Abstract

We have produced an elementary, continuously operating integrated circuit for atoms. The circuit, which is realized by purely optical means, combines an atom source, a switchable channel guide, and a local atom detector within the geometry of a planar atomic waveguide at submicrometer distance from a metallic surface.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer-Verlag, Berlin, 1995).
  2. D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975-1978 (1999).
    [CrossRef]
  3. T. Calcaro, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304-11 (2000).
  4. M. Olshanii, “Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons,” Phys. Rev. Lett. 81, 938-941 (1998).
    [CrossRef]
  5. H. Monien, M. Linn, and N. Elstner, “Trapped one-dimensional Bose gas as a Luttinger liquid,” Phys. Rev. A 58, R3395-R3398 (1998).
    [CrossRef]
  6. C. Henkel and M. Wilkens, “Heating of trapped atoms near thermal surfaces,” Europhys. Lett. 47, 414-420 (1999).
    [CrossRef]
  7. D. Mu¨ller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194-5197 (1999).
    [CrossRef]
  8. N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drindic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124-1127 (2000).
    [CrossRef] [PubMed]
  9. R. Folman, P. Kru¨ger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749-4752 (2000).
    [CrossRef] [PubMed]
  10. D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5438-5441 (2000).
    [CrossRef]
  11. D. Mu¨ller, E. A. Cornell, M. Prevedelli, P. D. D. Schwindt, Y.-J. Wang, and D. Z. Anderson, “Magnetic switch for integrated atom optics,” Phys. Rev. A 63, 041602-3 (2001).
  12. J. Reichel, W. Ha¨nsel, and T. Ha¨nsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999).
    [CrossRef]
  13. W. Ha¨nsel, J. Reichel, P. Hommelhoff, and T. W. Ha¨nsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608-611 (2001).
    [CrossRef] [PubMed]
  14. W. Ha¨nsel, P. Hommelhoff, T. W. Ha¨nsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498-501 (2001).
    [CrossRef]
  15. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-4 (2001).
    [CrossRef]
  16. A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 040401-4 (2002).
    [CrossRef]
  17. Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B 24, 3173-3178 (1991).
    [CrossRef]
  18. P. Desbiolles, M. Arndt, P. Szriftgiser, and J. Dalibard, “Elementary Sisyphus process close to a dielectric surface,” Phys. Rev. A 54, 4292-4298 (1996).
    [CrossRef] [PubMed]
  19. W. Power, T. Pfau, and M. Wilkens, “Loading atoms into a surface trap: simulations of an experimental scheme,” Opt. Commun. 143, 125-130 (1997).
    [CrossRef]
  20. E. A. Hinds, M. G. Boshier, and I. G. Hughes, “Magnetic waveguide for trapping cold atom gases in two dimensions,” Phys. Rev. Lett. 80, 645-649 (1998).
    [CrossRef]
  21. R. J. C. Spreeuw, D. Voigt, B. T. Wolschrijn, and H. B. van Linden van den Heuvell, “Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror,” Phys. Rev. A 61, 053604-7 (2000).
    [CrossRef]
  22. H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, “Quasi-2D gas of laser cooled atoms in a planar matter waveguide,” Phys. Rev. Lett. 81, 5298–5301 (1998).
    [CrossRef]
  23. D. Schneble, H. Gauck, M. Hartl, T. Pfau, and J. Mlynek, “Optical atom traps at surfaces, in Bose–Einstein condensation in atomic gases,” in Proceedings of the International School of Physics “Enrico Fermi” Course CXL, M. Inguscio, S. Stringari, and C. E. Wieman, eds. (IOS Press, Amsterdam, 1999), pp. 469–490, and references therein.
  24. H. Raether, Surface Plasmons on Smooth and Rough Sur-faces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).
  25. D. Schneble, “Trapping and manipulation of laser-cooled metastable argon atoms at a surface,” Ph.D. dissertation (Universita¨t Konstanz, Konstanz, Germany, 2001).
  26. When it is applied globally, one can also use this principle to determine the fraction of atoms in the surface waveguide; cf. Refs. 22 and 23.
  27. Inelastic collisions between atoms in the WG (Ref. 23) for densities of >109 cm−3 did not contribute significantly.

