Abstract

Illumination of ac-biased photorefractive Bi12TiO20 crystals with a coherent light beam results in the development of strong nonlinear scattering. Theoretically and experimentally we investigate the angular and polarization characteristics of the scattered light for the diagonal ([1¯1¯1]) optical configuration and different polarization states of the pump. A satisfactory understanding of the observed scattering properties is achieved for most of the cases investigated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).
  2. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Systems (Springer-Verlag, Berlin, 1991).
  3. S. I. Stepanov, “Applications of photorefractive crystals,” Rep. Prog. Phys. 57, 39-116 (1994).
    [CrossRef]
  4. J. P. Huignard and A. Marrakchi, “Coherent signal amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249-254 (1981).
    [CrossRef]
  5. P. Réfrégier, L. Solymar, H. Rajbenbach, and J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45-57 (1985).
    [CrossRef]
  6. S. I. Stepanov and M. P. Petrov, “Efficient unstationary holographic recording in photorefractive crystals under an external alternating electric field,” Opt. Commun. 53, 292-295 (1985).
    [CrossRef]
  7. C. S. K. Walsh, A. K. Powell, and T. J. Hall, “Techniques for the enhancement of space-charge fields in photorefractive materials,” J. Opt. Soc. Am. B 7, 288-303 (1990).
    [CrossRef]
  8. J. E. Millerd, E. M. Garmire, and M. B. Klein, “Investigation of photorefractive self-pumped phase-conjugate mirrors in the presence of loss and high modulation depth,” J. Opt. Soc. Am. B 9, 1499-1506 (1992).
    [CrossRef]
  9. A. V. Khomenko, A. Garcia-Weidner, and A. A. Kamshilin, “Amplification of optical signals in Bi12TiO20 crystal by photorefractive surface waves,” Opt. Lett. 21, 1014-1016 (1996).
    [CrossRef] [PubMed]
  10. E. Raita, A. A. Kamshilin, and T. Jaaskelainen, “Polarization properties of fanning light in fiberlike bismuth titanium oxide crystals,” Opt. Lett. 21, 1897-1899 (1996).
    [CrossRef] [PubMed]
  11. A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Beam fanning and double phase conjugation in a fiber-like photorefractive sample,” IEEE J. Quantum Electron. 31, 1642-1647 (1995).
    [CrossRef]
  12. A. Marrakchi, R. V. Johnson, and A. R. Tanguay, “Polarization properties of photorefractive diffraction in electro-optic and optically active sillenite crystals (Bragg regime),” J. Opt. Soc. Am. B 3, 321-336 (1986).
    [CrossRef]
  13. S. Mallick, D. Roue`de, and A. G. Apostolidis, “Efficiency and polarization characteristics of photorefractive diffraction in a Bi12SiO20 crystal,” J. Opt. Soc. Am. B 4, 1247-1259 (1987).
    [CrossRef]
  14. B. I. Sturman, D. J. Webb, R. Kowarschik, E. Shamonina, and K. H. Ringhofer, “Exact solution of the Bragg-diffraction problem in sillenites,” J. Opt. Soc. Am. B 11, 1813-1819 (1994).
    [CrossRef]
  15. J. R. Goff, “Polarization properties of transmission and diffraction in BSO crystals—a unified analysis,” J. Opt. Soc. Am. B 12, 99-116 (1995).
    [CrossRef]
  16. V. V. Shepelevich, S. M. Shandarov, and A. E. Mandel, “Light diffraction by holographic gratings in optically active photorefractive piezocrystals,” Ferroelectrics 110, 235-249 (1990).
    [CrossRef]
  17. G. Pauliat, P. Mathey, and G. Roosen, “Influence of piezoelectricity on the photorefractive effect,” J. Opt. Soc. Am. B 8, 1942-1946 (1991).
    [CrossRef]
  18. M. Zgonik, K. Nakagava, and P. Gu¨nter, “Electro-optic and dielectric properties of photorefractive BaTiO3 and KNbO3 crystals,” J. Opt. Soc. Am. B 12, 1416-1421 (1995).
    [CrossRef]
  19. B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
    [CrossRef]
  20. B. I. Sturman, A. I. Chernykh, V. P. Kamenov, E. Shamonina, and K. H. Ringhofer, “Resonant vectorial wave coupling in cubic photorefractive crystals,” J. Opt. Soc. Am. B 17, 985-996 (2000).
    [CrossRef]
  21. V. P. Kamenov, E. Shamonina, K. H. Ringhofer, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Two-wave mixing in (111)-cut Bi12SiO20 and Bi12TiO20 crystals: characterization and comparison with the general orientation,” Phys. Rev. E 62, 2863-2870 (2000).
    [CrossRef]
  22. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1969).
  23. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970), p. 271.
  24. B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, “Space-charge waves in photorefractive crystals and their parametric excitation,” J. Opt. Soc. Am. B 10, 1919-1932 (1993).
    [CrossRef]
  25. For the sake of definiteness we consider only one of several equivalent diagonal configurations.
  26. S. Stepanov, S. M. Shandarov, and N. D. Khat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754-1756 (1987).
  27. E. Shamonina, V. P. Kamenov, K. H. Ringhofer, G. Cedilnik, A. Kiessling, and R. Kowarschik, “Optimum orientation of volume phase gratings in sillenite crystals: is it always [111]?” J. Opt. Soc. Am. B 15, 2552-2559 (1998).
    [CrossRef]
  28. G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Gunter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791-1794 (1995).
    [CrossRef] [PubMed]
  29. E. Shamonina, K. H. Ringhofer, B. I. Sturman, V. P. Kamenov, G. Cedilnik, M. Esselbach, A. Kiessling, R. Kowarschik, A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Giant momentary readout produced by switching electric fields during two-wave mixing in sillenites,” Opt. Lett. 23, 1435-1437 (1998).
    [CrossRef]
  30. M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1968).
  31. A. A. Kamshilin, Y. Iida, S. Ashihara, T. Shimura, and K. Kuroda, “Linear sensing of speckle-pattern displacements using a photorefractive GaP crystal,” Appl. Phys. Lett. 74, 2575-2577 (1999).
    [CrossRef]
  32. Ph. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154-164 (1995).
    [CrossRef]
  33. A. A. Kamshilin, K. Paivasaari, M. Klein, and B. Pouet, “Adaptive interferometer using self-induced electro-optic modulation,” Appl. Phys. Lett. 77, 4098-4100 (2000).
    [CrossRef]
  34. M. P. Georges, V. S. Scauflair, and P. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals,” Appl. Phys. B 72, 761-765 (2001).
    [CrossRef]
  35. M. C. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B 72, 717-721 (2001).
    [CrossRef]
  36. A. A. Freschi, P. M. Garcia, and J. Frejlich, “Charge-carrier diffusion length in photorefractive crystals computed from the initial phase shift,” Appl. Phys. B 71, 2427–2429 (1997).

