Abstract

We present a detailed time-domain analysis of a promising nonlinear optical device consisting of alternating layers of nonlinear materials with oppositely signed Kerr coefficients. We study propagation of nonsolitonic (Gaussian) pulses through the device, whose transmittance characteristics point to potential uses in all-optical switches and limiters. If the optical structure has no linear built-in grating, the pulse experiences a nonsolitonic (amplitude-decaying) propagation in the structure, which exhibits limiting properties depending on the bandwidth of the pulse. We elucidate the conditions under which double imaging occurs within the dynamically formed grating under the pulse propagation. In the presence of the linear out-of-phase grating, we observe strong envelope compression and reshaping of a Gaussian pulse, resulting in stable high-amplitude, multiple-peak oscillations as it propagates through the nonlinear optical structure.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription