Abstract

We investigate, both theoretically and experimentally, how to build a pulsed intracavity-doubled two-frequency laser. To this aim, we use a Jones-matrix analysis in order to choose the orientations of the cavity anisotropies, namely, two quarter-wave plates, a passive Q-switch, and a doubling crystal. In particular, we find the conditions necessary for the simultaneous oscillation of the two eigenstates, depending on whether the doubling crystal is inserted between the quarter-wave plates or not. Continuous tuning of the frequency difference is provided by rotating one quarter-wave plate or the birefringent doubling crystal. Moreover, the efficiencies of second-harmonic generation and sum-frequency generation are controlled. The experimental results, obtained with a diode-pumped Nd:YAG–Cr:YAG laser intracavity doubled by a KTP crystal, are in agreement with the model.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Marshall, A. D. Hays, A. Kaz, and R. L. Burnham, “Intracavity doubled mode-locked and CW diode-pumped lasers,” IEEE J. Quantum Electron. 28, 1158-1163 (1992).
    [CrossRef]
  2. K. I. Martin, W. A. Clarkson, and D. C. Hanna, “3 W ofsingle-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser,” Opt. Lett. 21, 875-877 (1996).
    [CrossRef] [PubMed]
  3. Y. F. Chen, T. M. Huang, C. L. Wang, and L. J. Lee, “Compact and efficient 3.2 W diode-pumped Nd:YVO4/KTP green laser,” Appl. Opt. 37, 5727-5730 (1998).
    [CrossRef]
  4. T. Sasaki, T. Kojima, A. Yokotani, O. Oguri, and S. Nakai, “Single-longitudinal-mode operation and second-harmonic generation of Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1665-1667 (1991).
    [CrossRef] [PubMed]
  5. T. Taira and T. Kobayashi, “Intracavity frequency doubling and Q switching in diode-laser-pumped Nd:YVO4 lasers,” Appl. Opt. 34, 4298-4301 (1995).
    [CrossRef] [PubMed]
  6. A. Agnesi, S. Dell’Acqua, E. Piccinini, G. Reali, and G. Piccinno, “Efficient wavelength conversion with high-power passively Q-switched diode-pumped neodymium lasers,” IEEE J. Quantum Electron. 34, 1480-1484 (1998).
    [CrossRef]
  7. M. Alouini, N. D. Lai, M. Brunel, M. Vallet, O. Emile, A. Le Floch, and F. Bretenaker, “Dual-frequency solid-state lasers for optical and microwave telecommunications,” Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), paper CWG3, p. 390.
  8. Y. Li, A. J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for lidar-radar,” IEEE Trans. Microwave Theory Tech. 49, 2048-2054 (2001).
    [CrossRef]
  9. L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “The building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702-5712 (2002).
    [CrossRef] [PubMed]
  10. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367-369 (2001).
    [CrossRef]
  11. M. Alouini, F. Bretenaker, M. Brunel, D. Chauvat, O. Emile, A. Le Floch, G. Ropars, and M. Vallet, “One- and two-axis laser cavities for dual-frequency operation and microwave generation,” in Laser Optics 2000: Control of Laser Beam Characteristics and Nonlinear Methods for Wavelength Control, L. N. Soms and V. E. Sherstobitov, eds., Proc. SPIE 4353, 145-150 (2001), and references therein.
    [CrossRef]
  12. L. J. Mullen, P. R. Herczfeld, and V. M. Contarino, “Hybid lidar-radar ocean experiment,” IEEE Trans. Microwave Theory Tech. 44, 2703-2710 (1996).
  13. C. H. Lee, “Picosecond optics and microwave technology,” IEEE Trans. Microwave Theory Tech. 38, 596-607 (1990).
    [CrossRef]
  14. V. Evtuhov and A. E. Siegman, “A ‘twisted-mode’ technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt. 4, 142-143 (1965).
    [CrossRef]
  15. A. Kastler, “Champ lumineux stationnaire a` structure hélicoi¨dale dans une cavité laser,” C.R. Seances Acad. Sci., Ser. B 271, 999-1001 (1970).
  16. R. C. Jones, “A new calculus for the treatment of opticalsystems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488-493 (1941).
    [CrossRef]
  17. H. De Lang, “Polarization properties of optical resonators passive and active,” Ph.D. dissertation (University of Utrecht, Utrecht, The Netherlands, 1966).
  18. A. Le Floch and R. Le Naour, “Polarization effects in Zeeman lasers with x-y type anisotropies,” Phys. Rev. A 4, 290-295 (1971).
    [CrossRef]
  19. M. Oka and S. Kubota, “Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers,” Opt. Lett. 13, 805-807 (1988).
    [CrossRef] [PubMed]
  20. S. Helmfrid and K. Tatsuno, “Stable single-mode operation of intracavity-doubled diode-pumped Nd:YVO4 lasers: theoretical study,” J. Opt. Soc. Am. B 11, 436-445 (1994).
    [CrossRef]
  21. A. Owyoung and P. Esherick, “Stress-induced tuning of a diode-laser-excited monolithic Nd:YAG laser,” Opt. Lett. 12, 999-1001 (1987).
    [CrossRef] [PubMed]
  22. H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
    [CrossRef]
  23. A. Brignon, “Anisotropic properties of pulsed four-wave mixing in Cr4+:YAG saturable absorbers,” J. Opt. Soc. Am. B 13, 2154-2163 (1996).
    [CrossRef]
  24. M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052-4058 (1999).
    [CrossRef]
  25. P. Lagoutte, Ph. Balcou, F. Bretenaker, A. Le Floch, and O. Cregut, “Double-helicoidal eigenstates in lasers,” J. Opt. Soc. Am. B 12, 132-138 (1995).
    [CrossRef]
  26. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).
  27. H. Ito, H. Naito, and H. Inaba, “Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992-3998 (1975).
    [CrossRef]
  28. D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity doubling of CW diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148-1157 (1992).
    [CrossRef]
  29. G. E. James, E. M. Harrell II, and R. Roy, “Intermittency and chaos in intracavity doubled lasers. II,” Phys. Rev. A 41, 2778-2790 (1990).
    [CrossRef] [PubMed]
  30. S. Spiekermann, H. Karlsson, and F. Laurell, “Efficient frequency conversion of a passively Q-switched Nd:YAG laser at 946 nm in periodically poled KTiOPO4,” Appl. Opt. 40, 1979-1982 (2001).
    [CrossRef]
  31. N. Vansteenkiste, P. Vignolo, and A. Aspect, “Optical reversibility theorems for polarization: application to remote control of polarization,” J. Opt. Soc. Am. A 10, 2240-2245 (1993).
    [CrossRef]
  32. H. Hurwitz, Jr., and R. C. Jones, “A new calculus for the treatment of optical systems. II. Proof of three general equivalence theorems,” J. Opt. Soc. Am. 31, 493–499 (1941).
    [CrossRef]