2001

M. P. Georges, V. S. Scauflair, and P. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals,” Appl. Phys. B 72, 761-765 (2001).
[CrossRef]

M. C. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B 72, 717-721 (2001).
[CrossRef]

2000

A. A. Kamshilin, K. Paivasaari, M. Klein, and B. Pouet, “Adaptive interferometer using self-induced electro-optic modulation,” Appl. Phys. Lett. 77, 4098-4100 (2000).
[CrossRef]

V. P. Kamenov, E. Shamonina, K. H. Ringhofer, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Two-wave mixing in (111)-cut Bi12SiO20 and Bi12TiO20 crystals: characterization and comparison with the general orientation,” Phys. Rev. E 62, 2863-2870 (2000).
[CrossRef]

B. I. Sturman, A. I. Chernykh, V. P. Kamenov, E. Shamonina, and K. H. Ringhofer, “Resonant vectorial wave coupling in cubic photorefractive crystals,” J. Opt. Soc. Am. B 17, 985-996 (2000).
[CrossRef]

1999

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

A. A. Kamshilin, Y. Iida, S. Ashihara, T. Shimura, and K. Kuroda, “Linear sensing of speckle-pattern displacements using a photorefractive GaP crystal,” Appl. Phys. Lett. 74, 2575-2577 (1999).
[CrossRef]

1998

1997

A. A. Freschi, P. M. Garcia, and J. Frejlich, “Charge-carrier diffusion length in photorefractive crystals computed from the initial phase shift,” Appl. Phys. B 71, 2427–2429 (1997).

