Abstract

A novel scheme for generation of laserlike emission from highly scattering media is presented. A high degree of directionality is obtained owing to the excitation of surface plasmons in a silver film. The electromagnetic energy coupled to surface plasmons is transferred to a polymeric disk containing Rhodamine and TiO2 nanospheres placed in close contact with the film. The fluorescence produced in the disk, outcoupled through a prism, displays features of a “laser paint” plus a high directionality.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Lawandy, R. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
    [CrossRef]
  2. R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Lethokov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron. QE-2, 442–446 (1966).
    [CrossRef]
  3. W. L. Sha, C. H. Liu, and R. R. Alfano, “Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media,” Opt. Lett. 23, 1922–1924 (1994).
    [CrossRef]
  4. D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, and Z. Li, “Narrow-bandwidth emission from a suspension of dye and scatters,” Opt. Commun. 118, 461–465 (1995).
    [CrossRef]
  5. R. Balachandran and N. M. Lawandy, “Interface reflection effects in photonic paint,” Opt. Lett. 20, 1271–1273 (1995).
    [CrossRef] [PubMed]
  6. W. Zhang, N. Cue, and K. M. Yoo, “Emission linewidth of laser action in random gain media,” Opt. Lett. 20, 961–963 (1995).
    [CrossRef] [PubMed]
  7. R. M. Balachandran, D. P. Pacheco, and N. M. Lawandy, “Laser action in polymeric gain media containing scattering particles,” Appl. Opt. 35, 640–643 (1996).
    [CrossRef] [PubMed]
  8. G. Zacharakis, N. A. Papadogiannis, G. Filippidis, and T. G. Papazoglou, “Photon statistics of laserlike emission from polymeric scattering gain media,” Opt. Lett. 25, 923–925 (2000).
    [CrossRef]
  9. S. John and G. Pang, “Theory of lasing in a multiple scattering medium,” Phys. Rev. A 54, 3642 (1996).
    [CrossRef] [PubMed]
  10. R. M. Balachandran, N. M. Lawandy, and J. A. Moon, “Theory of laser action in scattering gain media,” Opt. Lett. 22, 319–321 (1997).
    [CrossRef] [PubMed]
  11. D. S. Wiersma and A. Lagendjik, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
    [CrossRef]
  12. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [CrossRef]
  13. H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
    [CrossRef] [PubMed]
  14. M. Shukri and R. L. Armstrong, “Coherent, directional, laserlike emission from random gain media,” Appl. Opt. 39, 4300–4305 (2000).
    [CrossRef]
  15. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  16. E. Lee, R. E. Benner, J. B. Fenn, and R. K. Chang, “Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation,” Appl. Opt. 18, 862–868 (1979).
    [CrossRef]
  17. R. E. Benner, R. Dornhaus, and R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145–149 (1979).
    [CrossRef]
  18. H. Kano and S. Kawata, “Two-photon-excited fluorescence enhanced by a surface plasmon,” Opt. Lett. 21, 1848–1850 (1996).
    [CrossRef] [PubMed]

2001 (1)

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

2000 (2)

1999 (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

1997 (1)

1996 (4)

1995 (3)

1994 (2)

N. M. Lawandy, R. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

W. L. Sha, C. H. Liu, and R. R. Alfano, “Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media,” Opt. Lett. 23, 1922–1924 (1994).
[CrossRef]

1979 (2)

E. Lee, R. E. Benner, J. B. Fenn, and R. K. Chang, “Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation,” Appl. Opt. 18, 862–868 (1979).
[CrossRef]

R. E. Benner, R. Dornhaus, and R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145–149 (1979).
[CrossRef]

1966 (1)

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Lethokov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron. QE-2, 442–446 (1966).
[CrossRef]

Alfano, R. R.

W. L. Sha, C. H. Liu, and R. R. Alfano, “Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media,” Opt. Lett. 23, 1922–1924 (1994).
[CrossRef]

Ambartsumyan, R. V.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Lethokov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron. QE-2, 442–446 (1966).
[CrossRef]

Armstrong, R. L.

Balachandran, R.

R. Balachandran and N. M. Lawandy, “Interface reflection effects in photonic paint,” Opt. Lett. 20, 1271–1273 (1995).
[CrossRef] [PubMed]

N. M. Lawandy, R. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Balachandran, R. M.

Basov, N. G.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Lethokov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron. QE-2, 442–446 (1966).
[CrossRef]

Benner, R. E.

E. Lee, R. E. Benner, J. B. Fenn, and R. K. Chang, “Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation,” Appl. Opt. 18, 862–868 (1979).
[CrossRef]

R. E. Benner, R. Dornhaus, and R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145–149 (1979).
[CrossRef]

Cao, C. Q.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

Cao, H.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Chang, R. K.