2002 (1)

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 040401-4 (2002).
[CrossRef]

2001 (4)

W. Ha¨nsel, J. Reichel, P. Hommelhoff, and T. W. Ha¨nsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608-611 (2001).
[CrossRef] [PubMed]

W. Ha¨nsel, P. Hommelhoff, T. W. Ha¨nsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498-501 (2001).
[CrossRef]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-4 (2001).
[CrossRef]

D. Mu¨ller, E. A. Cornell, M. Prevedelli, P. D. D. Schwindt, Y.-J. Wang, and D. Z. Anderson, “Magnetic switch for integrated atom optics,” Phys. Rev. A 63, 041602-3 (2001).

2000 (5)

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drindic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124-1127 (2000).
[CrossRef] [PubMed]

R. Folman, P. Kru¨ger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5438-5441 (2000).
[CrossRef]

T. Calcaro, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304-11 (2000).

R. J. C. Spreeuw, D. Voigt, B. T. Wolschrijn, and H. B. van Linden van den Heuvell, “Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror,” Phys. Rev. A 61, 053604-7 (2000).
[CrossRef]

1999 (4)

C. Henkel and M. Wilkens, “Heating of trapped atoms near thermal surfaces,” Europhys. Lett. 47, 414-420 (1999).
[CrossRef]

D. Mu¨ller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194-5197 (1999).
[CrossRef]

J. Reichel, W. Ha¨nsel, and T. Ha¨nsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975-1978 (1999).
[CrossRef]

1998 (4)

E. A. Hinds, M. G. Boshier, and I. G. Hughes, “Magnetic waveguide for trapping cold atom gases in two dimensions,” Phys. Rev. Lett. 80, 645-649 (1998).
[CrossRef]

M. Olshanii, “Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons,” Phys. Rev. Lett. 81, 938-941 (1998).
[CrossRef]

H. Monien, M. Linn, and N. Elstner, “Trapped one-dimensional Bose gas as a Luttinger liquid,” Phys. Rev. A 58, R3395-R3398 (1998).
[CrossRef]

H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, “Quasi-2D gas of laser cooled atoms in a planar matter waveguide,” Phys. Rev. Lett. 81, 5298–5301 (1998).
[CrossRef]

1997 (1)

W. Power, T. Pfau, and M. Wilkens, “Loading atoms into a surface trap: simulations of an experimental scheme,” Opt. Commun. 143, 125-130 (1997).
[CrossRef]

1996 (1)

P. Desbiolles, M. Arndt, P. Szriftgiser, and J. Dalibard, “Elementary Sisyphus process close to a dielectric surface,” Phys. Rev. A 54, 4292-4298 (1996).
[CrossRef] [PubMed]

1991 (1)

Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B 24, 3173-3178 (1991).
[CrossRef]

Anderson, D. Z.

D. Mu¨ller, E. A. Cornell, M. Prevedelli, P. D. D. Schwindt, Y.-J. Wang, and D. Z. Anderson, “Magnetic switch for integrated atom optics,” Phys. Rev. A 63, 041602-3 (2001).

D. Mu¨ller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194-5197 (1999).
[CrossRef]

Arndt, M.

P. Desbiolles, M. Arndt, P. Szriftgiser, and J. Dalibard, “Elementary Sisyphus process close to a dielectric surface,” Phys. Rev. A 54, 4292-4298 (1996).
[CrossRef] [PubMed]

Balykin, V. I.

Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B 24, 3173-3178 (1991).
[CrossRef]

Boshier, M. G.

E. A. Hinds, M. G. Boshier, and I. G. Hughes, “Magnetic waveguide for trapping cold atom gases in two dimensions,” Phys. Rev. Lett. 80, 645-649 (1998).
[CrossRef]

Briegel, H.-J.