1996

1995

J. R. Goff, “Polarization properties of transmission and diffraction in BSO crystals—a unified analysis,” J. Opt. Soc. Am. B 12, 99-116 (1995).
[CrossRef]

M. Zgonik, K. Nakagava, and P. Gu¨nter, “Electro-optic and dielectric properties of photorefractive BaTiO3 and KNbO3 crystals,” J. Opt. Soc. Am. B 12, 1416-1421 (1995).
[CrossRef]

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Gunter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791-1794 (1995).
[CrossRef] [PubMed]

Ph. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154-164 (1995).
[CrossRef]

A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Beam fanning and double phase conjugation in a fiber-like photorefractive sample,” IEEE J. Quantum Electron. 31, 1642-1647 (1995).
[CrossRef]

1994

1993

1992

1991

1990

C. S. K. Walsh, A. K. Powell, and T. J. Hall, “Techniques for the enhancement of space-charge fields in photorefractive materials,” J. Opt. Soc. Am. B 7, 288-303 (1990).
[CrossRef]

V. V. Shepelevich, S. M. Shandarov, and A. E. Mandel, “Light diffraction by holographic gratings in optically active photorefractive piezocrystals,” Ferroelectrics 110, 235-249 (1990).
[CrossRef]

1987

S. Stepanov, S. M. Shandarov, and N. D. Khat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754-1756 (1987).

S. Mallick, D. Roue`de, and A. G. Apostolidis, “Efficiency and polarization characteristics of photorefractive diffraction in a Bi12SiO20 crystal,” J. Opt. Soc. Am. B 4, 1247-1259 (1987).
[CrossRef]

1986

1985

P. Réfrégier, L. Solymar, H. Rajbenbach, and J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45-57 (1985).
[CrossRef]

S. I. Stepanov and M. P. Petrov, “Efficient unstationary holographic recording in photorefractive crystals under an external alternating electric field,” Opt. Commun. 53, 292-295 (1985).
[CrossRef]

1981

J. P. Huignard and A. Marrakchi, “Coherent signal amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249-254 (1981).
[CrossRef]

Anderson, D. Z.

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Gunter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791-1794 (1995).
[CrossRef] [PubMed]

Apostolidis, A. G.

Ashihara, S.

A. A. Kamshilin, Y. Iida, S. Ashihara, T. Shimura, and K. Kuroda, “Linear sensing of speckle-pattern displacements using a photorefractive GaP crystal,” Appl. Phys. Lett. 74, 2575-2577 (1999).
[CrossRef]

Barbosa, M. C.

M. C. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B 72, 717-721 (2001).
[CrossRef]

Cedilnik, G.

Chernykh, A. I.

Czaia, L.

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Gunter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791-1794 (1995).
[CrossRef] [PubMed]

de Montmorillon, L. A.

Ph. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154-164 (1995).
[CrossRef]

Delaye, Ph.

Ph. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154-164 (1995).
[CrossRef]

Esselbach, M.

Frejlich, J.

M. C. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B 72, 717-721 (2001).
[CrossRef]

A. A. Freschi, P. M. Garcia, and J. Frejlich, “Charge-carrier diffusion length in photorefractive crystals computed from the initial phase shift,” Appl. Phys. B 71, 2427–2429 (1997).

Freschi, A. A.

A. A. Freschi, P. M. Garcia, and J. Frejlich, “Charge-carrier diffusion length in photorefractive crystals computed from the initial phase shift,” Appl. Phys. B 71, 2427–2429 (1997).

