Abstract

Accumulated thermal effect (ATE), which can be an artifact in femtosecond closed-aperture Z-scan measurements, was investigated by varying the repetition rate of the incident pulse for a dye solution in CHCl3. It was found that the measurement is affected by two-photon-absorption-induced ATE, even at a low repetition rate of 1 kHz. The relaxation time of the ATE was found to be tens of milliseconds by time-resolved thermal-lens experiments and simulations, which is consistent with the observed repetition-rate dependence of the Z-scan measurements. The simulations for various commonly used solvents also exhibited that the ATE can be prominent in hydrocarbon and halogenated hydrocarbon solvents and inconspicuous in alcohols and water.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  2. E. W. Van Stryland and M. Sheik-Bahae, “Z-scan,” in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, M. G. Kuzyk and C. W. Dirk, eds., (Marcel Dekker, New York, 1998), pp. 655–692.
  3. O. Varnavski, R. G. Ispasoiu, M. Narewal, J. Fugaro, Y. Jin, H. Pass, and T. Goodson III, “Nonlinear optical properties of water-soluble polymeric dyes with biological applications,” Macromolecules 33, 4061–4068 (2000).
    [CrossRef]
  4. S. Tatsuura, O. Wada, M. Tian, M. Furuki, Y. Sato, I. Iwasa, L. S. Pu, and H. Kawashima, “Large χ(3) of squarylium dye J aggregates measured using the Z-scan technique,” Appl. Phys. Lett. 79, 2517–2519 (2001).
    [CrossRef]
  5. G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, J. Liu, G. He, Y. Li, and R. Wang, “Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect,” Physica B 305, 147–154 (2001).
    [CrossRef]
  6. A. Mito and H. Moriwaki, “Dispersion of third order nonlinear optical constants in high-refractive-index glasses associated with two-photon absorption,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 188–195 (1999).
    [CrossRef]
  7. M. J. Shin, and J. W. Wu, “Femtosecond measurement of the third order nonlinear optical coefficients of CuPc, CoPc, and ZnPc thin films using Z-scan measurement method,” in Conference on Lasers and Electro-Optics (CLEO/Pacific Rim), 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 867–868.
  8. M. Falconieri, R. D’Amato, A. Furlani, and M. V. Russo, “Z-scan measurements of third-order optical non-linearities in poly(phenylacetylenes),” Synth. Met. 124, 217–219 (2001).
    [CrossRef]
  9. K. S. Bindra and A. K. Kar, “Role of femtosecond pulses in distinguishing third- and fifth-order nonlinearity for semiconductor-doped glasses,” Appl. Phys. Lett. 79, 3761–3763 (2001).
    [CrossRef]
  10. R. Nakamura and Y. Kanematsu, “A simple and effective method for femtosecond spectral snapshots,” J. Lumin. 94–95, 559–563 (2001).
    [CrossRef]
  11. T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
    [CrossRef]
  12. Y. L. Huang, C. K. Sun, J. C. Liang, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Femtosecond Z-scan measurement of GaN,” Appl. Phys. Lett. 75, 3524–3526 (1999).
    [CrossRef]
  13. C. K. Sun, J. C. Liang, J. C. Wang, Fu. J. Kao, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76, 439–441 (2000).
    [CrossRef]
  14. H. P. Li, B. Liu, C. H. Kam, Y. L. Lam, W. X. Que, L. M. Gan, C. H. Chew, and G. Q. Xu, “Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles,” Opt. Mater. 14, 321–327 (2000).
    [CrossRef]
  15. H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
    [CrossRef]
  16. B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, “PbS-polymer nanocomposite with third-order nonlinear optical response in femtosecond regime,” Mater. Lett. 51, 461–469 (2001).
    [CrossRef]
  17. G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607–4610 (2002).
    [CrossRef]
  18. K. Y. Tseng, K. S. Wong, and G. K. L. Wong, “Femtosecond time-resolved Z-scan investigations of optical nonlinearities in ZnSe,” Opt. Lett. 21, 180–182 (1996).
    [CrossRef] [PubMed]
  19. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
    [CrossRef]
  20. J. R. Whinnery, “Laser measurement of optical absorption in liquids,” Acc. Chem. Res. 7, 255–231 (1974).
