Abstract

The spatiotemporal dynamics of high-intensity femtosecond laser pulses propagating in argon have been investigated experimentally and the results compared with numerical calculations. After the beam expands and refocuses, the pulse splits in two. While the subcomponent expands immediately, the main component propagates as a filament. The pulse duration of the main component is less than half the initial pulse duration and the spectrum is broadened by a factor of two.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995).
    [CrossRef] [PubMed]
  2. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
    [CrossRef] [PubMed]
  3. H. R. Lange, G. Grillon, J.-F. Ripoche, M. A. Franco, B. Lamouroux, B. S. Prade, A. Mysyrowicz, E. T. J. Nibbering, and A. Chiron, “Anomalous long-range propagation of femtosecond laser pulses through air: moving focus or pulse self-guiding?” Opt. Lett. 23, 120–122 (1998).
    [CrossRef]
  4. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air,” IEEE J. Quantum Electron. 35, 1771–1776 (1999).
    [CrossRef]
  5. A. Talebpour, S. Petit, and S. L. Chin, “Refocusing during the propagation of a focused femtosecond Ti:sapphire laser pulse in air,” Opt. Commun. 171, 285–290 (1999).
    [CrossRef]
  6. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996).
    [CrossRef] [PubMed]
  7. O. G. Kosareva, V. P. Kandidov, A. Brodeur, C. Y. Chien, and S. L. Chin, “Conical emission from laser-plasma interactions in the filamentation of powerful ultrashort laser pulses in air,” Opt. Lett. 22, 1332–1334 (1997).
    [CrossRef]
  8. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
    [CrossRef]
  9. S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided fem-tosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
    [CrossRef] [PubMed]
  10. J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, and L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
    [CrossRef]
  11. N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
    [CrossRef]
  12. H. K. Eaton, T. S. Clement, A. A. Zozulya, and S. A. Diddams, “Investigating nonlinear femtosecond pulse propagation with frequency-resolved optical gating,” IEEE J. Quantum Electron. 35, 451–458 (1999).
    [CrossRef]
  13. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
    [CrossRef]
  14. N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Femtosecond pulse propagation in air: Variational analysis,” Phys. Rev. E 61, 4540–4549 (2000).
    [CrossRef]
  15. D. Homoelle and A. L. Gaeta, “Nonlinear propagation dynamics of an ultrashort pulse in a hollow waveguide,” Opt. Lett. 25, 761–763 (2000).
    [CrossRef]
  16. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650–660 (1997).
    [CrossRef]
  17. I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, “Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation,” Phys. Rev. Lett. 84, 3847–3850 (2000).
    [CrossRef] [PubMed]
  18. M. Nurhuda, A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Propagation dynamics of femtosecond light pulses in argon,” Phys. Rev. A 66, 023811 (2002).
    [CrossRef]
  19. M. Nurhuda, A. Suda, and K. Midorikawa, “Ionization-induced high-order nonlinear susceptibility,” Phys. Rev. A 66, 041802 (2002).
    [CrossRef]
  20. M. D. Feit and J. A. Fleck, Jr., “Effect of refraction on spot-size dependence of laser-induced breakdown,” Appl. Phys. Lett. 24, 169–172 (1974).
    [CrossRef]
  21. G. Tempea and T. Brabec, “Theory of self-focusing in a hollow waveguide,” Opt. Lett. 23, 762–764 (1998).
    [CrossRef]

2002 (2)

M. Nurhuda, A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Propagation dynamics of femtosecond light pulses in argon,” Phys. Rev. A 66, 023811 (2002).
[CrossRef]

M. Nurhuda, A. Suda, and K. Midorikawa, “Ionization-induced high-order nonlinear susceptibility,” Phys. Rev. A 66, 041802 (2002).
[CrossRef]

2001 (2)

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided fem-tosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
[CrossRef] [PubMed]

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

2000 (4)

N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Femtosecond pulse propagation in air: Variational analysis,” Phys. Rev. E 61, 4540–4549 (2000).
[CrossRef]

D. Homoelle and A. L. Gaeta, “Nonlinear propagation dynamics of an ultrashort pulse in a hollow waveguide,” Opt. Lett. 25, 761–763 (2000).
[CrossRef]

I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, “Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation,” Phys. Rev. Lett. 84, 3847–3850 (2000).
[CrossRef] [PubMed]