Garcia, P. M.

A. A. Freschi, P. M. Garcia, and J. Frejlich, “Charge-carrier diffusion length in photorefractive crystals computed from the initial phase shift,” Appl. Phys. B 71, 2427–2429 (1997).

Garcia-Weidner, A.

Garmire, E. M.

Georges, M. P.

M. P. Georges, V. S. Scauflair, and P. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals,” Appl. Phys. B 72, 761-765 (2001).
[CrossRef]

Goff, J. R.

Gu¨nter, P.

Gunter, P.

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Gunter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791-1794 (1995).
[CrossRef] [PubMed]

Hall, T. J.

Huignard, J. P.

J. P. Huignard and A. Marrakchi, “Coherent signal amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249-254 (1981).
[CrossRef]

Huignard, J.-P.

P. Réfrégier, L. Solymar, H. Rajbenbach, and J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45-57 (1985).
[CrossRef]

Iida, Y.

A. A. Kamshilin, Y. Iida, S. Ashihara, T. Shimura, and K. Kuroda, “Linear sensing of speckle-pattern displacements using a photorefractive GaP crystal,” Appl. Phys. Lett. 74, 2575-2577 (1999).
[CrossRef]

Jaaskelainen, T.

Johnson, R. V.

Kamenov, V. P.

Kamshilin, A. A.

A. A. Kamshilin, K. Paivasaari, M. Klein, and B. Pouet, “Adaptive interferometer using self-induced electro-optic modulation,” Appl. Phys. Lett. 77, 4098-4100 (2000).
[CrossRef]

V. P. Kamenov, E. Shamonina, K. H. Ringhofer, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Two-wave mixing in (111)-cut Bi12SiO20 and Bi12TiO20 crystals: characterization and comparison with the general orientation,” Phys. Rev. E 62, 2863-2870 (2000).
[CrossRef]

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

A. A. Kamshilin, Y. Iida, S. Ashihara, T. Shimura, and K. Kuroda, “Linear sensing of speckle-pattern displacements using a photorefractive GaP crystal,” Appl. Phys. Lett. 74, 2575-2577 (1999).
[CrossRef]

E. Shamonina, K. H. Ringhofer, B. I. Sturman, V. P. Kamenov, G. Cedilnik, M. Esselbach, A. Kiessling, R. Kowarschik, A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Giant momentary readout produced by switching electric fields during two-wave mixing in sillenites,” Opt. Lett. 23, 1435-1437 (1998).
[CrossRef]

A. V. Khomenko, A. Garcia-Weidner, and A. A. Kamshilin, “Amplification of optical signals in Bi12TiO20 crystal by photorefractive surface waves,” Opt. Lett. 21, 1014-1016 (1996).
[CrossRef] [PubMed]

E. Raita, A. A. Kamshilin, and T. Jaaskelainen, “Polarization properties of fanning light in fiberlike bismuth titanium oxide crystals,” Opt. Lett. 21, 1897-1899 (1996).
[CrossRef] [PubMed]

A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Beam fanning and double phase conjugation in a fiber-like photorefractive sample,” IEEE J. Quantum Electron. 31, 1642-1647 (1995).
[CrossRef]

Khat’kov, N. D.

S. Stepanov, S. M. Shandarov, and N. D. Khat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754-1756 (1987).

Khomenko, A. V.

Kiessling, A.

Klein, M.

A. A. Kamshilin, K. Paivasaari, M. Klein, and B. Pouet, “Adaptive interferometer using self-induced electro-optic modulation,” Appl. Phys. Lett. 77, 4098-4100 (2000).
[CrossRef]

Klein, M. B.

Kowarschik, R.

Kuroda, K.

A. A. Kamshilin, Y. Iida, S. Ashihara, T. Shimura, and K. Kuroda, “Linear sensing of speckle-pattern displacements using a photorefractive GaP crystal,” Appl. Phys. Lett. 74, 2575-2577 (1999).
[CrossRef]

Lemaire, P. C.