2002 (1)

2001 (4)

S. Spiekermann, H. Karlsson, and F. Laurell, “Efficient frequency conversion of a passively Q-switched Nd:YAG laser at 946 nm in periodically poled KTiOPO4,” Appl. Opt. 40, 1979-1982 (2001).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367-369 (2001).
[CrossRef]

M. Alouini, F. Bretenaker, M. Brunel, D. Chauvat, O. Emile, A. Le Floch, G. Ropars, and M. Vallet, “One- and two-axis laser cavities for dual-frequency operation and microwave generation,” in Laser Optics 2000: Control of Laser Beam Characteristics and Nonlinear Methods for Wavelength Control, L. N. Soms and V. E. Sherstobitov, eds., Proc. SPIE 4353, 145-150 (2001), and references therein.
[CrossRef]

Y. Li, A. J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for lidar-radar,” IEEE Trans. Microwave Theory Tech. 49, 2048-2054 (2001).
[CrossRef]

1999 (1)

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052-4058 (1999).
[CrossRef]

1998 (2)

A. Agnesi, S. Dell’Acqua, E. Piccinini, G. Reali, and G. Piccinno, “Efficient wavelength conversion with high-power passively Q-switched diode-pumped neodymium lasers,” IEEE J. Quantum Electron. 34, 1480-1484 (1998).
[CrossRef]

Y. F. Chen, T. M. Huang, C. L. Wang, and L. J. Lee, “Compact and efficient 3.2 W diode-pumped Nd:YVO4/KTP green laser,” Appl. Opt. 37, 5727-5730 (1998).
[CrossRef]

