hydrogen: implications for the interior of Jupiter,” Science 269, 1249-1252 (1995).
    [CrossRef] [PubMed]
  20. For extrasolar giant planets see D. Saumon, W. B. Hubbard, A. Burrows, T. Guillot, J. I. Lunine, and G. Chabrier, “A theory of extrasolar giant planets,” Astrophys. J. 460, 993-1018 (1996).
    [CrossRef]
  21. D. Saumon, W. B. Hubbard, G. Chabrier, and H. M. Van Horn, “The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs,” Astrophys. J. 391, 827-831 (1992).
    [CrossRef]
  22. For brown dwarfs see W. B. Hubbard, T. Guillot, J. I. Lunine, A. Burrows, D. Saumon, M. S. Marley, and R. S. Freedman, “Liquid metallic hydrogen and the structure of brown dwarfs and giant planets,” Phys. Plasmas 4, 2011-2015 (1997).
    [CrossRef]
  23. For low-mass stars see G. Chabrier and I. Baraffe, “Structure and evolution of low-mass stars,” Astron. Astrophys. 327, 1039-1053 (1997).
  24. E. M. Gullickson, “Mass absorption coefficients,” in X-Ray Data Booklet LBNL/PUB-490 Rev. 2, A. C. Thompson and D. Vaughn, ed. (Lawrence Berkeley National Laboratory, Berkeley, Calif., 2001) and the website http://www-cxro.lbl.gov/optical_constants/.
  25. J. D. Huba, The NRL Plasma Formulary (Plasma Physics Division, Naval Research Laboratory, Washington, D.C., 2000) and http://wwwppd.nrl.navy.mil/nrlformulary/nrlformulary.html.
  26. G. B. Zimmerman and W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Comments Plasma Phys. Controlled Fusion 2, 51-61 (1975).
  27. H. Baldis, J. Dunn, M. Foord, W. Rozmus, C. Andersen, and R. Shepherd, “New regime of Thomson scattering: probing dense plasmas with X-ray lasers,” J. Phys. (Paris) 11, 469-472 (2001).
  28. J. Dunn, A. L. Osterheld, J. Nilsen, J. R. Hunter, Y. Li, A. Ya. Faenov, T. A. Pikuz, and V. N. Shlyaptsev, “Saturated output tabletop x-ray lasers,” J. Phys. (Paris) 11, 19-26 (2001).
  29. S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
    [CrossRef]
  30. C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
    [CrossRef]
  31. Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of coherent soft x-rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967-2970 (1997).
    [CrossRef]
  32. C. G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187-2190 (1999).
    [CrossRef]
  33. A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412-1415 (1998).
    [CrossRef] [PubMed]
  34. L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
    [CrossRef] [PubMed]
  35. D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35 μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. 76, 3574-3577 (1996).
    [CrossRef] [PubMed]
  36. R. Cauble, L. B. Da Silva, T. W. Barbee, Jr., P. Celliers, J. C. Moreno, and A. S. Wan, “Micron-resolution radiography of laser-accelerated and x-ray heated foils with an x-ray laser,” Phys. Rev. Lett. 74, 3816-3819 (1995).
    [CrossRef] [PubMed]
  37. J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, and J. J. Rocca, “Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings,” Opt. Lett. 25, 356-358 (2000).
    [CrossRef]
  38. E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
    [CrossRef]

2001 (3)

H. Baldis, J. Dunn, M. Foord, W. Rozmus, C. Andersen, and R. Shepherd, “New regime of Thomson scattering: probing dense plasmas with X-ray lasers,” J. Phys. (Paris) 11, 469-472 (2001).

J. Dunn, A. L. Osterheld, J. Nilsen, J. R. Hunter, Y. Li, A. Ya. Faenov, T. A. Pikuz, and V. N. Shlyaptsev, “Saturated output tabletop x-ray lasers,” J. Phys. (Paris) 11, 19-26 (2001).

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

2000 (4)

J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, and J. J. Rocca, “Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings,” Opt. Lett. 25, 356-358 (2000).
[CrossRef]

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

F. Perrot and M. W. C. Dharma-Wardana, “Spin-polarized electron liquid at arbitrary temperatures: exchange-correlation energies, electron-distribution functions, and the static response functions,” Phys. Rev. B 62, 16536-16548 (2000).
[CrossRef]

M. E. Foord, S. H. Glenzer, R. S. Thoe, K. L. Wong, K. B. Fournier, J. R. Albritton, B. G. Wilson, and P. T. Springer, “Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma,” J. Quant. Spectrosc. Radiat. Transfer 65, 231-241 (2000).
[CrossRef]

1999 (3)

S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
[CrossRef]

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

C. G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187-2190 (1999).
[CrossRef]

1998 (1)

A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

1997 (3)

Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of coherent soft x-rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

For brown dwarfs see W. B. Hubbard, T. Guillot, J. I. Lunine, A. Burrows, D. Saumon, M. S. Marley, and R. S. Freedman, “Liquid metallic hydrogen and the structure of brown dwarfs and giant planets,” Phys. Plasmas 4, 2011-2015 (1997).
[CrossRef]

For low-mass stars see G. Chabrier and I. Baraffe, “Structure and evolution of low-mass stars,” Astron. Astrophys. 327, 1039-1053 (1997).