    [CrossRef]
  21. S. S. Gupte, A. Marcano O., R. D. Pradhan, C. F. Desai, and N. Melikechi, “Pump-probe thermal lens near-infrared spectroscopy and Z-scan study of zinc(tris)thiourea sulfate,” J. Appl. Phys. 89, 4939–4943 (2001).
    [CrossRef]
  22. A. Marcano, C. Loper, and N. Melikechi, “Pump–probe mode-mismatched thermal-lens Z scan,” J. Opt. Soc. Am. B 19, 119–124 (2002).
    [CrossRef]
  23. A. J. Twarowski and D. S. Kliger, “Multiphoton absorption spectra using thermal blooming. I. Theory,” Chem. Phys. 20, 253–258 (1977).
    [CrossRef]
  24. M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelength,” J. Appl. Phys. 75, 3732–3737 (1994).
    [CrossRef]
  25. M. L. Baesso, A. C. Bento, A. A. Andrade, T. Catunda, J. A. Sampaio, and S. Gama, “Neodymium concentration dependence of thermo-optical properties in low silica calcium aluminate glasses,” J. Non-Cryst. Solids 219, 165–169 (1997).
    [CrossRef]
  26. S. M. Lima, J. A. Sampaio, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and F. C. G. Grandra, “Time-resolved thermal lens measurements of third-order optical properties of fluoride glasses,” J. Non-Cryst. Solids 256–257, 337–342 (1999).
    [CrossRef]
  27. J. H. Rohling, A. M. F. Caldeira, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, L. C. M. Miranda, and A. F. Rubira, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
    [CrossRef]
  28. M. L. Baesso, A. C. Bento, A. A. Andre, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
    [CrossRef]
  29. M. Terazima and N. Hirota, “Population lens in thermal lens spectroscopy,” J. Phys. Chem. 96, 7147–7150 (1992).
    [CrossRef]
  30. M. Terazima, T. Hara, and N. Hirota, “Population lens in thermal lens spectroscopy. 2. Probe wavelength dependence and a new method for subtracting the transient absorption from the thermal lens signal,” J. Phys. Chem. 97, 10554–10560 (1993).
    [CrossRef]
  31. M. Terazima, T. Hara, and N. Hirota, “Separation of transient absorption and population lens effect from the “thermal lens” signal,” J. Phys. Chem. 97, 13668–13672 (1993).
    [CrossRef]
  32. M. Terazima, “Ultrafast transient Kerr lens in solution detected by the dual-beam thermal lens methods,” Opt. Lett. 20, 25–27 (1995).
    [CrossRef] [PubMed]
  33. M. Terazima, “Ultrafast rise of translational temperature after photoexcitation to electronic excited state in solution: transient lens study of Ni2+ aqueous solution,” J. Chem. Phys. 105, 6587–6595 (1996).
    [CrossRef]
  34. J. F. Power, “Pulsed mode thermal lens effect detection in near field via thermally induced probe beam spatial phase modulation: a theory,” Appl. Opt. 29, 52–63 (1990).
    [CrossRef] [PubMed]
  35. J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
    [CrossRef]
  36. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982).
    [CrossRef] [PubMed]
  37. In the formulation of the TL signal, the temporal shape of the excitation pulse is assumed to be square although the actual shape was near Gaussian. Assuming a Gaussian temporal shape makes the formulation too complex, so we assume a square temporal shape for simplicity.
  38. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), p. 502.
  39. R. R. Tykwinski, K. Kamada, D. Bykowski, F. A. Hegmann, and R. J. Hinkle, “Nonlinear optical properties of thienyl and bithienyl iodonium salts as measured by the Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 5202–5206 (2002).
    [CrossRef]
  40. L. Antonov, K. Kamada, and K. Ohta, “Estimation of two-photon absorption characteristics by a global fitting procedure,” Appl. Spectrosc. 56, 1508–1511 (2002).
    [CrossRef]
  41. M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two-photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
    [CrossRef]
  42. J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic Solvents—Physical Properties and Methods of Purification, 4th ed. (Wiley, New York, 1986).
  43. D. R. Lide ed., CRC Handbook of Chemistry and Physics, 79th ed. (CRC Press, Boca Raton, Fla., 1998), Sect. 6, p. 177.