1996 (3)

1995 (2)

1994 (1)

1993 (1)

1992 (3)

D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity doubling of CW diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148-1157 (1992).
[CrossRef]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

L. R. Marshall, A. D. Hays, A. Kaz, and R. L. Burnham, “Intracavity doubled mode-locked and CW diode-pumped lasers,” IEEE J. Quantum Electron. 28, 1158-1163 (1992).
[CrossRef]

1991 (1)

1990 (2)

C. H. Lee, “Picosecond optics and microwave technology,” IEEE Trans. Microwave Theory Tech. 38, 596-607 (1990).
[CrossRef]

G. E. James, E. M. Harrell II, and R. Roy, “Intermittency and chaos in intracavity doubled lasers. II,” Phys. Rev. A 41, 2778-2790 (1990).
[CrossRef] [PubMed]

1988 (1)

1987 (1)

1975 (1)

H. Ito, H. Naito, and H. Inaba, “Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992-3998 (1975).
[CrossRef]

1971 (1)

A. Le Floch and R. Le Naour, “Polarization effects in Zeeman lasers with x-y type anisotropies,” Phys. Rev. A 4, 290-295 (1971).
[CrossRef]

1970 (1)

A. Kastler, “Champ lumineux stationnaire a` structure hélicoi¨dale dans une cavité laser,” C.R. Seances Acad. Sci., Ser. B 271, 999-1001 (1970).

1965 (1)

1941 (2)

Agnesi, A.

A. Agnesi, S. Dell’Acqua, E. Piccinini, G. Reali, and G. Piccinno, “Efficient wavelength conversion with high-power passively Q-switched diode-pumped neodymium lasers,” IEEE J. Quantum Electron. 34, 1480-1484 (1998).
[CrossRef]

Alouini, M.

M. Alouini, F. Bretenaker, M. Brunel, D. Chauvat, O. Emile, A. Le Floch, G. Ropars, and M. Vallet, “One- and two-axis laser cavities for dual-frequency operation and microwave generation,” in Laser Optics 2000: Control of Laser Beam Characteristics and Nonlinear Methods for Wavelength Control, L. N. Soms and V. E. Sherstobitov, eds., Proc. SPIE 4353, 145-150 (2001), and references therein.
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367-369 (2001).
[CrossRef]

Anthon, D. W.

D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity doubling of CW diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148-1157 (1992).
[CrossRef]

Aspect, A.

Balcou, Ph.

Benazet, B.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367-369 (2001).
[CrossRef]

Bretenaker, F.

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “The building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702-5712 (2002).
[CrossRef] [PubMed]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367-369 (2001).
[CrossRef]

M. Alouini, F. Bretenaker, M. Brunel, D. Chauvat, O. Emile, A. Le Floch, G. Ropars, and M. Vallet, “One- and two-axis laser cavities for dual-frequency operation and microwave generation,” in Laser Optics 2000: Control of Laser Beam Characteristics and Nonlinear Methods for Wavelength Control, L. N. Soms and V. E. Sherstobitov, eds., Proc. SPIE 4353, 145-150 (2001), and references therein.
[CrossRef]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052-4058 (1999).
[CrossRef]

P. Lagoutte, Ph. Balcou, F. Bretenaker, A. Le Floch, and O. Cregut, “Double-helicoidal eigenstates in lasers,” J. Opt. Soc. Am. B 12, 132-138 (1995).
[CrossRef]

Brignon, A.

Brunel, M.

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “The building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702-5712 (2002).
[CrossRef] [PubMed]

M. Alouini, F. Bretenaker, M. Brunel, D. Chauvat, O. Emile, A. Le Floch, G. Ropars, and M. Vallet, “One- and two-axis laser cavities for dual-frequency operation and microwave generation,” in Laser Optics 2000: Control of Laser Beam Characteristics and Nonlinear Methods for Wavelength Control, L. N. Soms and V. E. Sherstobitov, eds., Proc. SPIE 4353, 145-150 (2001), and references therein.
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367-369 (2001).
[CrossRef]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052-4058 (1999).
[CrossRef]

Burnham, R. L.