1996 (2)

For extrasolar giant planets see D. Saumon, W. B. Hubbard, A. Burrows, T. Guillot, J. I. Lunine, and G. Chabrier, “A theory of extrasolar giant planets,” Astrophys. J. 460, 993-1018 (1996).
[CrossRef]

D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35 μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. 76, 3574-3577 (1996).
[CrossRef] [PubMed]

1995 (2)

R. Cauble, L. B. Da Silva, T. W. Barbee, Jr., P. Celliers, J. C. Moreno, and A. S. Wan, “Micron-resolution radiography of laser-accelerated and x-ray heated foils with an x-ray laser,” Phys. Rev. Lett. 74, 3816-3819 (1995).
[CrossRef] [PubMed]

For Jovian planets see W. J. Nellis, M. Ross, and N. C. Holmes, “Temperature measurements of shock-compressed liquid hydrogen: implications for the interior of Jupiter,” Science 269, 1249-1252 (1995).
[CrossRef] [PubMed]

1994 (1)

J. Koch, R. Lee, J. Nilsen, J. Moreno, B. MacGowan, and L. Da Silva, “X-ray lasers as sources for resonance-fluorescence experiments,” Appl. Phys. B 58, 7-11 (1994). Note that to date in higher density plasmas only the total emitted fluorescence has been studied in photopumping experiments of ion emitters.
[CrossRef]

1992 (3)

G. Chabrier, D. Saumon, W. B. Hubbard, and J. I. Lunine, “The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn,” Astrophys. J. 391, 817-826 (1992).
[CrossRef]

D. Saumon, W. B. Hubbard, G. Chabrier, and H. M. Van Horn, “The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs,” Astrophys. J. 391, 827-831 (1992).
[CrossRef]

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

1991 (2)

For information on effects at 1 Mbar for hydrogen-bearing astrophysical objects. See H. M. Van Horn, “Dense astrophysical plasmas,” Science 252, 384-389 (1991).
[CrossRef] [PubMed]

C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Photopumping and fluorescence in a laser-produced plasma. I. Experimental results,” Phys. Rev. A 44, 6730-6742 (1991).
[CrossRef] [PubMed]

1989 (1)

C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Measurement of resonance fluorescence in a laser-produced AlXII plasma,” Phys. Rev. Lett. 63, 1471-1474 (1989).
[CrossRef] [PubMed]

1988 (1)

See, for example, A. Bar-Shalom, M. Klapisch, and J. Oreg, “Electron collision excitations in complex spectra of ionized heavy atoms,” Phys. Rev. A 38, 1773-1784 (1988).
[CrossRef] [PubMed]

1984 (1)

R. L. Liboff, “Criteria for physical domains in laboratory and solid-state plasmas,” J. Appl. Phys. 56, 2530-2535 (1984).
[CrossRef]

1981 (1)

W. B. Hubbard, “Interiors of giant planets,” Science 214, 145-149 (1981).
[CrossRef] [PubMed]

1975 (1)

G. B. Zimmerman and W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Comments Plasma Phys. Controlled Fusion 2, 51-61 (1975).

1967 (1)

R. Smoluchowski, “Internal structure and energy emission of Jupiter,” Nature 215, 691-695 (1967).
[CrossRef]

Al’Miev, I.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

Albritton, J. R.

M. E. Foord, S. H. Glenzer, R. S. Thoe, K. L. Wong, K. B. Fournier, J. R. Albritton, B. G. Wilson, and P. T. Springer, “Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma,” J. Quant. Spectrosc. Radiat. Transfer 65, 231-241 (2000).
[CrossRef]

Allen, A. M.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

Allott, R. M.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Andersen, C.

H. Baldis, J. Dunn, M. Foord, W. Rozmus, C. Andersen, and R. Shepherd, “New regime of Thomson scattering: probing dense plasmas with X-ray lasers,” J. Phys. (Paris) 11, 469-472 (2001).

Anderson, E.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Attwood, D. T.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Back, C. A.

C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Photopumping and fluorescence in a laser-produced plasma. I. Experimental results,” Phys. Rev. A 44, 6730-6742 (1991).
[CrossRef] [PubMed]

C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Measurement of resonance fluorescence in a laser-produced AlXII plasma,” Phys. Rev. Lett. 63, 1471-1474 (1989).
[CrossRef] [PubMed]

Backus, S.

C. G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187-2190 (1999).
[CrossRef]

A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Baldis, H.

H. Baldis, J. Dunn, M. Foord, W. Rozmus, C. Andersen, and R. Shepherd, “New regime of Thomson scattering: probing dense plasmas with X-ray lasers,” J. Phys. (Paris) 11, 469-472 (2001).

Baldis, H. A.

S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
[CrossRef]

Balhorn, R.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Baraffe, I.

For low-mass stars see G. Chabrier and I. Baraffe, “Structure and evolution of low-mass stars,” Astron. Astrophys. 327, 1039-1053 (1997).

Barbee, T. W.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Barbee Jr., T. W.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

R. Cauble, L. B. Da Silva, T. W. Barbee, Jr., P. Celliers, J. C. Moreno, and A. S. Wan, “Micron-resolution radiography of laser-accelerated and x-ray heated foils with an x-ray laser,” Phys. Rev. Lett. 74, 3816-3819 (1995).
[CrossRef] [PubMed]

Bar-Shalom, A.

See, for example, A. Bar-Shalom, M. Klapisch, and J. Oreg, “Electron collision excitations in complex spectra of ionized heavy atoms,” Phys. Rev. A 38, 1773-1784 (1988).
[CrossRef] [PubMed]

Brase, J.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Burnett, P. D. S.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

Burrows, A.