2002 (4)

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607–4610 (2002).
[CrossRef]

A. Marcano, C. Loper, and N. Melikechi, “Pump–probe mode-mismatched thermal-lens Z scan,” J. Opt. Soc. Am. B 19, 119–124 (2002).
[CrossRef]

R. R. Tykwinski, K. Kamada, D. Bykowski, F. A. Hegmann, and R. J. Hinkle, “Nonlinear optical properties of thienyl and bithienyl iodonium salts as measured by the Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 5202–5206 (2002).
[CrossRef]

L. Antonov, K. Kamada, and K. Ohta, “Estimation of two-photon absorption characteristics by a global fitting procedure,” Appl. Spectrosc. 56, 1508–1511 (2002).
[CrossRef]

2001 (9)

S. S. Gupte, A. Marcano O., R. D. Pradhan, C. F. Desai, and N. Melikechi, “Pump-probe thermal lens near-infrared spectroscopy and Z-scan study of zinc(tris)thiourea sulfate,” J. Appl. Phys. 89, 4939–4943 (2001).
[CrossRef]

J. H. Rohling, A. M. F. Caldeira, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, L. C. M. Miranda, and A. F. Rubira, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
[CrossRef]

B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, “PbS-polymer nanocomposite with third-order nonlinear optical response in femtosecond regime,” Mater. Lett. 51, 461–469 (2001).
[CrossRef]

S. Tatsuura, O. Wada, M. Tian, M. Furuki, Y. Sato, I. Iwasa, L. S. Pu, and H. Kawashima, “Large χ(3) of squarylium dye J aggregates measured using the Z-scan technique,” Appl. Phys. Lett. 79, 2517–2519 (2001).
[CrossRef]

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, J. Liu, G. He, Y. Li, and R. Wang, “Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect,” Physica B 305, 147–154 (2001).
[CrossRef]

M. Falconieri, R. D’Amato, A. Furlani, and M. V. Russo, “Z-scan measurements of third-order optical non-linearities in poly(phenylacetylenes),” Synth. Met. 124, 217–219 (2001).
[CrossRef]

K. S. Bindra and A. K. Kar, “Role of femtosecond pulses in distinguishing third- and fifth-order nonlinearity for semiconductor-doped glasses,” Appl. Phys. Lett. 79, 3761–3763 (2001).
[CrossRef]

R. Nakamura and Y. Kanematsu, “A simple and effective method for femtosecond spectral snapshots,” J. Lumin. 94–95, 559–563 (2001).
[CrossRef]

2000 (3)

O. Varnavski, R. G. Ispasoiu, M. Narewal, J. Fugaro, Y. Jin, H. Pass, and T. Goodson III, “Nonlinear optical properties of water-soluble polymeric dyes with biological applications,” Macromolecules 33, 4061–4068 (2000).
[CrossRef]

C. K. Sun, J. C. Liang, J. C. Wang, Fu. J. Kao, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76, 439–441 (2000).
[CrossRef]

H. P. Li, B. Liu, C. H. Kam, Y. L. Lam, W. X. Que, L. M. Gan, C. H. Chew, and G. Q. Xu, “Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles,” Opt. Mater. 14, 321–327 (2000).
[CrossRef]

1999 (3)

Y. L. Huang, C. K. Sun, J. C. Liang, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Femtosecond Z-scan measurement of GaN,” Appl. Phys. Lett. 75, 3524–3526 (1999).
[CrossRef]

A. Mito and H. Moriwaki, “Dispersion of third order nonlinear optical constants in high-refractive-index glasses associated with two-photon absorption,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 188–195 (1999).
[CrossRef]

S. M. Lima, J. A. Sampaio, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and F. C. G. Grandra, “Time-resolved thermal lens measurements of third-order optical properties of fluoride glasses,” J. Non-Cryst. Solids 256–257, 337–342 (1999).
[CrossRef]

1998 (1)

M. L. Baesso, A. C. Bento, A. A. Andre, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

1997 (1)

M. L. Baesso, A. C. Bento, A. A. Andrade, T. Catunda, J. A. Sampaio, and S. Gama, “Neodymium concentration dependence of thermo-optical properties in low silica calcium aluminate glasses,” J. Non-Cryst. Solids 219, 165–169 (1997).
[CrossRef]

1996 (2)

M. Terazima, “Ultrafast rise of translational temperature after photoexcitation to electronic excited state in solution: transient lens study of Ni2+ aqueous solution,” J. Chem. Phys. 105, 6587–6595 (1996).
[CrossRef]

K. Y. Tseng, K. S. Wong, and G. K. L. Wong, “Femtosecond time-resolved Z-scan investigations of optical nonlinearities in ZnSe,” Opt. Lett. 21, 180–182 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (3)

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
[CrossRef]

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two-photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelength,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

1993 (2)

M. Terazima, T. Hara, and N. Hirota, “Population lens in thermal lens spectroscopy. 2. Probe wavelength dependence and a new method for subtracting the transient absorption from the thermal lens signal,” J. Phys. Chem. 97, 10554–10560 (1993).
[CrossRef]

M. Terazima, T. Hara, and N. Hirota, “Separation of transient absorption and population lens effect from the “thermal lens” signal,” J. Phys. Chem. 97, 13668–13672 (1993).
[CrossRef]

1992 (2)