L. R. Marshall, A. D. Hays, A. Kaz, and R. L. Burnham, “Intracavity doubled mode-locked and CW diode-pumped lasers,” IEEE J. Quantum Electron. 28, 1158-1163 (1992).
[CrossRef]

Chauvat, D.

M. Alouini, F. Bretenaker, M. Brunel, D. Chauvat, O. Emile, A. Le Floch, G. Ropars, and M. Vallet, “One- and two-axis laser cavities for dual-frequency operation and microwave generation,” in Laser Optics 2000: Control of Laser Beam Characteristics and Nonlinear Methods for Wavelength Control, L. N. Soms and V. E. Sherstobitov, eds., Proc. SPIE 4353, 145-150 (2001), and references therein.
[CrossRef]

Chen, Y. F.

Clarkson, W. A.

Contarino, V. M.

L. J. Mullen, P. R. Herczfeld, and V. M. Contarino, “Hybid lidar-radar ocean experiment,” IEEE Trans. Microwave Theory Tech. 44, 2703-2710 (1996).

Cregut, O.

Dell’Acqua, S.

A. Agnesi, S. Dell’Acqua, E. Piccinini, G. Reali, and G. Piccinno, “Efficient wavelength conversion with high-power passively Q-switched diode-pumped neodymium lasers,” IEEE J. Quantum Electron. 34, 1480-1484 (1998).
[CrossRef]

Dennis, W. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

Di Bin, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367-369 (2001).
[CrossRef]

Dolfi, D.

Eilers, H.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

Emile, O.

M. Alouini, F. Bretenaker, M. Brunel, D. Chauvat, O. Emile, A. Le Floch, G. Ropars, and M. Vallet, “One- and two-axis laser cavities for dual-frequency operation and microwave generation,” in Laser Optics 2000: Control of Laser Beam Characteristics and Nonlinear Methods for Wavelength Control, L. N. Soms and V. E. Sherstobitov, eds., Proc. SPIE 4353, 145-150 (2001), and references therein.
[CrossRef]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052-4058 (1999).
[CrossRef]

Esherick, P.

Evtuhov, V.

Ferrand, B.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052-4058 (1999).
[CrossRef]

Fulbert, L.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052-4058 (1999).
[CrossRef]

Goldwasser, S. M.

Y. Li, A. J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for lidar-radar,” IEEE Trans. Microwave Theory Tech. 49, 2048-2054 (2001).
[CrossRef]

Hanna, D. C.

Harrell II, E. M.

G. E. James, E. M. Harrell II, and R. Roy, “Intermittency and chaos in intracavity doubled lasers. II,” Phys. Rev. A 41, 2778-2790 (1990).
[CrossRef] [PubMed]

Hays, A. D.

L. R. Marshall, A. D. Hays, A. Kaz, and R. L. Burnham, “Intracavity doubled mode-locked and CW diode-pumped lasers,” IEEE J. Quantum Electron. 28, 1158-1163 (1992).
[CrossRef]

Helmfrid, S.

Herczfeld, P. R.

Y. Li, A. J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for lidar-radar,” IEEE Trans. Microwave Theory Tech. 49, 2048-2054 (2001).
[CrossRef]

L. J. Mullen, P. R. Herczfeld, and V. M. Contarino, “Hybid lidar-radar ocean experiment,” IEEE Trans. Microwave Theory Tech. 44, 2703-2710 (1996).

Hoffman, K. R.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

Huang, T. M.

Huignard, J.-P.

Hurwitz, Jr., H.

Inaba, H.

H. Ito, H. Naito, and H. Inaba, “Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992-3998 (1975).
[CrossRef]

Ito, H.

H. Ito, H. Naito, and H. Inaba, “Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992-3998 (1975).
[CrossRef]

Jacobsen, S. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

James, G. E.

G. E. James, E. M. Harrell II, and R. Roy, “Intermittency and chaos in intracavity doubled lasers. II,” Phys. Rev. A 41, 2778-2790 (1990).
[CrossRef] [PubMed]

Jones, R. C.

Karlsson, H.

Kastler, A.

A. Kastler, “Champ lumineux stationnaire a` structure hélicoi¨dale dans une cavité laser,” C.R. Seances Acad. Sci., Ser. B 271, 999-1001 (1970).