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975-1978 (1999).
[CrossRef]

Calcaro, T.

T. Calcaro, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304-11 (2000).

Cassettari, D.

R. Folman, P. Kru¨ger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5438-5441 (2000).
[CrossRef]

Chikkatur, A. P.

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 040401-4 (2002).
[CrossRef]

Cirac, J. I.

T. Calcaro, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304-11 (2000).

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975-1978 (1999).
[CrossRef]

Cornell, E. A.

D. Mu¨ller, E. A. Cornell, M. Prevedelli, P. D. D. Schwindt, Y.-J. Wang, and D. Z. Anderson, “Magnetic switch for integrated atom optics,” Phys. Rev. A 63, 041602-3 (2001).

D. Mu¨ller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194-5197 (1999).
[CrossRef]

Dalibard, J.

P. Desbiolles, M. Arndt, P. Szriftgiser, and J. Dalibard, “Elementary Sisyphus process close to a dielectric surface,” Phys. Rev. A 54, 4292-4298 (1996).
[CrossRef] [PubMed]

Dekker, N. H.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drindic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124-1127 (2000).
[CrossRef] [PubMed]

Desbiolles, P.

P. Desbiolles, M. Arndt, P. Szriftgiser, and J. Dalibard, “Elementary Sisyphus process close to a dielectric surface,” Phys. Rev. A 54, 4292-4298 (1996).
[CrossRef] [PubMed]

Drindic, M.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drindic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124-1127 (2000).
[CrossRef] [PubMed]

Elstner, N.

H. Monien, M. Linn, and N. Elstner, “Trapped one-dimensional Bose gas as a Luttinger liquid,” Phys. Rev. A 58, R3395-R3398 (1998).
[CrossRef]

Folman, R.

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5438-5441 (2000).
[CrossRef]

R. Folman, P. Kru¨ger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

Fortagh, J.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-4 (2001).
[CrossRef]

Gardiner, C. W.

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975-1978 (1999).
[CrossRef]

Gauck, H.

H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, “Quasi-2D gas of laser cooled atoms in a planar matter waveguide,” Phys. Rev. Lett. 81, 5298–5301 (1998).
[CrossRef]

Grossmann, A.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-4 (2001).
[CrossRef]

Grow, R. J.

D. Mu¨ller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194-5197 (1999).
[CrossRef]

Gustavson, T. L.

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 040401-4 (2002).
[CrossRef]

Ha¨nsch, T.

J. Reichel, W. Ha¨nsel, and T. Ha¨nsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Ha¨nsch, T. W.

W. Ha¨nsel, J. Reichel, P. Hommelhoff, and T. W. Ha¨nsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608-611 (2001).
[CrossRef] [PubMed]

W. Ha¨nsel, P. Hommelhoff, T. W. Ha¨nsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498-501 (2001).
[CrossRef]

Ha¨nsel, W.

W. Ha¨nsel, P. Hommelhoff, T. W. Ha¨nsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498-501 (2001).
[CrossRef]

W. Ha¨nsel, J. Reichel, P. Hommelhoff, and T. W. Ha¨nsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608-611 (2001).
[CrossRef] [PubMed]

J. Reichel, W. Ha¨nsel, and T. Ha¨nsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Hartl, M.

H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, “Quasi-2D gas of laser cooled atoms in a planar matter waveguide,” Phys. Rev. Lett. 81, 5298–5301 (1998).
[CrossRef]

Henkel, C.

C. Henkel and M. Wilkens, “Heating of trapped atoms near thermal surfaces,” Europhys. Lett. 47, 414-420 (1999).
[CrossRef]

Hessmo, B.

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5438-5441 (2000).
[CrossRef]

R. Folman, P. Kru¨ger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

Hinds, E. A.

T. Calcaro, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304-11 (2000).

E. A. Hinds, M. G. Boshier, and I. G. Hughes, “Magnetic waveguide for trapping cold atom gases in two dimensions,” Phys. Rev. Lett. 80, 645-649 (1998).
[CrossRef]

Hommelhoff, P.