E. Lee, R. E. Benner, J. B. Fenn, and R. K. Chang, “Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation,” Appl. Opt. 18, 862–868 (1979).
[CrossRef]

R. E. Benner, R. Dornhaus, and R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145–149 (1979).
[CrossRef]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Cheng, B.

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, and Z. Li, “Narrow-bandwidth emission from a suspension of dye and scatters,” Opt. Commun. 118, 461–465 (1995).
[CrossRef]

Cue, N.

Dornhaus, R.

R. E. Benner, R. Dornhaus, and R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145–149 (1979).
[CrossRef]

Fenn, J. B.

Filippidis, G.

Gomes, A. S. L.

N. M. Lawandy, R. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Hu, W.

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, and Z. Li, “Narrow-bandwidth emission from a suspension of dye and scatters,” Opt. Commun. 118, 461–465 (1995).
[CrossRef]

John, S.

S. John and G. Pang, “Theory of lasing in a multiple scattering medium,” Phys. Rev. A 54, 3642 (1996).
[CrossRef] [PubMed]

Kano, H.

Kawata, S.

Kryukov, P. G.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Lethokov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron. QE-2, 442–446 (1966).
[CrossRef]

Kumar, P.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

Lagendjik, A.

D. S. Wiersma and A. Lagendjik, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[CrossRef]

Lawandy, N. M.

Lee, E.

Lethokov, V. S.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Lethokov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron. QE-2, 442–446 (1966).
[CrossRef]

Li, Z.

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, and Z. Li, “Narrow-bandwidth emission from a suspension of dye and scatters,” Opt. Commun. 118, 461–465 (1995).
[CrossRef]

Ling, Y.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

Liu, C. H.

W. L. Sha, C. H. Liu, and R. R. Alfano, “Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media,” Opt. Lett. 23, 1922–1924 (1994).
[CrossRef]

Moon, J. A.

Pacheco, D. P.

Pang, G.

S. John and G. Pang, “Theory of lasing in a multiple scattering medium,” Phys. Rev. A 54, 3642 (1996).
[CrossRef] [PubMed]

Papadogiannis, N. A.

Papazoglou, T. G.

Sauvain, E.

N. M. Lawandy, R. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Sha, W. L.

W. L. Sha, C. H. Liu, and R. R. Alfano, “Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media,” Opt. Lett. 23, 1922–1924 (1994).
[CrossRef]

Shukri, M.

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma and A. Lagendjik, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[CrossRef]

Xu, J. Y.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

Yang, J.

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, and Z. Li, “Narrow-bandwidth emission from a suspension of dye and scatters,” Opt. Commun. 118, 461–465 (1995).
[CrossRef]

Yoo, K. M.

Zacharakis, G.

Zhang, D.

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, and Z. Li, “Narrow-bandwidth emission from a suspension of dye and scatters,” Opt. Commun. 118, 461–465 (1995).
[CrossRef]

Zhang, W.

Zhang, Y.

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, and Z. Li, “Narrow-bandwidth emission from a suspension of dye and scatters,” Opt. Commun. 118, 461–465 (1995).
[CrossRef]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Lethokov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron. QE-2, 442–446 (1966).
[CrossRef]

Nature (1)

N. M. Lawandy, R. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Opt. Commun. (2)

R. E. Benner, R. Dornhaus, and R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145–149 (1979).
[CrossRef]

D. Zhang, B. Cheng, J. Yang, Y. Zhang, W. Hu, and Z. Li, “Narrow-bandwidth emission from a suspension of dye and scatters,” Opt. Commun. 118, 461–465 (1995).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. A (1)

S. John and G. Pang, “Theory of lasing in a multiple scattering medium,” Phys. Rev. A 54, 3642 (1996).
[CrossRef] [PubMed]

Phys. Rev. E (1)

D. S. Wiersma and A. Lagendjik, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[CrossRef]

Phys. Rev. Lett. (2)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

Other (1)

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

(a) Normalized emission at the peak wavelength as a function of the pump fluence. (b) Intensity-dependent linewidth behavior. Two different excitation methods were used: a PW scheme of excitation (open circles) and surface-plasmons excitation (solid squares).

Fig. 3
Fig. 3

Angular distribution of LP emission. The open circles correspond to excitation by use of the PW scheme. Solid squares correspond to the SP scheme.

Fig. 4
Fig. 4

Spatial profile of the LP beam obtained with a digital camera as described in the text.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

IF(θi, θo)|T(θi)|2|T(θo)|2,
|T(θ)|=t12t23exp(-kd)1+r12r23exp(-2kd),
np senθpf=εnf2ε+nf21/2,

Metrics