For brown dwarfs see W. B. Hubbard, T. Guillot, J. I. Lunine, A. Burrows, D. Saumon, M. S. Marley, and R. S. Freedman, “Liquid metallic hydrogen and the structure of brown dwarfs and giant planets,” Phys. Plasmas 4, 2011-2015 (1997).
[CrossRef]

For extrasolar giant planets see D. Saumon, W. B. Hubbard, A. Burrows, T. Guillot, J. I. Lunine, and G. Chabrier, “A theory of extrasolar giant planets,” Astrophys. J. 460, 993-1018 (1996).
[CrossRef]

Cauble, R.

R. Cauble, L. B. Da Silva, T. W. Barbee, Jr., P. Celliers, J. C. Moreno, and A. S. Wan, “Micron-resolution radiography of laser-accelerated and x-ray heated foils with an x-ray laser,” Phys. Rev. Lett. 74, 3816-3819 (1995).
[CrossRef] [PubMed]

Celliers, P.

R. Cauble, L. B. Da Silva, T. W. Barbee, Jr., P. Celliers, J. C. Moreno, and A. S. Wan, “Micron-resolution radiography of laser-accelerated and x-ray heated foils with an x-ray laser,” Phys. Rev. Lett. 74, 3816-3819 (1995).
[CrossRef] [PubMed]

Chabrier, G.

For low-mass stars see G. Chabrier and I. Baraffe, “Structure and evolution of low-mass stars,” Astron. Astrophys. 327, 1039-1053 (1997).

For extrasolar giant planets see D. Saumon, W. B. Hubbard, A. Burrows, T. Guillot, J. I. Lunine, and G. Chabrier, “A theory of extrasolar giant planets,” Astrophys. J. 460, 993-1018 (1996).
[CrossRef]

G. Chabrier, D. Saumon, W. B. Hubbard, and J. I. Lunine, “The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn,” Astrophys. J. 391, 817-826 (1992).
[CrossRef]

D. Saumon, W. B. Hubbard, G. Chabrier, and H. M. Van Horn, “The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs,” Astrophys. J. 391, 827-831 (1992).
[CrossRef]

Chang, Z.

A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of coherent soft x-rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

Chenais-Popovics, C.

C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Photopumping and fluorescence in a laser-produced plasma. I. Experimental results,” Phys. Rev. A 44, 6730-6742 (1991).
[CrossRef] [PubMed]

C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Measurement of resonance fluorescence in a laser-produced AlXII plasma,” Phys. Rev. Lett. 63, 1471-1474 (1989).
[CrossRef] [PubMed]

Chilla, J. L. A.

Collier, J. L.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Corzett, M.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Da Silva, L.

J. Koch, R. Lee, J. Nilsen, J. Moreno, B. MacGowan, and L. Da Silva, “X-ray lasers as sources for resonance-fluorescence experiments,” Appl. Phys. B 58, 7-11 (1994). Note that to date in higher density plasmas only the total emitted fluorescence has been studied in photopumping experiments of ion emitters.
[CrossRef]

Da Silva, L. B.

D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35 μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. 76, 3574-3577 (1996).
[CrossRef] [PubMed]

R. Cauble, L. B. Da Silva, T. W. Barbee, Jr., P. Celliers, J. C. Moreno, and A. S. Wan, “Micron-resolution radiography of laser-accelerated and x-ray heated foils with an x-ray laser,” Phys. Rev. Lett. 74, 3816-3819 (1995).
[CrossRef] [PubMed]

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Daido, H.

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

Danson, C. N.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

De Groot, J. D.

S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
[CrossRef]

Dharma-Wardana, M. W. C.

F. Perrot and M. W. C. Dharma-Wardana, “Spin-polarized electron liquid at arbitrary temperatures: exchange-correlation energies, electron-distribution functions, and the static response functions,” Phys. Rev. B 62, 16536-16548 (2000).
[CrossRef]

Djaoui, A.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Dobosz, S.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Dunn, J.

H. Baldis, J. Dunn, M. Foord, W. Rozmus, C. Andersen, and R. Shepherd, “New regime of Thomson scattering: probing dense plasmas with X-ray lasers,” J. Phys. (Paris) 11, 469-472 (2001).

J. Dunn, A. L. Osterheld, J. Nilsen, J. R. Hunter, Y. Li, A. Ya. Faenov, T. A. Pikuz, and V. N. Shlyaptsev, “Saturated output tabletop x-ray lasers,” J. Phys. (Paris) 11, 19-26 (2001).

Durfee III, C. G.

C. G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187-2190 (1999).
[CrossRef]

A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Estabrook, K. G.

S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
[CrossRef]

Faenov, A. Ya.

J. Dunn, A. L. Osterheld, J. Nilsen, J. R. Hunter, Y. Li, A. Ya. Faenov, T. A. Pikuz, and V. N. Shlyaptsev, “Saturated output tabletop x-ray lasers,” J. Phys. (Paris) 11, 19-26 (2001).

Filevich, J.

Foord, M.

H. Baldis, J. Dunn, M. Foord, W. Rozmus, C. Andersen, and R. Shepherd, “New regime of Thomson scattering: probing dense plasmas with X-ray lasers,” J. Phys. (Paris) 11, 469-472 (2001).

Foord, M. E.

M. E. Foord, S. H. Glenzer, R. S. Thoe, K. L. Wong, K. B. Fournier, J. R. Albritton, B. G. Wilson, and P. T. Springer, “Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma,” J. Quant. Spectrosc. Radiat. Transfer 65, 231-241 (2000).
[CrossRef]

Fournier, K. B.