W. Ha¨nsel, J. Reichel, P. Hommelhoff, and T. W. Ha¨nsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608-611 (2001).
[CrossRef] [PubMed]

W. Ha¨nsel, P. Hommelhoff, T. W. Ha¨nsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498-501 (2001).
[CrossRef]

Hughes, I. G.

E. A. Hinds, M. G. Boshier, and I. G. Hughes, “Magnetic waveguide for trapping cold atom gases in two dimensions,” Phys. Rev. Lett. 80, 645-649 (1998).
[CrossRef]

Jaksch, D.

T. Calcaro, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304-11 (2000).

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975-1978 (1999).
[CrossRef]

Ketterle, W.

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 040401-4 (2002).
[CrossRef]

Kielpinski, D.

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 040401-4 (2002).
[CrossRef]

Kru¨ger, P.

R. Folman, P. Kru¨ger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

Leanhardt, A. E.

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 040401-4 (2002).
[CrossRef]

Lee, C. S.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drindic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124-1127 (2000).
[CrossRef] [PubMed]

Linn, M.

H. Monien, M. Linn, and N. Elstner, “Trapped one-dimensional Bose gas as a Luttinger liquid,” Phys. Rev. A 58, R3395-R3398 (1998).
[CrossRef]

Lorent, V.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drindic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124-1127 (2000).
[CrossRef] [PubMed]

Maier, T.

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5438-5441 (2000).
[CrossRef]

R. Folman, P. Kru¨ger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

Mlynek, J.

H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, “Quasi-2D gas of laser cooled atoms in a planar matter waveguide,” Phys. Rev. Lett. 81, 5298–5301 (1998).
[CrossRef]

Monien, H.

H. Monien, M. Linn, and N. Elstner, “Trapped one-dimensional Bose gas as a Luttinger liquid,” Phys. Rev. A 58, R3395-R3398 (1998).
[CrossRef]

Mu¨ller, D.

D. Mu¨ller, E. A. Cornell, M. Prevedelli, P. D. D. Schwindt, Y.-J. Wang, and D. Z. Anderson, “Magnetic switch for integrated atom optics,” Phys. Rev. A 63, 041602-3 (2001).

D. Mu¨ller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194-5197 (1999).
[CrossRef]

Olshanii, M.

M. Olshanii, “Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons,” Phys. Rev. Lett. 81, 938-941 (1998).
[CrossRef]

Ott, H.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-4 (2001).
[CrossRef]

Ovchinnikov, Y. B.

Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B 24, 3173-3178 (1991).
[CrossRef]

Pfau, T.

H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, “Quasi-2D gas of laser cooled atoms in a planar matter waveguide,” Phys. Rev. Lett. 81, 5298–5301 (1998).
[CrossRef]

W. Power, T. Pfau, and M. Wilkens, “Loading atoms into a surface trap: simulations of an experimental scheme,” Opt. Commun. 143, 125-130 (1997).
[CrossRef]

Power, W.

W. Power, T. Pfau, and M. Wilkens, “Loading atoms into a surface trap: simulations of an experimental scheme,” Opt. Commun. 143, 125-130 (1997).
[CrossRef]

Prentiss, M.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drindic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124-1127 (2000).
[CrossRef] [PubMed]

Prevedelli, M.

D. Mu¨ller, E. A. Cornell, M. Prevedelli, P. D. D. Schwindt, Y.-J. Wang, and D. Z. Anderson, “Magnetic switch for integrated atom optics,” Phys. Rev. A 63, 041602-3 (2001).

Pritchard, D. E.

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 040401-4 (2002).
[CrossRef]

Reichel, J.

W. Ha¨nsel, J. Reichel, P. Hommelhoff, and T. W. Ha¨nsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608-611 (2001).
[CrossRef] [PubMed]

W. Ha¨nsel, P. Hommelhoff, T. W. Ha¨nsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498-501 (2001).
[CrossRef]

J. Reichel, W. Ha¨nsel, and T. Ha¨nsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Schlotterbeck, G.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-4 (2001).
[CrossRef]

Schmiedmayer, J.