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

M. Terazima and N. Hirota, “Population lens in thermal lens spectroscopy,” J. Phys. Chem. 96, 7147–7150 (1992).
[CrossRef]

1990 (2)

J. F. Power, “Pulsed mode thermal lens effect detection in near field via thermally induced probe beam spatial phase modulation: a theory,” Appl. Opt. 29, 52–63 (1990).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1982 (1)

1977 (1)

A. J. Twarowski and D. S. Kliger, “Multiphoton absorption spectra using thermal blooming. I. Theory,” Chem. Phys. 20, 253–258 (1977).
[CrossRef]

1974 (1)

J. R. Whinnery, “Laser measurement of optical absorption in liquids,” Acc. Chem. Res. 7, 255–231 (1974).
[CrossRef]

1965 (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Andrade, A. A.

M. L. Baesso, A. C. Bento, A. A. Andrade, T. Catunda, J. A. Sampaio, and S. Gama, “Neodymium concentration dependence of thermo-optical properties in low silica calcium aluminate glasses,” J. Non-Cryst. Solids 219, 165–169 (1997).
[CrossRef]

Andre, A. A.

M. L. Baesso, A. C. Bento, A. A. Andre, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

Antonov, L.

Baesso, M. L.

J. H. Rohling, A. M. F. Caldeira, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, L. C. M. Miranda, and A. F. Rubira, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

S. M. Lima, J. A. Sampaio, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and F. C. G. Grandra, “Time-resolved thermal lens measurements of third-order optical properties of fluoride glasses,” J. Non-Cryst. Solids 256–257, 337–342 (1999).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andre, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, T. Catunda, J. A. Sampaio, and S. Gama, “Neodymium concentration dependence of thermo-optical properties in low silica calcium aluminate glasses,” J. Non-Cryst. Solids 219, 165–169 (1997).
[CrossRef]

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelength,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

Bento, A. C.

J. H. Rohling, A. M. F. Caldeira, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, L. C. M. Miranda, and A. F. Rubira, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

S. M. Lima, J. A. Sampaio, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and F. C. G. Grandra, “Time-resolved thermal lens measurements of third-order optical properties of fluoride glasses,” J. Non-Cryst. Solids 256–257, 337–342 (1999).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andre, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, T. Catunda, J. A. Sampaio, and S. Gama, “Neodymium concentration dependence of thermo-optical properties in low silica calcium aluminate glasses,” J. Non-Cryst. Solids 219, 165–169 (1997).
[CrossRef]

Bindra, K. S.

K. S. Bindra and A. K. Kar, “Role of femtosecond pulses in distinguishing third- and fifth-order nonlinearity for semiconductor-doped glasses,” Appl. Phys. Lett. 79, 3761–3763 (2001).
[CrossRef]

Bykowski, D.

R. R. Tykwinski, K. Kamada, D. Bykowski, F. A. Hegmann, and R. J. Hinkle, “Nonlinear optical properties of thienyl and bithienyl iodonium salts as measured by the Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 5202–5206 (2002).
[CrossRef]

Caldeira, A. M. F.

J. H. Rohling, A. M. F. Caldeira, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, L. C. M. Miranda, and A. F. Rubira, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

Catunda, T.

S. M. Lima, J. A. Sampaio, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and F. C. G. Grandra, “Time-resolved thermal lens measurements of third-order optical properties of fluoride glasses,” J. Non-Cryst. Solids 256–257, 337–342 (1999).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andre, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, T. Catunda, J. A. Sampaio, and S. Gama, “Neodymium concentration dependence of thermo-optical properties in low silica calcium aluminate glasses,” J. Non-Cryst. Solids 219, 165–169 (1997).
[CrossRef]

Cazzanelli, M.

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607–4610 (2002).
[CrossRef]

Cha, M.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two-photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

Chew, C. H.

B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, “PbS-polymer nanocomposite with third-order nonlinear optical response in femtosecond regime,” Mater. Lett. 51, 461–469 (2001).
[CrossRef]

H. P. Li, B. Liu, C. H. Kam, Y. L. Lam, W. X. Que, L. M. Gan, C. H. Chew, and G. Q. Xu, “Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles,” Opt. Mater. 14, 321–327 (2000).
[CrossRef]

D’Amato, R.

M. Falconieri, R. D’Amato, A. Furlani, and M. V. Russo, “Z-scan measurements of third-order optical non-linearities in poly(phenylacetylenes),” Synth. Met. 124, 217–219 (2001).
[CrossRef]

DenBaars, S. P.