J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, and L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
[CrossRef]

1999 (4)

H. K. Eaton, T. S. Clement, A. A. Zozulya, and S. A. Diddams, “Investigating nonlinear femtosecond pulse propagation with frequency-resolved optical gating,” IEEE J. Quantum Electron. 35, 451–458 (1999).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air,” IEEE J. Quantum Electron. 35, 1771–1776 (1999).
[CrossRef]

A. Talebpour, S. Petit, and S. L. Chin, “Refocusing during the propagation of a focused femtosecond Ti:sapphire laser pulse in air,” Opt. Commun. 171, 285–290 (1999).
[CrossRef]

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[CrossRef]

1998 (3)

1997 (3)

1996 (1)

1995 (1)

1974 (1)

M. D. Feit and J. A. Fleck, Jr., “Effect of refraction on spot-size dependence of laser-induced breakdown,” Appl. Phys. Lett. 24, 169–172 (1974).
[CrossRef]

Aközbek, N.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Femtosecond pulse propagation in air: Variational analysis,” Phys. Rev. E 61, 4540–4549 (2000).
[CrossRef]

André, Y.-B.

Bergé, L.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided fem-tosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
[CrossRef] [PubMed]

Bowden, C. M.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Femtosecond pulse propagation in air: Variational analysis,” Phys. Rev. E 61, 4540–4549 (2000).
[CrossRef]

Brabec, T.

Braun, A.

Brodeur, A.

Chien, C. Y.

Chin, S. L.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Femtosecond pulse propagation in air: Variational analysis,” Phys. Rev. E 61, 4540–4549 (2000).
[CrossRef]

A. Talebpour, S. Petit, and S. L. Chin, “Refocusing during the propagation of a focused femtosecond Ti:sapphire laser pulse in air,” Opt. Commun. 171, 285–290 (1999).
[CrossRef]

O. G. Kosareva, V. P. Kandidov, A. Brodeur, C. Y. Chien, and S. L. Chin, “Conical emission from laser-plasma interactions in the filamentation of powerful ultrashort laser pulses in air,” Opt. Lett. 22, 1332–1334 (1997).
[CrossRef]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
[CrossRef] [PubMed]

Chiron, A.

Clement, T. S.

H. K. Eaton, T. S. Clement, A. A. Zozulya, and S. A. Diddams, “Investigating nonlinear femtosecond pulse propagation with frequency-resolved optical gating,” IEEE J. Quantum Electron. 35, 451–458 (1999).
[CrossRef]

Couairon, A.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided fem-tosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
[CrossRef] [PubMed]

Curley, P. F.

Diddams, S. A.

H. K. Eaton, T. S. Clement, A. A. Zozulya, and S. A. Diddams, “Investigating nonlinear femtosecond pulse propagation with frequency-resolved optical gating,” IEEE J. Quantum Electron. 35, 451–458 (1999).
[CrossRef]

Du, D.

Eaton, H. K.

H. K. Eaton, T. S. Clement, A. A. Zozulya, and S. A. Diddams, “Investigating nonlinear femtosecond pulse propagation with frequency-resolved optical gating,” IEEE J. Quantum Electron. 35, 451–458 (1999).
[CrossRef]

Feit, M. D.

M. D. Feit and J. A. Fleck, Jr., “Effect of refraction on spot-size dependence of laser-induced breakdown,” Appl. Phys. Lett. 24, 169–172 (1974).
[CrossRef]

Fleck Jr., J. A.

M. D. Feit and J. A. Fleck, Jr., “Effect of refraction on spot-size dependence of laser-induced breakdown,” Appl. Phys. Lett. 24, 169–172 (1974).
[CrossRef]

Franco, M.

Franco, M. A.

Gaeta, A. L.

Grillon, G.

Hatayama, M.

M. Nurhuda, A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Propagation dynamics of femtosecond light pulses in argon,” Phys. Rev. A 66, 023811 (2002).
[CrossRef]

Homoelle, D.

Ilkov, F. A.

Kandidov, V. P.

Kasparian, J.

Kolesik, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[CrossRef]

Koprinkov, I. G.

I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, “Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation,” Phys. Rev. Lett. 84, 3847–3850 (2000).
[CrossRef] [PubMed]

Korn, G.

Kosareva, O. G.

Lamouroux, B.

Lange, H. R.

Liu, X.