M. E. Foord, S. H. Glenzer, R. S. Thoe, K. L. Wong, K. B. Fournier, J. R. Albritton, B. G. Wilson, and P. T. Springer, “Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma,” J. Quant. Spectrosc. Radiat. Transfer 65, 231-241 (2000).
[CrossRef]

Freedman, R. S.

For brown dwarfs see W. B. Hubbard, T. Guillot, J. I. Lunine, A. Burrows, D. Saumon, M. S. Marley, and R. S. Freedman, “Liquid metallic hydrogen and the structure of brown dwarfs and giant planets,” Phys. Plasmas 4, 2011-2015 (1997).
[CrossRef]

Glendinning, S. G.

D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35 μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. 76, 3574-3577 (1996).
[CrossRef] [PubMed]

Glenzer, S. H.

M. E. Foord, S. H. Glenzer, R. S. Thoe, K. L. Wong, K. B. Fournier, J. R. Albritton, B. G. Wilson, and P. T. Springer, “Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma,” J. Quant. Spectrosc. Radiat. Transfer 65, 231-241 (2000).
[CrossRef]

S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
[CrossRef]

Gray, J.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Gu, Y.

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

Guillot, T.

For brown dwarfs see W. B. Hubbard, T. Guillot, J. I. Lunine, A. Burrows, D. Saumon, M. S. Marley, and R. S. Freedman, “Liquid metallic hydrogen and the structure of brown dwarfs and giant planets,” Phys. Plasmas 4, 2011-2015 (1997).
[CrossRef]

For extrasolar giant planets see D. Saumon, W. B. Hubbard, A. Burrows, T. Guillot, J. I. Lunine, and G. Chabrier, “A theory of extrasolar giant planets,” Astrophys. J. 460, 993-1018 (1996).
[CrossRef]

Harte, J. A.

S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
[CrossRef]

Herne, C.

C. G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187-2190 (1999).
[CrossRef]

A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Holmes, N. C.

For Jovian planets see W. J. Nellis, M. Ross, and N. C. Holmes, “Temperature measurements of shock-compressed liquid hydrogen: implications for the interior of Jupiter,” Science 269, 1249-1252 (1995).
[CrossRef] [PubMed]

Huang, G.

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

Hubbard, W. B.

For brown dwarfs see W. B. Hubbard, T. Guillot, J. I. Lunine, A. Burrows, D. Saumon, M. S. Marley, and R. S. Freedman, “Liquid metallic hydrogen and the structure of brown dwarfs and giant planets,” Phys. Plasmas 4, 2011-2015 (1997).
[CrossRef]

For extrasolar giant planets see D. Saumon, W. B. Hubbard, A. Burrows, T. Guillot, J. I. Lunine, and G. Chabrier, “A theory of extrasolar giant planets,” Astrophys. J. 460, 993-1018 (1996).
[CrossRef]

G. Chabrier, D. Saumon, W. B. Hubbard, and J. I. Lunine, “The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn,” Astrophys. J. 391, 817-826 (1992).
[CrossRef]

D. Saumon, W. B. Hubbard, G. Chabrier, and H. M. Van Horn, “The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs,” Astrophys. J. 391, 827-831 (1992).
[CrossRef]

W. B. Hubbard, “Interiors of giant planets,” Science 214, 145-149 (1981).
[CrossRef] [PubMed]

Hunter, J. R.

J. Dunn, A. L. Osterheld, J. Nilsen, J. R. Hunter, Y. Li, A. Ya. Faenov, T. A. Pikuz, and V. N. Shlyaptsev, “Saturated output tabletop x-ray lasers,” J. Phys. (Paris) 11, 19-26 (2001).

Iglesias, C.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

Kalantar, D. H.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35 μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. 76, 3574-3577 (1996).
[CrossRef] [PubMed]

Kanizay, K.

Kapteyn, H. C.

C. G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187-2190 (1999).
[CrossRef]

A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of coherent soft x-rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

Kato, Y.

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

Keenan, R.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Kern, D.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Key, M. H.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35 μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. 76, 3574-3577 (1996).
[CrossRef] [PubMed]

Klapisch, M.

See, for example, A. Bar-Shalom, M. Klapisch, and J. Oreg, “Electron collision excitations in complex spectra of ionized heavy atoms,” Phys. Rev. A 38, 1773-1784 (1988).
[CrossRef] [PubMed]

Klisnick, A.

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

Knauer, J. P.

D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35 μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. 76, 3574-3577 (1996).
[CrossRef] [PubMed]

Koch, J.

J. Koch, R. Lee, J. Nilsen, J. Moreno, B. MacGowan, and L. Da Silva, “X-ray lasers as sources for resonance-fluorescence experiments,” Appl. Phys. B 58, 7-11 (1994). Note that to date in higher density plasmas only the total emitted fluorescence has been studied in photopumping experiments of ion emitters.
[CrossRef]

Koch, J. A.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Koike, F.

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

Kruer, W. L.

G. B. Zimmerman and W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Comments Plasma Phys. Controlled Fusion 2, 51-61 (1975).

Lee, C.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Lee, R.