M. P. Georges, V. S. Scauflair, and P. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals,” Appl. Phys. B 72, 761-765 (2001).
[CrossRef]

Mallick, S.

Mandel, A. E.

V. V. Shepelevich, S. M. Shandarov, and A. E. Mandel, “Light diffraction by holographic gratings in optically active photorefractive piezocrystals,” Ferroelectrics 110, 235-249 (1990).
[CrossRef]

Mann, M.

Marrakchi, A.

A. Marrakchi, R. V. Johnson, and A. R. Tanguay, “Polarization properties of photorefractive diffraction in electro-optic and optically active sillenite crystals (Bragg regime),” J. Opt. Soc. Am. B 3, 321-336 (1986).
[CrossRef]

J. P. Huignard and A. Marrakchi, “Coherent signal amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249-254 (1981).
[CrossRef]

Mathey, P.

Millerd, J. E.

Montemezzani, G.

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Gunter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791-1794 (1995).
[CrossRef] [PubMed]

Mosquera, L.

M. C. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B 72, 717-721 (2001).
[CrossRef]

Nakagava, K.

Nippolainen, E.

V. P. Kamenov, E. Shamonina, K. H. Ringhofer, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Two-wave mixing in (111)-cut Bi12SiO20 and Bi12TiO20 crystals: characterization and comparison with the general orientation,” Phys. Rev. E 62, 2863-2870 (2000).
[CrossRef]

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Otten, J.

Paivasaari, K.

A. A. Kamshilin, K. Paivasaari, M. Klein, and B. Pouet, “Adaptive interferometer using self-induced electro-optic modulation,” Appl. Phys. Lett. 77, 4098-4100 (2000).
[CrossRef]

Pauliat, G.

Petrov, M. P.

S. I. Stepanov and M. P. Petrov, “Efficient unstationary holographic recording in photorefractive crystals under an external alternating electric field,” Opt. Commun. 53, 292-295 (1985).
[CrossRef]

Podivilov, E. V.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Pouet, B.

A. A. Kamshilin, K. Paivasaari, M. Klein, and B. Pouet, “Adaptive interferometer using self-induced electro-optic modulation,” Appl. Phys. Lett. 77, 4098-4100 (2000).
[CrossRef]

Powell, A. K.

Prokofiev, V. V.

V. P. Kamenov, E. Shamonina, K. H. Ringhofer, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Two-wave mixing in (111)-cut Bi12SiO20 and Bi12TiO20 crystals: characterization and comparison with the general orientation,” Phys. Rev. E 62, 2863-2870 (2000).
[CrossRef]

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

E. Shamonina, K. H. Ringhofer, B. I. Sturman, V. P. Kamenov, G. Cedilnik, M. Esselbach, A. Kiessling, R. Kowarschik, A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Giant momentary readout produced by switching electric fields during two-wave mixing in sillenites,” Opt. Lett. 23, 1435-1437 (1998).
[CrossRef]

A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Beam fanning and double phase conjugation in a fiber-like photorefractive sample,” IEEE J. Quantum Electron. 31, 1642-1647 (1995).
[CrossRef]

Raita, E.

Rajbenbach, H.

P. Réfrégier, L. Solymar, H. Rajbenbach, and J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45-57 (1985).
[CrossRef]

Réfrégier, P.

P. Réfrégier, L. Solymar, H. Rajbenbach, and J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45-57 (1985).
[CrossRef]

Ringhofer, K. H.

B. I. Sturman, A. I. Chernykh, V. P. Kamenov, E. Shamonina, and K. H. Ringhofer, “Resonant vectorial wave coupling in cubic photorefractive crystals,” J. Opt. Soc. Am. B 17, 985-996 (2000).
[CrossRef]

V. P. Kamenov, E. Shamonina, K. H. Ringhofer, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Two-wave mixing in (111)-cut Bi12SiO20 and Bi12TiO20 crystals: characterization and comparison with the general orientation,” Phys. Rev. E 62, 2863-2870 (2000).
[CrossRef]