C. K. Sun, J. C. Liang, J. C. Wang, Fu. J. Kao, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76, 439–441 (2000).
[CrossRef]

Y. L. Huang, C. K. Sun, J. C. Liang, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Femtosecond Z-scan measurement of GaN,” Appl. Phys. Lett. 75, 3524–3526 (1999).
[CrossRef]

Desai, C. F.

S. S. Gupte, A. Marcano O., R. D. Pradhan, C. F. Desai, and N. Melikechi, “Pump-probe thermal lens near-infrared spectroscopy and Z-scan study of zinc(tris)thiourea sulfate,” J. Appl. Phys. 89, 4939–4943 (2001).
[CrossRef]

Falconieri, M.

M. Falconieri, R. D’Amato, A. Furlani, and M. V. Russo, “Z-scan measurements of third-order optical non-linearities in poly(phenylacetylenes),” Synth. Met. 124, 217–219 (2001).
[CrossRef]

Franzò, G.

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607–4610 (2002).
[CrossRef]

Fugaro, J.

O. Varnavski, R. G. Ispasoiu, M. Narewal, J. Fugaro, Y. Jin, H. Pass, and T. Goodson III, “Nonlinear optical properties of water-soluble polymeric dyes with biological applications,” Macromolecules 33, 4061–4068 (2000).
[CrossRef]

Furlani, A.

M. Falconieri, R. D’Amato, A. Furlani, and M. V. Russo, “Z-scan measurements of third-order optical non-linearities in poly(phenylacetylenes),” Synth. Met. 124, 217–219 (2001).
[CrossRef]

Furuki, M.

S. Tatsuura, O. Wada, M. Tian, M. Furuki, Y. Sato, I. Iwasa, L. S. Pu, and H. Kawashima, “Large χ(3) of squarylium dye J aggregates measured using the Z-scan technique,” Appl. Phys. Lett. 79, 2517–2519 (2001).
[CrossRef]

Gaburro, Z.

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607–4610 (2002).
[CrossRef]

Gama, S.

M. L. Baesso, A. C. Bento, A. A. Andre, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, T. Catunda, J. A. Sampaio, and S. Gama, “Neodymium concentration dependence of thermo-optical properties in low silica calcium aluminate glasses,” J. Non-Cryst. Solids 219, 165–169 (1997).
[CrossRef]

Gan, L. M.

B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, “PbS-polymer nanocomposite with third-order nonlinear optical response in femtosecond regime,” Mater. Lett. 51, 461–469 (2001).
[CrossRef]

H. P. Li, B. Liu, C. H. Kam, Y. L. Lam, W. X. Que, L. M. Gan, C. H. Chew, and G. Q. Xu, “Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles,” Opt. Mater. 14, 321–327 (2000).
[CrossRef]

Goodson III, T.

O. Varnavski, R. G. Ispasoiu, M. Narewal, J. Fugaro, Y. Jin, H. Pass, and T. Goodson III, “Nonlinear optical properties of water-soluble polymeric dyes with biological applications,” Macromolecules 33, 4061–4068 (2000).
[CrossRef]

Gordon, J. P.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Grandra, F. C. G.

S. M. Lima, J. A. Sampaio, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and F. C. G. Grandra, “Time-resolved thermal lens measurements of third-order optical properties of fluoride glasses,” J. Non-Cryst. Solids 256–257, 337–342 (1999).
[CrossRef]

Guo, L.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, J. Liu, G. He, Y. Li, and R. Wang, “Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect,” Physica B 305, 147–154 (2001).
[CrossRef]

Gupte, S. S.

S. S. Gupte, A. Marcano O., R. D. Pradhan, C. F. Desai, and N. Melikechi, “Pump-probe thermal lens near-infrared spectroscopy and Z-scan study of zinc(tris)thiourea sulfate,” J. Appl. Phys. 89, 4939–4943 (2001).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Hara, T.

M. Terazima, T. Hara, and N. Hirota, “Population lens in thermal lens spectroscopy. 2. Probe wavelength dependence and a new method for subtracting the transient absorption from the thermal lens signal,” J. Phys. Chem. 97, 10554–10560 (1993).
[CrossRef]

M. Terazima, T. Hara, and N. Hirota, “Separation of transient absorption and population lens effect from the “thermal lens” signal,” J. Phys. Chem. 97, 13668–13672 (1993).
[CrossRef]

He, G.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, J. Liu, G. He, Y. Li, and R. Wang, “Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect,” Physica B 305, 147–154 (2001).
[CrossRef]

Hegmann, F. A.

R. R. Tykwinski, K. Kamada, D. Bykowski, F. A. Hegmann, and R. J. Hinkle, “Nonlinear optical properties of thienyl and bithienyl iodonium salts as measured by the Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 5202–5206 (2002).
[CrossRef]

Hernandes, A. C.