J. Koch, R. Lee, J. Nilsen, J. Moreno, B. MacGowan, and L. Da Silva, “X-ray lasers as sources for resonance-fluorescence experiments,” Appl. Phys. B 58, 7-11 (1994). Note that to date in higher density plasmas only the total emitted fluorescence has been studied in photopumping experiments of ion emitters.
[CrossRef]

Lee, R. W.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
[CrossRef]

C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Photopumping and fluorescence in a laser-produced plasma. I. Experimental results,” Phys. Rev. A 44, 6730-6742 (1991).
[CrossRef] [PubMed]

C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Measurement of resonance fluorescence in a laser-produced AlXII plasma,” Phys. Rev. Lett. 63, 1471-1474 (1989).
[CrossRef] [PubMed]

Lewis, C. L. S.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Li, Y.

J. Dunn, A. L. Osterheld, J. Nilsen, J. R. Hunter, Y. Li, A. Ya. Faenov, T. A. Pikuz, and V. N. Shlyaptsev, “Saturated output tabletop x-ray lasers,” J. Phys. (Paris) 11, 19-26 (2001).

Liboff, R. L.

R. L. Liboff, “Criteria for physical domains in laboratory and solid-state plasmas,” J. Appl. Phys. 56, 2530-2535 (1984).
[CrossRef]

London, R. A.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Lunine, J. I.

For brown dwarfs see W. B. Hubbard, T. Guillot, J. I. Lunine, A. Burrows, D. Saumon, M. S. Marley, and R. S. Freedman, “Liquid metallic hydrogen and the structure of brown dwarfs and giant planets,” Phys. Plasmas 4, 2011-2015 (1997).
[CrossRef]

For extrasolar giant planets see D. Saumon, W. B. Hubbard, A. Burrows, T. Guillot, J. I. Lunine, and G. Chabrier, “A theory of extrasolar giant planets,” Astrophys. J. 460, 993-1018 (1996).
[CrossRef]

G. Chabrier, D. Saumon, W. B. Hubbard, and J. I. Lunine, “The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn,” Astrophys. J. 391, 817-826 (1992).
[CrossRef]

MacGowan, B.

J. Koch, R. Lee, J. Nilsen, J. Moreno, B. MacGowan, and L. Da Silva, “X-ray lasers as sources for resonance-fluorescence experiments,” Appl. Phys. B 58, 7-11 (1994). Note that to date in higher density plasmas only the total emitted fluorescence has been studied in photopumping experiments of ion emitters.
[CrossRef]

MacGowan, B. J.

S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
[CrossRef]

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Machacek, A. M.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

MacPhee, A. G.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Marconi, M. C.

Marley, M. S.

For brown dwarfs see W. B. Hubbard, T. Guillot, J. I. Lunine, A. Burrows, D. Saumon, M. S. Marley, and R. S. Freedman, “Liquid metallic hydrogen and the structure of brown dwarfs and giant planets,” Phys. Plasmas 4, 2011-2015 (1997).
[CrossRef]

Matthews, D. L.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

McCabe, S. P.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Moore, B.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Moreno, J.

J. Koch, R. Lee, J. Nilsen, J. Moreno, B. MacGowan, and L. Da Silva, “X-ray lasers as sources for resonance-fluorescence experiments,” Appl. Phys. B 58, 7-11 (1994). Note that to date in higher density plasmas only the total emitted fluorescence has been studied in photopumping experiments of ion emitters.
[CrossRef]

Moreno, J. C.

R. Cauble, L. B. Da Silva, T. W. Barbee, Jr., P. Celliers, J. C. Moreno, and A. S. Wan, “Micron-resolution radiography of laser-accelerated and x-ray heated foils with an x-ray laser,” Phys. Rev. Lett. 74, 3816-3819 (1995).
[CrossRef] [PubMed]

Mrowka, S.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Murai, K.

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

Murnane, M. M.

C. G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187-2190 (1999).
[CrossRef]

A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of coherent soft x-rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

Neely, D.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Nellis, W. J.

For Jovian planets see W. J. Nellis, M. Ross, and N. C. Holmes, “Temperature measurements of shock-compressed liquid hydrogen: implications for the interior of Jupiter,” Science 269, 1249-1252 (1995).
[CrossRef] [PubMed]

Nilsen, J.

J. Dunn, A. L. Osterheld, J. Nilsen, J. R. Hunter, Y. Li, A. Ya. Faenov, T. A. Pikuz, and V. N. Shlyaptsev, “Saturated output tabletop x-ray lasers,” J. Phys. (Paris) 11, 19-26 (2001).

J. Koch, R. Lee, J. Nilsen, J. Moreno, B. MacGowan, and L. Da Silva, “X-ray lasers as sources for resonance-fluorescence experiments,” Appl. Phys. B 58, 7-11 (1994). Note that to date in higher density plasmas only the total emitted fluorescence has been studied in photopumping experiments of ion emitters.
[CrossRef]

O’Rourke, R.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

O’Rourke, R. M. N.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Oreg, J.

See, for example, A. Bar-Shalom, M. Klapisch, and J. Oreg, “Electron collision excitations in complex spectra of ionized heavy atoms,” Phys. Rev. A 38, 1773-1784 (1988).
[CrossRef] [PubMed]

Osterheld, A. L.

J. Dunn, A. L. Osterheld, J. Nilsen, J. R. Hunter, Y. Li, A. Ya. Faenov, T. A. Pikuz, and V. N. Shlyaptsev, “Saturated output tabletop x-ray lasers,” J. Phys. (Paris) 11, 19-26 (2001).

Perrot, F.

F. Perrot and M. W. C. Dharma-Wardana, “Spin-polarized electron liquid at arbitrary temperatures: exchange-correlation energies, electron-distribution functions, and the static response functions,” Phys. Rev. B 62, 16536-16548 (2000).
[CrossRef]

Pert, G. J.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Pestehe, S. J.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Pikuz, T. A.