Kaz, A.

L. R. Marshall, A. D. Hays, A. Kaz, and R. L. Burnham, “Intracavity doubled mode-locked and CW diode-pumped lasers,” IEEE J. Quantum Electron. 28, 1158-1163 (1992).
[CrossRef]

Kobayashi, T.

Kojima, T.

Kubota, S.

Lagoutte, P.

Lai, N. D.

Laurell, F.

Le Floch, A.

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “The building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702-5712 (2002).
[CrossRef] [PubMed]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367-369 (2001).
[CrossRef]

M. Alouini, F. Bretenaker, M. Brunel, D. Chauvat, O. Emile, A. Le Floch, G. Ropars, and M. Vallet, “One- and two-axis laser cavities for dual-frequency operation and microwave generation,” in Laser Optics 2000: Control of Laser Beam Characteristics and Nonlinear Methods for Wavelength Control, L. N. Soms and V. E. Sherstobitov, eds., Proc. SPIE 4353, 145-150 (2001), and references therein.
[CrossRef]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052-4058 (1999).
[CrossRef]

P. Lagoutte, Ph. Balcou, F. Bretenaker, A. Le Floch, and O. Cregut, “Double-helicoidal eigenstates in lasers,” J. Opt. Soc. Am. B 12, 132-138 (1995).
[CrossRef]

A. Le Floch and R. Le Naour, “Polarization effects in Zeeman lasers with x-y type anisotropies,” Phys. Rev. A 4, 290-295 (1971).
[CrossRef]

Le Naour, R.

A. Le Floch and R. Le Naour, “Polarization effects in Zeeman lasers with x-y type anisotropies,” Phys. Rev. A 4, 290-295 (1971).
[CrossRef]

Lee, C. H.

C. H. Lee, “Picosecond optics and microwave technology,” IEEE Trans. Microwave Theory Tech. 38, 596-607 (1990).
[CrossRef]

Lee, L. J.

Li, Y.

Y. Li, A. J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for lidar-radar,” IEEE Trans. Microwave Theory Tech. 49, 2048-2054 (2001).
[CrossRef]

Marshall, L. R.

L. R. Marshall, A. D. Hays, A. Kaz, and R. L. Burnham, “Intracavity doubled mode-locked and CW diode-pumped lasers,” IEEE J. Quantum Electron. 28, 1158-1163 (1992).
[CrossRef]

Martin, K. I.

Marty, J.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052-4058 (1999).
[CrossRef]

Molva, E.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052-4058 (1999).
[CrossRef]

Morvan, L.

Mullen, L. J.

L. J. Mullen, P. R. Herczfeld, and V. M. Contarino, “Hybid lidar-radar ocean experiment,” IEEE Trans. Microwave Theory Tech. 44, 2703-2710 (1996).

Naito, H.

H. Ito, H. Naito, and H. Inaba, “Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992-3998 (1975).
[CrossRef]

Nakai, S.

Oguri, O.

Oka, M.

Owyoung, A.

Piccinini, E.

A. Agnesi, S. Dell’Acqua, E. Piccinini, G. Reali, and G. Piccinno, “Efficient wavelength conversion with high-power passively Q-switched diode-pumped neodymium lasers,” IEEE J. Quantum Electron. 34, 1480-1484 (1998).
[CrossRef]

Piccinno, G.

A. Agnesi, S. Dell’Acqua, E. Piccinini, G. Reali, and G. Piccinno, “Efficient wavelength conversion with high-power passively Q-switched diode-pumped neodymium lasers,” IEEE J. Quantum Electron. 34, 1480-1484 (1998).
[CrossRef]

Pier, T. J.

D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity doubling of CW diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148-1157 (1992).
[CrossRef]

Reali, G.

A. Agnesi, S. Dell’Acqua, E. Piccinini, G. Reali, and G. Piccinno, “Efficient wavelength conversion with high-power passively Q-switched diode-pumped neodymium lasers,” IEEE J. Quantum Electron. 34, 1480-1484 (1998).
[CrossRef]

Ressl, M. R.

D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity doubling of CW diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148-1157 (1992).
[CrossRef]

Ropars, G.