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

E. Shamonina, K. H. Ringhofer, B. I. Sturman, V. P. Kamenov, G. Cedilnik, M. Esselbach, A. Kiessling, R. Kowarschik, A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Giant momentary readout produced by switching electric fields during two-wave mixing in sillenites,” Opt. Lett. 23, 1435-1437 (1998).
[CrossRef]

E. Shamonina, V. P. Kamenov, K. H. Ringhofer, G. Cedilnik, A. Kiessling, and R. Kowarschik, “Optimum orientation of volume phase gratings in sillenite crystals: is it always [111]?” J. Opt. Soc. Am. B 15, 2552-2559 (1998).
[CrossRef]

B. I. Sturman, D. J. Webb, R. Kowarschik, E. Shamonina, and K. H. Ringhofer, “Exact solution of the Bragg-diffraction problem in sillenites,” J. Opt. Soc. Am. B 11, 1813-1819 (1994).
[CrossRef]

B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, “Space-charge waves in photorefractive crystals and their parametric excitation,” J. Opt. Soc. Am. B 10, 1919-1932 (1993).
[CrossRef]

Roosen, G.

Ph. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154-164 (1995).
[CrossRef]

G. Pauliat, P. Mathey, and G. Roosen, “Influence of piezoelectricity on the photorefractive effect,” J. Opt. Soc. Am. B 8, 1942-1946 (1991).
[CrossRef]

Roue`de, D.

Scauflair, V. S.

M. P. Georges, V. S. Scauflair, and P. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals,” Appl. Phys. B 72, 761-765 (2001).
[CrossRef]

Shamonina, E.

Shandarov, S. M.

V. V. Shepelevich, S. M. Shandarov, and A. E. Mandel, “Light diffraction by holographic gratings in optically active photorefractive piezocrystals,” Ferroelectrics 110, 235-249 (1990).
[CrossRef]

S. Stepanov, S. M. Shandarov, and N. D. Khat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754-1756 (1987).

Shepelevich, V. V.

V. V. Shepelevich, S. M. Shandarov, and A. E. Mandel, “Light diffraction by holographic gratings in optically active photorefractive piezocrystals,” Ferroelectrics 110, 235-249 (1990).
[CrossRef]

Shimura, T.

A. A. Kamshilin, Y. Iida, S. Ashihara, T. Shimura, and K. Kuroda, “Linear sensing of speckle-pattern displacements using a photorefractive GaP crystal,” Appl. Phys. Lett. 74, 2575-2577 (1999).
[CrossRef]

Solymar, L.

P. Réfrégier, L. Solymar, H. Rajbenbach, and J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45-57 (1985).
[CrossRef]

Stepanov, S.

S. Stepanov, S. M. Shandarov, and N. D. Khat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754-1756 (1987).

Stepanov, S. I.

S. I. Stepanov, “Applications of photorefractive crystals,” Rep. Prog. Phys. 57, 39-116 (1994).
[CrossRef]

S. I. Stepanov and M. P. Petrov, “Efficient unstationary holographic recording in photorefractive crystals under an external alternating electric field,” Opt. Commun. 53, 292-295 (1985).
[CrossRef]

Sturman, B. I.

Tanguay, A. R.

Walsh, C. S. K.

Webb, D. J.

Zgonik, M.

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Gunter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791-1794 (1995).
[CrossRef] [PubMed]

M. Zgonik, K. Nakagava, and P. Gu¨nter, “Electro-optic and dielectric properties of photorefractive BaTiO3 and KNbO3 crystals,” J. Opt. Soc. Am. B 12, 1416-1421 (1995).
[CrossRef]

Zozulya, A. A.

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Gunter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791-1794 (1995).
[CrossRef] [PubMed]

Appl. Phys. B

M. P. Georges, V. S. Scauflair, and P. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals,” Appl. Phys. B 72, 761-765 (2001).
[CrossRef]

M. C. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B 72, 717-721 (2001).
[CrossRef]

A. A. Freschi, P. M. Garcia, and J. Frejlich, “Charge-carrier diffusion length in photorefractive crystals computed from the initial phase shift,” Appl. Phys. B 71, 2427–2429 (1997).