J. Dunn, A. L. Osterheld, J. Nilsen, J. R. Hunter, Y. Li, A. Ya. Faenov, T. A. Pikuz, and V. N. Shlyaptsev, “Saturated output tabletop x-ray lasers,” J. Phys. (Paris) 11, 19-26 (2001).

Remington, B. A.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35 μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. 76, 3574-3577 (1996).
[CrossRef] [PubMed]

Rocca, J. J.

Rose, S. J.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

Ross, M.

For Jovian planets see W. J. Nellis, M. Ross, and N. C. Holmes, “Temperature measurements of shock-compressed liquid hydrogen: implications for the interior of Jupiter,” Science 269, 1249-1252 (1995).
[CrossRef] [PubMed]

Rozmus, W.

H. Baldis, J. Dunn, M. Foord, W. Rozmus, C. Andersen, and R. Shepherd, “New regime of Thomson scattering: probing dense plasmas with X-ray lasers,” J. Phys. (Paris) 11, 469-472 (2001).

S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
[CrossRef]

Rundquist, A.

A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of coherent soft x-rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

Rundquist, A. R.

C. G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187-2190 (1999).
[CrossRef]

Sakaya, N.

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

Saumon, D.

For brown dwarfs see W. B. Hubbard, T. Guillot, J. I. Lunine, A. Burrows, D. Saumon, M. S. Marley, and R. S. Freedman, “Liquid metallic hydrogen and the structure of brown dwarfs and giant planets,” Phys. Plasmas 4, 2011-2015 (1997).
[CrossRef]

For extrasolar giant planets see D. Saumon, W. B. Hubbard, A. Burrows, T. Guillot, J. I. Lunine, and G. Chabrier, “A theory of extrasolar giant planets,” Astrophys. J. 460, 993-1018 (1996).
[CrossRef]

G. Chabrier, D. Saumon, W. B. Hubbard, and J. I. Lunine, “The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn,” Astrophys. J. 391, 817-826 (1992).
[CrossRef]

D. Saumon, W. B. Hubbard, G. Chabrier, and H. M. Van Horn, “The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs,” Astrophys. J. 391, 827-831 (1992).
[CrossRef]

Sebban, S.

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

Shepherd, R.

H. Baldis, J. Dunn, M. Foord, W. Rozmus, C. Andersen, and R. Shepherd, “New regime of Thomson scattering: probing dense plasmas with X-ray lasers,” J. Phys. (Paris) 11, 469-472 (2001).

Shlyaptsev, V. N.

J. Dunn, A. L. Osterheld, J. Nilsen, J. R. Hunter, Y. Li, A. Ya. Faenov, T. A. Pikuz, and V. N. Shlyaptsev, “Saturated output tabletop x-ray lasers,” J. Phys. (Paris) 11, 19-26 (2001).

Simms, P. A.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Smoluchowski, R.

R. Smoluchowski, “Internal structure and energy emission of Jupiter,” Nature 215, 691-695 (1967).
[CrossRef]

Springer, P. T.

M. E. Foord, S. H. Glenzer, R. S. Thoe, K. L. Wong, K. B. Fournier, J. R. Albritton, B. G. Wilson, and P. T. Springer, “Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma,” J. Quant. Spectrosc. Radiat. Transfer 65, 231-241 (2000).
[CrossRef]

Stone, G.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Strati, F.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Takenaka, H.

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

Tallents, G. J.

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Tang, H.

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

Thoe, R. S.

M. E. Foord, S. H. Glenzer, R. S. Thoe, K. L. Wong, K. B. Fournier, J. R. Albritton, B. G. Wilson, and P. T. Springer, “Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma,” J. Quant. Spectrosc. Radiat. Transfer 65, 231-241 (2000).
[CrossRef]

Trebes, J. E.

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

Van Horn, H. M.

D. Saumon, W. B. Hubbard, G. Chabrier, and H. M. Van Horn, “The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs,” Astrophys. J. 391, 827-831 (1992).
[CrossRef]

For information on effects at 1 Mbar for hydrogen-bearing astrophysical objects. See H. M. Van Horn, “Dense astrophysical plasmas,” Science 252, 384-389 (1991).
[CrossRef] [PubMed]

Wan, A. S.

R. Cauble, L. B. Da Silva, T. W. Barbee, Jr., P. Celliers, J. C. Moreno, and A. S. Wan, “Micron-resolution radiography of laser-accelerated and x-ray heated foils with an x-ray laser,” Phys. Rev. Lett. 74, 3816-3819 (1995).
[CrossRef] [PubMed]

Wang, H.

Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of coherent soft x-rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

Wang, S.

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

Wark, J. S.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Weber, F.

D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35 μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. 76, 3574-3577 (1996).
[CrossRef] [PubMed]

Weber, S. V.

D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35 μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. 76, 3574-3577 (1996).
[CrossRef] [PubMed]

Williams, E. A.

S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
[CrossRef]

Wilson, B. G.

M. E. Foord, S. H. Glenzer, R. S. Thoe, K. L. Wong, K. B. Fournier, J. R. Albritton, B. G. Wilson, and P. T. Springer, “Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma,” J. Quant. Spectrosc. Radiat. Transfer 65, 231-241 (2000).
[CrossRef]

S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
[CrossRef]

Wolfrum, E.

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Wong, K. L.