M. Alouini, F. Bretenaker, M. Brunel, D. Chauvat, O. Emile, A. Le Floch, G. Ropars, and M. Vallet, “One- and two-axis laser cavities for dual-frequency operation and microwave generation,” in Laser Optics 2000: Control of Laser Beam Characteristics and Nonlinear Methods for Wavelength Control, L. N. Soms and V. E. Sherstobitov, eds., Proc. SPIE 4353, 145-150 (2001), and references therein.
[CrossRef]

Roy, R.

G. E. James, E. M. Harrell II, and R. Roy, “Intermittency and chaos in intracavity doubled lasers. II,” Phys. Rev. A 41, 2778-2790 (1990).
[CrossRef] [PubMed]

Sasaki, T.

Siegman, A. E.

Sipes, D. L.

D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity doubling of CW diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148-1157 (1992).
[CrossRef]

Spiekermann, S.

Taira, T.

Tatsuno, K.

Thony, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367-369 (2001).
[CrossRef]

Vallet, M.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367-369 (2001).
[CrossRef]

M. Alouini, F. Bretenaker, M. Brunel, D. Chauvat, O. Emile, A. Le Floch, G. Ropars, and M. Vallet, “One- and two-axis laser cavities for dual-frequency operation and microwave generation,” in Laser Optics 2000: Control of Laser Beam Characteristics and Nonlinear Methods for Wavelength Control, L. N. Soms and V. E. Sherstobitov, eds., Proc. SPIE 4353, 145-150 (2001), and references therein.
[CrossRef]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052-4058 (1999).
[CrossRef]

Vansteenkiste, N.

Vieira, A. J. C.

Y. Li, A. J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for lidar-radar,” IEEE Trans. Microwave Theory Tech. 49, 2048-2054 (2001).
[CrossRef]

Vignolo, P.

Wang, C. L.

Yen, W. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

Yokotani, A.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992).
[CrossRef]

C.R. Seances Acad. Sci., Ser. B (1)

A. Kastler, “Champ lumineux stationnaire a` structure hélicoi¨dale dans une cavité laser,” C.R. Seances Acad. Sci., Ser. B 271, 999-1001 (1970).

IEEE J. Quantum Electron. (3)

L. R. Marshall, A. D. Hays, A. Kaz, and R. L. Burnham, “Intracavity doubled mode-locked and CW diode-pumped lasers,” IEEE J. Quantum Electron. 28, 1158-1163 (1992).
[CrossRef]

A. Agnesi, S. Dell’Acqua, E. Piccinini, G. Reali, and G. Piccinno, “Efficient wavelength conversion with high-power passively Q-switched diode-pumped neodymium lasers,” IEEE J. Quantum Electron. 34, 1480-1484 (1998).
[CrossRef]

D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity doubling of CW diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148-1157 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367-369 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (3)

L. J. Mullen, P. R. Herczfeld, and V. M. Contarino, “Hybid lidar-radar ocean experiment,” IEEE Trans. Microwave Theory Tech. 44, 2703-2710 (1996).

C. H. Lee, “Picosecond optics and microwave technology,” IEEE Trans. Microwave Theory Tech. 38, 596-607 (1990).
[CrossRef]

Y. Li, A. J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for lidar-radar,” IEEE Trans. Microwave Theory Tech. 49, 2048-2054 (2001).
[CrossRef]

J. Appl. Phys. (1)

H. Ito, H. Naito, and H. Inaba, “Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992-3998 (1975).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Opt. Lett. (4)

Phys. Rev. A (3)

A. Le Floch and R. Le Naour, “Polarization effects in Zeeman lasers with x-y type anisotropies,” Phys. Rev. A 4, 290-295 (1971).
[CrossRef]

G. E. James, E. M. Harrell II, and R. Roy, “Intermittency and chaos in intracavity doubled lasers. II,” Phys. Rev. A 41, 2778-2790 (1990).
[CrossRef] [PubMed]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052-4058 (1999).
[CrossRef]

Proc. SPIE (1)

M. Alouini, F. Bretenaker, M. Brunel, D. Chauvat, O. Emile, A. Le Floch, G. Ropars, and M. Vallet, “One- and two-axis laser cavities for dual-frequency operation and microwave generation,” in Laser Optics 2000: Control of Laser Beam Characteristics and Nonlinear Methods for Wavelength Control, L. N. Soms and V. E. Sherstobitov, eds., Proc. SPIE 4353, 145-150 (2001), and references therein.
[CrossRef]

Other (3)

M. Alouini, N. D. Lai, M. Brunel, M. Vallet, O. Emile, A. Le Floch, and F. Bretenaker, “Dual-frequency solid-state lasers for optical and microwave telecommunications,” Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), paper CWG3, p. 390.