T. Calcaro, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304-11 (2000).

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5438-5441 (2000).
[CrossRef]

R. Folman, P. Kru¨ger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

Schneble, D.

H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, “Quasi-2D gas of laser cooled atoms in a planar matter waveguide,” Phys. Rev. Lett. 81, 5298–5301 (1998).
[CrossRef]

Schnitzler, H.

H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, “Quasi-2D gas of laser cooled atoms in a planar matter waveguide,” Phys. Rev. Lett. 81, 5298–5301 (1998).
[CrossRef]

Schwindt, P. D. D.

D. Mu¨ller, E. A. Cornell, M. Prevedelli, P. D. D. Schwindt, Y.-J. Wang, and D. Z. Anderson, “Magnetic switch for integrated atom optics,” Phys. Rev. A 63, 041602-3 (2001).

D. Mu¨ller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194-5197 (1999).
[CrossRef]

Shin, Y.

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 040401-4 (2002).
[CrossRef]

Shul’ga, S. V.

Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B 24, 3173-3178 (1991).
[CrossRef]

Smith, S. P.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drindic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124-1127 (2000).
[CrossRef] [PubMed]

Spreeuw, R. J. C.

R. J. C. Spreeuw, D. Voigt, B. T. Wolschrijn, and H. B. van Linden van den Heuvell, “Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror,” Phys. Rev. A 61, 053604-7 (2000).
[CrossRef]

Szriftgiser, P.

P. Desbiolles, M. Arndt, P. Szriftgiser, and J. Dalibard, “Elementary Sisyphus process close to a dielectric surface,” Phys. Rev. A 54, 4292-4298 (1996).
[CrossRef] [PubMed]

Thywissen, J. H.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drindic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124-1127 (2000).
[CrossRef] [PubMed]

van Linden van den Heuvell, H. B.

R. J. C. Spreeuw, D. Voigt, B. T. Wolschrijn, and H. B. van Linden van den Heuvell, “Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror,” Phys. Rev. A 61, 053604-7 (2000).
[CrossRef]

Voigt, D.

R. J. C. Spreeuw, D. Voigt, B. T. Wolschrijn, and H. B. van Linden van den Heuvell, “Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror,” Phys. Rev. A 61, 053604-7 (2000).
[CrossRef]

Wang, Y.-J.

D. Mu¨ller, E. A. Cornell, M. Prevedelli, P. D. D. Schwindt, Y.-J. Wang, and D. Z. Anderson, “Magnetic switch for integrated atom optics,” Phys. Rev. A 63, 041602-3 (2001).

Westervelt, R. M.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drindic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124-1127 (2000).
[CrossRef] [PubMed]

Wilkens, M.

C. Henkel and M. Wilkens, “Heating of trapped atoms near thermal surfaces,” Europhys. Lett. 47, 414-420 (1999).
[CrossRef]

W. Power, T. Pfau, and M. Wilkens, “Loading atoms into a surface trap: simulations of an experimental scheme,” Opt. Commun. 143, 125-130 (1997).
[CrossRef]

Wolschrijn, B. T.

R. J. C. Spreeuw, D. Voigt, B. T. Wolschrijn, and H. B. van Linden van den Heuvell, “Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror,” Phys. Rev. A 61, 053604-7 (2000).
[CrossRef]

Zimmermann, C.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-4 (2001).
[CrossRef]

Zoller, P.