M. E. Foord, S. H. Glenzer, R. S. Thoe, K. L. Wong, K. B. Fournier, J. R. Albritton, B. G. Wilson, and P. T. Springer, “Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma,” J. Quant. Spectrosc. Radiat. Transfer 65, 231-241 (2000).
[CrossRef]

Zeitoun, P.

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

Zimmerman, G. B.

S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
[CrossRef]

G. B. Zimmerman and W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Comments Plasma Phys. Controlled Fusion 2, 51-61 (1975).

Appl. Phys. B (1)

J. Koch, R. Lee, J. Nilsen, J. Moreno, B. MacGowan, and L. Da Silva, “X-ray lasers as sources for resonance-fluorescence experiments,” Appl. Phys. B 58, 7-11 (1994). Note that to date in higher density plasmas only the total emitted fluorescence has been studied in photopumping experiments of ion emitters.
[CrossRef]

Astron. Astrophys. (1)

For low-mass stars see G. Chabrier and I. Baraffe, “Structure and evolution of low-mass stars,” Astron. Astrophys. 327, 1039-1053 (1997).

Astrophys. J. (3)

For extrasolar giant planets see D. Saumon, W. B. Hubbard, A. Burrows, T. Guillot, J. I. Lunine, and G. Chabrier, “A theory of extrasolar giant planets,” Astrophys. J. 460, 993-1018 (1996).
[CrossRef]

D. Saumon, W. B. Hubbard, G. Chabrier, and H. M. Van Horn, “The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs,” Astrophys. J. 391, 827-831 (1992).
[CrossRef]

G. Chabrier, D. Saumon, W. B. Hubbard, and J. I. Lunine, “The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn,” Astrophys. J. 391, 817-826 (1992).
[CrossRef]

Comments Plasma Phys. Controlled Fusion (1)

G. B. Zimmerman and W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Comments Plasma Phys. Controlled Fusion 2, 51-61 (1975).

J. Appl. Phys. (1)

R. L. Liboff, “Criteria for physical domains in laboratory and solid-state plasmas,” J. Appl. Phys. 56, 2530-2535 (1984).
[CrossRef]

J. Phys. (Paris) (2)

H. Baldis, J. Dunn, M. Foord, W. Rozmus, C. Andersen, and R. Shepherd, “New regime of Thomson scattering: probing dense plasmas with X-ray lasers,” J. Phys. (Paris) 11, 469-472 (2001).

J. Dunn, A. L. Osterheld, J. Nilsen, J. R. Hunter, Y. Li, A. Ya. Faenov, T. A. Pikuz, and V. N. Shlyaptsev, “Saturated output tabletop x-ray lasers,” J. Phys. (Paris) 11, 19-26 (2001).

J. Phys. B (1)

E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. E. Foord, S. H. Glenzer, R. S. Thoe, K. L. Wong, K. B. Fournier, J. R. Albritton, B. G. Wilson, and P. T. Springer, “Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma,” J. Quant. Spectrosc. Radiat. Transfer 65, 231-241 (2000).
[CrossRef]

Nature (1)

R. Smoluchowski, “Internal structure and energy emission of Jupiter,” Nature 215, 691-695 (1967).
[CrossRef]

Opt. Lett. (1)

Phys. Plasmas (1)

For brown dwarfs see W. B. Hubbard, T. Guillot, J. I. Lunine, A. Burrows, D. Saumon, M. S. Marley, and R. S. Freedman, “Liquid metallic hydrogen and the structure of brown dwarfs and giant planets,” Phys. Plasmas 4, 2011-2015 (1997).
[CrossRef]

Phys. Rev. A (3)

S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
[CrossRef]

See, for example, A. Bar-Shalom, M. Klapisch, and J. Oreg, “Electron collision excitations in complex spectra of ionized heavy atoms,” Phys. Rev. A 38, 1773-1784 (1988).
[CrossRef] [PubMed]

C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Photopumping and fluorescence in a laser-produced plasma. I. Experimental results,” Phys. Rev. A 44, 6730-6742 (1991).
[CrossRef] [PubMed]

Phys. Rev. B (1)

F. Perrot and M. W. C. Dharma-Wardana, “Spin-polarized electron liquid at arbitrary temperatures: exchange-correlation energies, electron-distribution functions, and the static response functions,” Phys. Rev. B 62, 16536-16548 (2000).
[CrossRef]

Phys. Rev. Lett. (6)

C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Measurement of resonance fluorescence in a laser-produced AlXII plasma,” Phys. Rev. Lett. 63, 1471-1474 (1989).
[CrossRef] [PubMed]

S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
[CrossRef]

D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35 μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. 76, 3574-3577 (1996).
[CrossRef] [PubMed]

R. Cauble, L. B. Da Silva, T. W. Barbee, Jr., P. Celliers, J. C. Moreno, and A. S. Wan, “Micron-resolution radiography of laser-accelerated and x-ray heated foils with an x-ray laser,” Phys. Rev. Lett. 74, 3816-3819 (1995).
[CrossRef] [PubMed]

Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of coherent soft x-rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

C. G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187-2190 (1999).
[CrossRef]

Proc. SPIE (1)

C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
[CrossRef]

Science (5)

A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
[CrossRef] [PubMed]

For information on effects at 1 Mbar for hydrogen-bearing astrophysical objects. See H. M. Van Horn, “Dense astrophysical plasmas,” Science 252, 384-389 (1991).
[CrossRef] [PubMed]

W. B. Hubbard, “Interiors of giant planets,” Science 214, 145-149 (1981).
[CrossRef] [PubMed]

For Jovian planets see W. J. Nellis, M. Ross, and N. C. Holmes, “Temperature measurements of shock-compressed liquid hydrogen: implications for the interior of Jupiter,” Science 269, 1249-1252 (1995).
[CrossRef] [PubMed]

Other (8)

See the website http://www-ssrl.slac.stanford.edu/LCLS/for information on the LCLS facility.