Appl. Phys. Lett.

A. A. Kamshilin, K. Paivasaari, M. Klein, and B. Pouet, “Adaptive interferometer using self-induced electro-optic modulation,” Appl. Phys. Lett. 77, 4098-4100 (2000).
[CrossRef]

A. A. Kamshilin, Y. Iida, S. Ashihara, T. Shimura, and K. Kuroda, “Linear sensing of speckle-pattern displacements using a photorefractive GaP crystal,” Appl. Phys. Lett. 74, 2575-2577 (1999).
[CrossRef]

Ferroelectrics

V. V. Shepelevich, S. M. Shandarov, and A. E. Mandel, “Light diffraction by holographic gratings in optically active photorefractive piezocrystals,” Ferroelectrics 110, 235-249 (1990).
[CrossRef]

IEEE J. Quantum Electron.

A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Beam fanning and double phase conjugation in a fiber-like photorefractive sample,” IEEE J. Quantum Electron. 31, 1642-1647 (1995).
[CrossRef]

J. Appl. Phys.

P. Réfrégier, L. Solymar, H. Rajbenbach, and J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45-57 (1985).
[CrossRef]

J. Opt. Soc. Am. B

B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, “Space-charge waves in photorefractive crystals and their parametric excitation,” J. Opt. Soc. Am. B 10, 1919-1932 (1993).
[CrossRef]

S. Mallick, D. Roue`de, and A. G. Apostolidis, “Efficiency and polarization characteristics of photorefractive diffraction in a Bi12SiO20 crystal,” J. Opt. Soc. Am. B 4, 1247-1259 (1987).
[CrossRef]

G. Pauliat, P. Mathey, and G. Roosen, “Influence of piezoelectricity on the photorefractive effect,” J. Opt. Soc. Am. B 8, 1942-1946 (1991).
[CrossRef]

B. I. Sturman, A. I. Chernykh, V. P. Kamenov, E. Shamonina, and K. H. Ringhofer, “Resonant vectorial wave coupling in cubic photorefractive crystals,” J. Opt. Soc. Am. B 17, 985-996 (2000).
[CrossRef]

A. Marrakchi, R. V. Johnson, and A. R. Tanguay, “Polarization properties of photorefractive diffraction in electro-optic and optically active sillenite crystals (Bragg regime),” J. Opt. Soc. Am. B 3, 321-336 (1986).
[CrossRef]

C. S. K. Walsh, A. K. Powell, and T. J. Hall, “Techniques for the enhancement of space-charge fields in photorefractive materials,” J. Opt. Soc. Am. B 7, 288-303 (1990).
[CrossRef]

J. E. Millerd, E. M. Garmire, and M. B. Klein, “Investigation of photorefractive self-pumped phase-conjugate mirrors in the presence of loss and high modulation depth,” J. Opt. Soc. Am. B 9, 1499-1506 (1992).
[CrossRef]

B. I. Sturman, D. J. Webb, R. Kowarschik, E. Shamonina, and K. H. Ringhofer, “Exact solution of the Bragg-diffraction problem in sillenites,” J. Opt. Soc. Am. B 11, 1813-1819 (1994).
[CrossRef]

J. R. Goff, “Polarization properties of transmission and diffraction in BSO crystals—a unified analysis,” J. Opt. Soc. Am. B 12, 99-116 (1995).
[CrossRef]

M. Zgonik, K. Nakagava, and P. Gu¨nter, “Electro-optic and dielectric properties of photorefractive BaTiO3 and KNbO3 crystals,” J. Opt. Soc. Am. B 12, 1416-1421 (1995).
[CrossRef]

E. Shamonina, V. P. Kamenov, K. H. Ringhofer, G. Cedilnik, A. Kiessling, and R. Kowarschik, “Optimum orientation of volume phase gratings in sillenite crystals: is it always [111]?” J. Opt. Soc. Am. B 15, 2552-2559 (1998).
[CrossRef]

Opt. Commun.