T. Calcaro, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304-11 (2000).

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975-1978 (1999).
[CrossRef]

Europhys. Lett. (1)

C. Henkel and M. Wilkens, “Heating of trapped atoms near thermal surfaces,” Europhys. Lett. 47, 414-420 (1999).
[CrossRef]

J. Phys. B (1)

Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B 24, 3173-3178 (1991).
[CrossRef]

Nature (1)

W. Ha¨nsel, P. Hommelhoff, T. W. Ha¨nsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498-501 (2001).
[CrossRef]

Opt. Commun. (1)

W. Power, T. Pfau, and M. Wilkens, “Loading atoms into a surface trap: simulations of an experimental scheme,” Opt. Commun. 143, 125-130 (1997).
[CrossRef]

Phys. Rev. A (5)

P. Desbiolles, M. Arndt, P. Szriftgiser, and J. Dalibard, “Elementary Sisyphus process close to a dielectric surface,” Phys. Rev. A 54, 4292-4298 (1996).
[CrossRef] [PubMed]

D. Mu¨ller, E. A. Cornell, M. Prevedelli, P. D. D. Schwindt, Y.-J. Wang, and D. Z. Anderson, “Magnetic switch for integrated atom optics,” Phys. Rev. A 63, 041602-3 (2001).

T. Calcaro, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304-11 (2000).

R. J. C. Spreeuw, D. Voigt, B. T. Wolschrijn, and H. B. van Linden van den Heuvell, “Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror,” Phys. Rev. A 61, 053604-7 (2000).
[CrossRef]

H. Monien, M. Linn, and N. Elstner, “Trapped one-dimensional Bose gas as a Luttinger liquid,” Phys. Rev. A 58, R3395-R3398 (1998).
[CrossRef]

Phys. Rev. Lett. (12)

H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, “Quasi-2D gas of laser cooled atoms in a planar matter waveguide,” Phys. Rev. Lett. 81, 5298–5301 (1998).
[CrossRef]

M. Olshanii, “Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons,” Phys. Rev. Lett. 81, 938-941 (1998).
[CrossRef]

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975-1978 (1999).
[CrossRef]

D. Mu¨ller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194-5197 (1999).
[CrossRef]

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drindic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124-1127 (2000).
[CrossRef] [PubMed]

R. Folman, P. Kru¨ger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5438-5441 (2000).
[CrossRef]

J. Reichel, W. Ha¨nsel, and T. Ha¨nsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

W. Ha¨nsel, J. Reichel, P. Hommelhoff, and T. W. Ha¨nsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608-611 (2001).
[CrossRef] [PubMed]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-4 (2001).
[CrossRef]

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 040401-4 (2002).
[CrossRef]

E. A. Hinds, M. G. Boshier, and I. G. Hughes, “Magnetic waveguide for trapping cold atom gases in two dimensions,” Phys. Rev. Lett. 80, 645-649 (1998).
[CrossRef]

Other (6)

R. G. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer-Verlag, Berlin, 1995).

D. Schneble, H. Gauck, M. Hartl, T. Pfau, and J. Mlynek, “Optical atom traps at surfaces, in Bose–Einstein condensation in atomic gases,” in Proceedings of the International School of Physics “Enrico Fermi” Course CXL, M. Inguscio, S. Stringari, and C. E. Wieman, eds. (IOS Press, Amsterdam, 1999), pp. 469–490, and references therein.

H. Raether, Surface Plasmons on Smooth and Rough Sur-faces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).

D. Schneble, “Trapping and manipulation of laser-cooled metastable argon atoms at a surface,” Ph.D. dissertation (Universita¨t Konstanz, Konstanz, Germany, 2001).

When it is applied globally, one can also use this principle to determine the fraction of atoms in the surface waveguide; cf. Refs. 22 and 23.

Inelastic collisions between atoms in the WG (Ref. 23) for densities of >109 cm−3 did not contribute significantly.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental scheme and (b) levels and transitions in argon used in the experiment (Paschen notation).

Fig. 2
Fig. 2

Atom source in the channel guide. (a) Transverse atom distribution in the channel after the WG beam was turned off. (b) Atom distribution with an additional optical potential barrier behind the source.

Fig. 3
Fig. 3

Propagation of a pulse of atoms after the channel was opened. We took the images by turning off the WG beam for increasing intervals of time. All images were normalized to the brightest pixel.

Fig. 4
Fig. 4

Integrated atom detector (IAD). Atoms are observed at a distance of 1.5 mm from the source.

Metrics