S. M. Lima, J. A. Sampaio, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and F. C. G. Grandra, “Time-resolved thermal lens measurements of third-order optical properties of fluoride glasses,” J. Non-Cryst. Solids 256–257, 337–342 (1999).
[CrossRef]

Hinkle, R. J.

R. R. Tykwinski, K. Kamada, D. Bykowski, F. A. Hegmann, and R. J. Hinkle, “Nonlinear optical properties of thienyl and bithienyl iodonium salts as measured by the Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 5202–5206 (2002).
[CrossRef]

Hirota, N.

M. Terazima, T. Hara, and N. Hirota, “Separation of transient absorption and population lens effect from the “thermal lens” signal,” J. Phys. Chem. 97, 13668–13672 (1993).
[CrossRef]

M. Terazima, T. Hara, and N. Hirota, “Population lens in thermal lens spectroscopy. 2. Probe wavelength dependence and a new method for subtracting the transient absorption from the thermal lens signal,” J. Phys. Chem. 97, 10554–10560 (1993).
[CrossRef]

M. Terazima and N. Hirota, “Population lens in thermal lens spectroscopy,” J. Phys. Chem. 96, 7147–7150 (1992).
[CrossRef]

Horsthuis, W. H. G.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two-photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

Huang, Y. L.

Y. L. Huang, C. K. Sun, J. C. Liang, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Femtosecond Z-scan measurement of GaN,” Appl. Phys. Lett. 75, 3524–3526 (1999).
[CrossRef]

Iacona, F.

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607–4610 (2002).
[CrossRef]

Ispasoiu, R. G.

O. Varnavski, R. G. Ispasoiu, M. Narewal, J. Fugaro, Y. Jin, H. Pass, and T. Goodson III, “Nonlinear optical properties of water-soluble polymeric dyes with biological applications,” Macromolecules 33, 4061–4068 (2000).
[CrossRef]

Iwasa, I.

S. Tatsuura, O. Wada, M. Tian, M. Furuki, Y. Sato, I. Iwasa, L. S. Pu, and H. Kawashima, “Large χ(3) of squarylium dye J aggregates measured using the Z-scan technique,” Appl. Phys. Lett. 79, 2517–2519 (2001).
[CrossRef]

Ji, W.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
[CrossRef]

Jin, Y.

O. Varnavski, R. G. Ispasoiu, M. Narewal, J. Fugaro, Y. Jin, H. Pass, and T. Goodson III, “Nonlinear optical properties of water-soluble polymeric dyes with biological applications,” Macromolecules 33, 4061–4068 (2000).
[CrossRef]

Kam, C. H.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
[CrossRef]

B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, “PbS-polymer nanocomposite with third-order nonlinear optical response in femtosecond regime,” Mater. Lett. 51, 461–469 (2001).
[CrossRef]

H. P. Li, B. Liu, C. H. Kam, Y. L. Lam, W. X. Que, L. M. Gan, C. H. Chew, and G. Q. Xu, “Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles,” Opt. Mater. 14, 321–327 (2000).
[CrossRef]

Kamada, K.

R. R. Tykwinski, K. Kamada, D. Bykowski, F. A. Hegmann, and R. J. Hinkle, “Nonlinear optical properties of thienyl and bithienyl iodonium salts as measured by the Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 5202–5206 (2002).
[CrossRef]

L. Antonov, K. Kamada, and K. Ohta, “Estimation of two-photon absorption characteristics by a global fitting procedure,” Appl. Spectrosc. 56, 1508–1511 (2002).
[CrossRef]

Kanematsu, Y.

R. Nakamura and Y. Kanematsu, “A simple and effective method for femtosecond spectral snapshots,” J. Lumin. 94–95, 559–563 (2001).
[CrossRef]

Kao, Fu. J.

C. K. Sun, J. C. Liang, J. C. Wang, Fu. J. Kao, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76, 439–441 (2000).
[CrossRef]

Kar, A. K.

K. S. Bindra and A. K. Kar, “Role of femtosecond pulses in distinguishing third- and fifth-order nonlinearity for semiconductor-doped glasses,” Appl. Phys. Lett. 79, 3761–3763 (2001).
[CrossRef]

Kawashima, H.

S. Tatsuura, O. Wada, M. Tian, M. Furuki, Y. Sato, I. Iwasa, L. S. Pu, and H. Kawashima, “Large χ(3) of squarylium dye J aggregates measured using the Z-scan technique,” Appl. Phys. Lett. 79, 2517–2519 (2001).
[CrossRef]

Keller, S.