S. I. Stepanov and M. P. Petrov, “Efficient unstationary holographic recording in photorefractive crystals under an external alternating electric field,” Opt. Commun. 53, 292-295 (1985).
[CrossRef]

Ph. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154-164 (1995).
[CrossRef]

J. P. Huignard and A. Marrakchi, “Coherent signal amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249-254 (1981).
[CrossRef]

Opt. Lett.

Phys. Rev. A

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Gunter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791-1794 (1995).
[CrossRef] [PubMed]

Phys. Rev. E

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

V. P. Kamenov, E. Shamonina, K. H. Ringhofer, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Two-wave mixing in (111)-cut Bi12SiO20 and Bi12TiO20 crystals: characterization and comparison with the general orientation,” Phys. Rev. E 62, 2863-2870 (2000).
[CrossRef]

Rep. Prog. Phys.

S. I. Stepanov, “Applications of photorefractive crystals,” Rep. Prog. Phys. 57, 39-116 (1994).
[CrossRef]

Sov. Phys. Solid State

S. Stepanov, S. M. Shandarov, and N. D. Khat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754-1756 (1987).

Other

M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1968).

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Systems (Springer-Verlag, Berlin, 1991).

L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1969).

E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970), p. 271.

For the sake of definiteness we consider only one of several equivalent diagonal configurations.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of an experiment on light-induced scattering. (b) Geometrical diagram. For diagonal geometry, ψ is the polar angle measured from the [1¯1¯1] axis, ζ0 is the angle between [1¯1¯1] and [001], and the propagation direction is [1¯10].

Fig. 2
Fig. 2

Dependences ν0,1,3(ψ) for the diagonal geometry; the dashed curves are plotted for zero elasto-optic contributions.

Fig. 3
Fig. 3

Contour plots Q˜(θ, ψ)=constant for |E0|=17 kV/cm, μτ=10-7 cm2/V, and Nt=3×1016 cm-3. The filled circles mark the positions of two symmetric maxima.

Fig. 4
Fig. 4

Angular dependences of the increment for |E0|=17 kV/cm and the accepted parameters of BTO crystals: (a), (b), (c) correspond to horizontal, vertical, and circular pump polarization, respectively. Polar angle θ is recalculated for air.

Fig. 5
Fig. 5

Experimental distributions of scattered light for |E0|=17 kV/cm for the diagonal geometry: (a), (b), (c), (d) correspond to horizontal, vertical, +45°, and (+) circular pump polarization, respectively. The scattering distributions for -45° and (-) circular polarization are not visually different from those shown for (c) and (d).

Fig. 6
Fig. 6

Dependence Γ˜(θ, ψ) for (a) (+) and (b) (-) circular pump polarization. The maximum values for the main lobe are ≃18.2 and 22.9 cm-1, whereas for the secondary lobe they are ≃9.0 and ≃5.9 cm-1.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

dadz-i(κ  σˆ)a=Q|E0cos ψ|(ae*)(ν0+νσˆ)e.
κ1=23 sE0,κ3=-123 sE0,
ν0,3=±(s/2)cos(ζ0+ψ),ν1=s sin(ζ0+ψ),
dedz=i(κσˆ)e.
(κσˆ)e=δke.
e(z)=exp[i(κσˆ)z]e0=[cos κz+iκ-1(κσˆ)sin κz]e0,
a=exp[i(κσˆ)z]b.
dbdz=(be0*)(q0+qσˆ)e0,
q=Q|E0cos ψ|κ(νκ)κ2+ν-κ(νκ)κ2×cos 2κz-(ν×κ)κsin 2κz.
bQ˜|E0|(e0*b0) exp(Γz)Γν0+(νκ)(κσˆ)κ2e0,
Γ=Q|E0cos ψ|[ν0+κ-2(νκ)(κξ0)],
Γ(Γ++Γ-)/2=Q|E0cos ψ|ν0.
|b+/b-|2=(Γ+/Γ-)2.

Metrics