Midorikawa, K.

M. Nurhuda, A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Propagation dynamics of femtosecond light pulses in argon,” Phys. Rev. A 66, 023811 (2002).
[CrossRef]

M. Nurhuda, A. Suda, and K. Midorikawa, “Ionization-induced high-order nonlinear susceptibility,” Phys. Rev. A 66, 041802 (2002).
[CrossRef]

I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, “Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation,” Phys. Rev. Lett. 84, 3847–3850 (2000).
[CrossRef] [PubMed]

Mlejnek, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air,” IEEE J. Quantum Electron. 35, 1771–1776 (1999).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[CrossRef]

Moloney, J. V.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air,” IEEE J. Quantum Electron. 35, 1771–1776 (1999).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[CrossRef]

Mondelain, D.

Mourou, G.

Mysyrowicz, A.

Nagasaka, K.

M. Nurhuda, A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Propagation dynamics of femtosecond light pulses in argon,” Phys. Rev. A 66, 023811 (2002).
[CrossRef]

Nibbering, E. T. J.

Niedermeier, S.

Nurhuda, M.

M. Nurhuda, A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Propagation dynamics of femtosecond light pulses in argon,” Phys. Rev. A 66, 023811 (2002).
[CrossRef]

M. Nurhuda, A. Suda, and K. Midorikawa, “Ionization-induced high-order nonlinear susceptibility,” Phys. Rev. A 66, 041802 (2002).
[CrossRef]

Petit, S.

A. Talebpour, S. Petit, and S. L. Chin, “Refocusing during the propagation of a focused femtosecond Ti:sapphire laser pulse in air,” Opt. Commun. 171, 285–290 (1999).
[CrossRef]

Prade, B.

Prade, B. S.

Ripoche, J.-F.

Rodriguez, M.

Salin, F.

Sauerbrey, R.

Scalora, M.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

Squier, J.

Suda, A.

M. Nurhuda, A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Propagation dynamics of femtosecond light pulses in argon,” Phys. Rev. A 66, 023811 (2002).
[CrossRef]

M. Nurhuda, A. Suda, and K. Midorikawa, “Ionization-induced high-order nonlinear susceptibility,” Phys. Rev. A 66, 041802 (2002).
[CrossRef]

I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, “Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation,” Phys. Rev. Lett. 84, 3847–3850 (2000).
[CrossRef] [PubMed]

Talebpour, A.

N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Femtosecond pulse propagation in air: Variational analysis,” Phys. Rev. E 61, 4540–4549 (2000).
[CrossRef]

A. Talebpour, S. Petit, and S. L. Chin, “Refocusing during the propagation of a focused femtosecond Ti:sapphire laser pulse in air,” Opt. Commun. 171, 285–290 (1999).
[CrossRef]

Tempea, G.

Tzortzakis, S.

Wang, P.

I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, “Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation,” Phys. Rev. Lett. 84, 3847–3850 (2000).
[CrossRef] [PubMed]

Wille, H.

Wolf, J.-P.

Wöste, L.

Wright, E. M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air,” IEEE J. Quantum Electron. 35, 1771–1776 (1999).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[CrossRef]

Yu, J.

Zozulya, A. A.

H. K. Eaton, T. S. Clement, A. A. Zozulya, and S. A. Diddams, “Investigating nonlinear femtosecond pulse propagation with frequency-resolved optical gating,” IEEE J. Quantum Electron. 35, 451–458 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

M. D. Feit and J. A. Fleck, Jr., “Effect of refraction on spot-size dependence of laser-induced breakdown,” Appl. Phys. Lett. 24, 169–172 (1974).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air,” IEEE J. Quantum Electron. 35, 1771–1776 (1999).
[CrossRef]

H. K. Eaton, T. S. Clement, A. A. Zozulya, and S. A. Diddams, “Investigating nonlinear femtosecond pulse propagation with frequency-resolved optical gating,” IEEE J. Quantum Electron. 35, 451–458 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

A. Talebpour, S. Petit, and S. L. Chin, “Refocusing during the propagation of a focused femtosecond Ti:sapphire laser pulse in air,” Opt. Commun. 171, 285–290 (1999).
[CrossRef]

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

Opt. Lett. (9)

D. Homoelle and A. L. Gaeta, “Nonlinear propagation dynamics of an ultrashort pulse in a hollow waveguide,” Opt. Lett. 25, 761–763 (2000).
[CrossRef]