C. K. Sun, J. C. Liang, J. C. Wang, Fu. J. Kao, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76, 439–441 (2000).
[CrossRef]

Y. L. Huang, C. K. Sun, J. C. Liang, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Femtosecond Z-scan measurement of GaN,” Appl. Phys. Lett. 75, 3524–3526 (1999).
[CrossRef]

Kliger, D. S.

A. J. Twarowski and D. S. Kliger, “Multiphoton absorption spectra using thermal blooming. I. Theory,” Chem. Phys. 20, 253–258 (1977).
[CrossRef]

Knight, L. V.

Krauss, T. D.

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
[CrossRef]

Lam, Y. L.

B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, “PbS-polymer nanocomposite with third-order nonlinear optical response in femtosecond regime,” Mater. Lett. 51, 461–469 (2001).
[CrossRef]

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
[CrossRef]

H. P. Li, B. Liu, C. H. Kam, Y. L. Lam, W. X. Que, L. M. Gan, C. H. Chew, and G. Q. Xu, “Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles,” Opt. Mater. 14, 321–327 (2000).
[CrossRef]

Lebullenger, R.

S. M. Lima, J. A. Sampaio, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and F. C. G. Grandra, “Time-resolved thermal lens measurements of third-order optical properties of fluoride glasses,” J. Non-Cryst. Solids 256–257, 337–342 (1999).
[CrossRef]

Leite, R. C. C.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Li, H.

B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, “PbS-polymer nanocomposite with third-order nonlinear optical response in femtosecond regime,” Mater. Lett. 51, 461–469 (2001).
[CrossRef]

Li, H. P.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
[CrossRef]

H. P. Li, B. Liu, C. H. Kam, Y. L. Lam, W. X. Que, L. M. Gan, C. H. Chew, and G. Q. Xu, “Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles,” Opt. Mater. 14, 321–327 (2000).
[CrossRef]

Li, Y.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, J. Liu, G. He, Y. Li, and R. Wang, “Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect,” Physica B 305, 147–154 (2001).
[CrossRef]

Liang, J. C.

C. K. Sun, J. C. Liang, J. C. Wang, Fu. J. Kao, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76, 439–441 (2000).
[CrossRef]

Y. L. Huang, C. K. Sun, J. C. Liang, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Femtosecond Z-scan measurement of GaN,” Appl. Phys. Lett. 75, 3524–3526 (1999).
[CrossRef]

Lima, S. M.

S. M. Lima, J. A. Sampaio, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and F. C. G. Grandra, “Time-resolved thermal lens measurements of third-order optical properties of fluoride glasses,” J. Non-Cryst. Solids 256–257, 337–342 (1999).
[CrossRef]

Liu, B.

B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, “PbS-polymer nanocomposite with third-order nonlinear optical response in femtosecond regime,” Mater. Lett. 51, 461–469 (2001).
[CrossRef]

H. P. Li, B. Liu, C. H. Kam, Y. L. Lam, W. X. Que, L. M. Gan, C. H. Chew, and G. Q. Xu, “Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles,” Opt. Mater. 14, 321–327 (2000).
[CrossRef]

Liu, J.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, J. Liu, G. He, Y. Li, and R. Wang, “Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect,” Physica B 305, 147–154 (2001).
[CrossRef]

Liu, Y.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, J. Liu, G. He, Y. Li, and R. Wang, “Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect,” Physica B 305, 147–154 (2001).
[CrossRef]

Loper, C.

Lowe, R. D.

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Ma, G.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, J. Liu, G. He, Y. Li, and R. Wang, “Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect,” Physica B 305, 147–154 (2001).
[CrossRef]

Mack, M. P.

C. K. Sun, J. C. Liang, J. C. Wang, Fu. J. Kao, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76, 439–441 (2000).
[CrossRef]

Y. L. Huang, C. K. Sun, J. C. Liang, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Femtosecond Z-scan measurement of GaN,” Appl. Phys. Lett. 75, 3524–3526 (1999).
[CrossRef]

Marcano, A.

Marcano O., A.

S. S. Gupte, A. Marcano O., R. D. Pradhan, C. F. Desai, and N. Melikechi, “Pump-probe thermal lens near-infrared spectroscopy and Z-scan study of zinc(tris)thiourea sulfate,” J. Appl. Phys. 89, 4939–4943 (2001).
[CrossRef]

Medina, A. N.

J. H. Rohling, A. M. F. Caldeira, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, L. C. M. Miranda, and A. F. Rubira, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

Melikechi, N.