See the website http://www-hasylab.desy.de/facility/fel/for information on the TESLA facility and the TTF, a soft x-ray FEL facility.

G. J. Kalman, Strongly Coupled Coulomb Systems (Plenum, New York, 1998) and the references therein.

For general references to the concepts of laser-produced plasmas and plasma physics, see M. N. Rosenbluth and R. Z. Sagdeev, eds., Handbook of Plasma Physics, Vol. 3 of Physics of Laser Plasmas (Elsevier, Amsterdam, 1991).

H.-J. Kunze, “The laser as a tool for plasma diagnostics,” in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (North-Holland, Amsterdam, 1968).

J. Sheffield, Plasma Scattering of Electromagnetic Radiation (Academic, New York, 1975), and references therein.

E. M. Gullickson, “Mass absorption coefficients,” in X-Ray Data Booklet LBNL/PUB-490 Rev. 2, A. C. Thompson and D. Vaughn, ed. (Lawrence Berkeley National Laboratory, Berkeley, Calif., 2001) and the website http://www-cxro.lbl.gov/optical_constants/.

J. D. Huba, The NRL Plasma Formulary (Plasma Physics Division, Naval Research Laboratory, Washington, D.C., 2000) and http://wwwppd.nrl.navy.mil/nrlformulary/nrlformulary.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Temperature-density phase diagram for hydrogen and aluminum. The relevant regimes are noted, as are the various values of the coupling Γ. The regions of greatest uncertainty are broadly noted by the black outlined areas and are marked with WDM for warm dense matter. Also indicated is the region in which degeneracy will become important: it is the region to the right of the line at which the chemical potential is μ=0.

Fig. 2
Fig. 2

Experimental setup for isochoric heating of a thin Al foil. The XUV FEL with a 60-Å wavelength is incident from both sides, uniformly heating a 500-Å Al foil. The XUV FEL is focused to 140 μm to heat the sample to 1 eV or focused to 30 μm to obtain 10 eV. The bottom graph shows the energy deposition in the foil versus distance. The light dashed curve represents the exponential deposition of the laser energy from the left-hand side, the darker dashed curve represents the laser energy deposited from the right-hand side, and the solid curve represents the total energy deposited in the foil over the 200-fs time that the pulse is on. This energy deposition is used in the simulations shown in Figs. 3 and 4.

Fig. 3
Fig. 3

Two cases of XUV FEL heating of a 500-Å thick foil. In (a) the XUV beam heats a 140-μm-diameter spot with 1012 photons with an energy of 200 eV. The density and electron and ion temperatures are shown immediately after the heating pulse was turned off at 200 fs. The electron temperature reached ∼1 eV at solid density. In (b) we show the case for a 30-μm-diameter spot that reaches an electron temperature of 10 eV.

Fig. 4
Fig. 4

Simulation for the deposition of 32 μJ over 200 fs in a 140-μm spot. The electron density contours are shown in (a) as a distance versus time graph. Note that the original sample is 500 Å thick. In (b) we show the density profiles at times equal to 1, 5, and 10 ps.

Fig. 5
Fig. 5

Simulation showing the density profile at times of 1, 2, and 3 ps. The expansion velocities for the three critical surfaces labeled as 1ω(λL=1 μm), 2ω(λL=0.5 μm), and 3ω(λL=0.33 μm) corresponding to densities of 1021, 4×1021, and 9×1021 cm-3 are shown in Table 1.

Fig. 6
Fig. 6

Experimental arrangement shows the laser incident on an Al dot with a CH backing. The backing constrains the Al plasma and provides a one-dimensional expanding plasma.

Fig. 7
Fig. 7

Temperature and density phase space indicating the nonideal plasma regime by the gray area. Nonideal is defined as a plasma for which there is less than one particle per Debye sphere. The heavy dashed line indicates the temperature-density contour at which there is one particle per Debye sphere. We also indicate by solid curve the temperature and density at which the scaling parameter α=2 for backscatter (θ=180°) for three probe wavelengths. Wavelengths 60 and 190 Å, achievable with the XUV FEL, can probe the strongly coupled plasma regime whereas a standard visible laser at, e.g., 5000 Å, cannot access this region. The cases contained in Table 2 are indicated by the symbol X.

Fig. 8
Fig. 8

Thomson scattering arrangement. The angle of observation θ is shown for both backscattered and forward-scattered radiation.

Tables (2)

Tables Icon

Table 1 Velocities at the Critical Surface for Three Probe Wavelengths a

Tables Icon

Table 2 Thomson Scattering Parameters for Several Plasma Conditions

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Γ=Z2e2r0kT withr0=3Z4πne1/3,
ncr=1029 cm-3/λ2(Å),
E/V=3/2neTe+ΣniIPi,
volume=1012 photons×200eV/(1.5×1.8×1023 cm-3×1eV)10-9 cm3.
α=λprobe4πλscreeningsin(θ/2),
Fractionscattered=exp(-L/Labs)σneL,σ=σThomson2(1+α2).
Δλλ1α2nencr,

Metrics