H. De Lang, “Polarization properties of optical resonators passive and active,” Ph.D. dissertation (University of Utrecht, Utrecht, The Netherlands, 1966).

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the tunable two-frequency passively Q-switched and intracavity frequency-doubled laser: Nd:YAG, active medium; Cr:YAG, saturable absorber; [100], direction of the [100] axis; QWP1, QWP2, quarter-wave plates; f, fast axes of QWP1 and QWP2; ρ, angle between the fast axis of QWP2 and the x axis; KTP, doubling crystal; o, KTP ordinary axis; α, angle between o and the x axis; M1, plane mirror; M2, concave mirror. Case I: KTP is set between QWP1 and QWP2. Case II: KTP is set between QWP2 and M2.

Fig. 2
Fig. 2

Theoretical polarizations of the two fundamental eigenstates for different values of δ when α=π/9 and ρ=π/5.

Fig. 3
Fig. 3

Theoretical beat note between the two fundamental eigenfrequencies as a function of ρ and α when δ=π and cavity length L=9.7 cm: (a) case I, (b) case II.

Fig. 4
Fig. 4

Sum-frequency coefficient Sk and second-harmonic coefficient Dk plotted versus ρ with α=45°. k=1,2 for case I and case II, respectively.

Fig. 5
Fig. 5

Experimental recording of a pulse when δ=π, α=0°, and ρ=33°. (a) Pulse at 1064 nm exhibiting a beat note at Δν=176 MHz; (b) pulse at 532 nm exhibiting a beat note at 2Δν=352 MHz.

Fig. 6
Fig. 6

Squares: experimental beat frequency at 1064 nm measured (a) versus angle ρ for both cases I and II with α=45°, and (b) versus angle α for case I with ρ=45°. Solid curves: theory. The frequency difference is continuously tunable up to c/4L=720 MHz.

Fig. 7
Fig. 7

Experimental beat-note spectra at 532 nm for different values of ρ when α=45°: (a) case I, (b) case II. Note in case II the conversion from 2Δν to Δν when ρ is varied.

Fig. 8
Fig. 8

Case II. Experimental beat-note spectra at 532 nm for different values of α when ρ=37°.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

ME=λE,
M=Lπ2, π4L(δ, α)Lπ2, ρLπ2, ρLδ, αLπ2, π4
 
M=Lπ2, π4Lπ2, ρL(δ, α)L(δ, α)Lπ2, ρLπ2, π4
L(ψ, β)=R(β)L(ψ, 0)R(-β),
L(ψ, 0)=exp(-iψ/2)00exp(iψ/2),
R(β)=cos β-sin βsin βcos β,
Δν=ν2-ν1=c4L1-4ρπ,
Δν=ν2-ν1=c4L1-4π (2α-ρ).
P(t)=deffEoEe,
Eo=E1oexp[i(2πν1t+φ1)]+E2oexp[i(2πν2t+φ2)],
Ee=E1eexp[i(2πν1t+φ1)]+E2eexp[i(2πν2t+φ2)].
EioEieIioiei=R(-α)Lπ2, π4Ei,
EioEieIioiei=R(-α)Lπ2, ρLπ2, π4Ei
IP(t)P(t)*=deff2[I12|o1e1|2+I22|o2e2|2+I1I2|o1e2+o2e1|2].
Dk=|e1o1|2+|e2o2|2
Sk=|o1e2+o2e1|2,
M=i=1nL(ψi, βi) i=n1L(ψi, βi).
M=i=1nL(ψi, βi) i=1nL(ψi, βi)T.
M=[L(ψ, β)R(χ)][L(ψ, β)R(χ)]T=L(ψ, β)R(χ)R(-χ)L(ψ, β)=L(2ψ, β).

Metrics