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995).
[CrossRef] [PubMed]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
[CrossRef] [PubMed]

O. G. Kosareva, V. P. Kandidov, A. Brodeur, C. Y. Chien, and S. L. Chin, “Conical emission from laser-plasma interactions in the filamentation of powerful ultrashort laser pulses in air,” Opt. Lett. 22, 1332–1334 (1997).
[CrossRef]

H. R. Lange, G. Grillon, J.-F. Ripoche, M. A. Franco, B. Lamouroux, B. S. Prade, A. Mysyrowicz, E. T. J. Nibbering, and A. Chiron, “Anomalous long-range propagation of femtosecond laser pulses through air: moving focus or pulse self-guiding?” Opt. Lett. 23, 120–122 (1998).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[CrossRef]

G. Tempea and T. Brabec, “Theory of self-focusing in a hollow waveguide,” Opt. Lett. 23, 762–764 (1998).
[CrossRef]

E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996).
[CrossRef] [PubMed]

J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, and L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
[CrossRef]

Phys. Rev. A (2)

M. Nurhuda, A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Propagation dynamics of femtosecond light pulses in argon,” Phys. Rev. A 66, 023811 (2002).
[CrossRef]

M. Nurhuda, A. Suda, and K. Midorikawa, “Ionization-induced high-order nonlinear susceptibility,” Phys. Rev. A 66, 041802 (2002).
[CrossRef]

Phys. Rev. E (1)

N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Femtosecond pulse propagation in air: Variational analysis,” Phys. Rev. E 61, 4540–4549 (2000).
[CrossRef]

Phys. Rev. Lett. (3)

I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, “Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation,” Phys. Rev. Lett. 84, 3847–3850 (2000).
[CrossRef] [PubMed]

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[CrossRef]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided fem-tosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup. M, mirror; FL, focusing lens; GC, gas cell; CXM, convex mirror; CCM, concave mirror; AC, single-shot SHG autocorrelator; MCS, multichannel spectrometer; PF, Polaroid film; PH, pinhole. To avoid nonlinear effects near the focal point—referring to notations on the figure—(a) beam diameters were measured by using burn patterns on unexposed developed Polaroid film, (b) autocorrelation traces were measured using a pinhole installed in place of the exit window, (c) and spectral profiles were measured using the scattered light from a piece of white paper inserted on the beam axis in the gas cell.

Fig. 2
Fig. 2

Measured beam diameter as a function of the propagation length (circles). The gas pressure is 2.5 atm and the input energy is 1.5 mJ. The diameter of the beam split from the main component is plotted as crosses. The solid curve shows the beam diameter of the theoretical diffraction-limited Gaussian beam. The insert shows the beam splitting near the focal point observed with a CCD camera at an input energy of 1 mJ.

Fig. 3
Fig. 3

Autocorrelation traces observed (a) before entering the cell, (b) at the focal point, and (c) and (d) at 60 cm after the focal point corresponding to the main and the subcomponent, respectively. The pulse durations obtained were assumed to have a pulse shape of sech2 and to have the correlation width divided by a factor of 1.543.

Fig. 4
Fig. 4

Pulse durations of the main component (circles) and the subcomponent (diamonds) as a function of the propagation distance.

Fig. 5
Fig. 5

Measured spectral profiles observed (a) before entering the cell, (b) at 4 cm before the focal point, (c) at the focal point, (d) at 4 cm after the focal point, and (e) at 60 cm after the focal point.

Fig. 6
Fig. 6

Comparison of measured (circles) and calculated (solid curve) beam diameters. The diameter of the beam split from the main component is also plotted as crosses. The dashed curve represents the beam diameter of a theoretical diffraction-limited Gaussian beam.

Fig. 7
Fig. 7

Calculated pulse shapes (a) before entering the cell, (b) at the focal point, and (c) at 60 cm after the focal point.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E(r, z, t)z=i 22k E(r, z, t)-ik22t2 E(r, z, t)+ik2 Δχ[|E(r, z, t)|2]E(r, z, t),
Δχ=χ(3)|E(r, z, t)|2+χ(5)|E(r, z, t)|4+,
ΔχTI=η e2meε0 ρ,
ρt=(N0-ρ)Γ(I),
W(r)=ε0cn|E(r, z, t)|2dt,

Metrics