A. Marcano, C. Loper, and N. Melikechi, “Pump–probe mode-mismatched thermal-lens Z scan,” J. Opt. Soc. Am. B 19, 119–124 (2002).
[CrossRef]

S. S. Gupte, A. Marcano O., R. D. Pradhan, C. F. Desai, and N. Melikechi, “Pump-probe thermal lens near-infrared spectroscopy and Z-scan study of zinc(tris)thiourea sulfate,” J. Appl. Phys. 89, 4939–4943 (2001).
[CrossRef]

Meth, J.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two-photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

Mi, J.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, J. Liu, G. He, Y. Li, and R. Wang, “Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect,” Physica B 305, 147–154 (2001).
[CrossRef]

Miranda, L. C. M.

J. H. Rohling, A. M. F. Caldeira, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, L. C. M. Miranda, and A. F. Rubira, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

Mishra, U. K.

C. K. Sun, J. C. Liang, J. C. Wang, Fu. J. Kao, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76, 439–441 (2000).
[CrossRef]

Y. L. Huang, C. K. Sun, J. C. Liang, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Femtosecond Z-scan measurement of GaN,” Appl. Phys. Lett. 75, 3524–3526 (1999).
[CrossRef]

Mito, A.

A. Mito and H. Moriwaki, “Dispersion of third order nonlinear optical constants in high-refractive-index glasses associated with two-photon absorption,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 188–195 (1999).
[CrossRef]

Möhlmann, G. R.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two-photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

Moore, R. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Moriwaki, H.

A. Mito and H. Moriwaki, “Dispersion of third order nonlinear optical constants in high-refractive-index glasses associated with two-photon absorption,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 188–195 (1999).
[CrossRef]

Nakamura, R.

R. Nakamura and Y. Kanematsu, “A simple and effective method for femtosecond spectral snapshots,” J. Lumin. 94–95, 559–563 (2001).
[CrossRef]

Narewal, M.

O. Varnavski, R. G. Ispasoiu, M. Narewal, J. Fugaro, Y. Jin, H. Pass, and T. Goodson III, “Nonlinear optical properties of water-soluble polymeric dyes with biological applications,” Macromolecules 33, 4061–4068 (2000).
[CrossRef]

Nunes, L. A. O.

M. L. Baesso, A. C. Bento, A. A. Andre, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

Ohta, K.

Pass, H.

O. Varnavski, R. G. Ispasoiu, M. Narewal, J. Fugaro, Y. Jin, H. Pass, and T. Goodson III, “Nonlinear optical properties of water-soluble polymeric dyes with biological applications,” Macromolecules 33, 4061–4068 (2000).
[CrossRef]

Pavesi, L.

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607–4610 (2002).
[CrossRef]

Pecoraro, E.

M. L. Baesso, A. C. Bento, A. A. Andre, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

Pereira, J. R. D.

J. H. Rohling, A. M. F. Caldeira, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, L. C. M. Miranda, and A. F. Rubira, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

Porto, S. P. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Power, J. F.

Pradhan, R. D.

S. S. Gupte, A. Marcano O., R. D. Pradhan, C. F. Desai, and N. Melikechi, “Pump-probe thermal lens near-infrared spectroscopy and Z-scan study of zinc(tris)thiourea sulfate,” J. Appl. Phys. 89, 4939–4943 (2001).
[CrossRef]

Prakash, G. Vijaya

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607–4610 (2002).
[CrossRef]

Priolo, F.

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607–4610 (2002).
[CrossRef]

Pu, L. S.

S. Tatsuura, O. Wada, M. Tian, M. Furuki, Y. Sato, I. Iwasa, L. S. Pu, and H. Kawashima, “Large χ(3) of squarylium dye J aggregates measured using the Z-scan technique,” Appl. Phys. Lett. 79, 2517–2519 (2001).
[CrossRef]

Qian, S.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, J. Liu, G. He, Y. Li, and R. Wang, “Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect,” Physica B 305, 147–154 (2001).
[CrossRef]

Que, W.

B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, “PbS-polymer nanocomposite with third-order nonlinear optical response in femtosecond regime,” Mater. Lett. 51, 461–469 (2001).
[CrossRef]

Que, W. X.

H. P. Li, B. Liu, C. H. Kam, Y. L. Lam, W. X. Que, L. M. Gan, C. H. Chew, and G. Q. Xu, “Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles,” Opt. Mater. 14, 321–327 (2000).
[CrossRef]

Rohling, J. H.

J. H. Rohling, A. M. F. Caldeira, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, L. C. M. Miranda, and A. F. Rubira, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

Rubira, A. F.

J. H. Rohling, A. M. F. Caldeira, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, L. C. M. Miranda, and A. F. Rubira, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

Russo, M. V.

M. Falconieri, R. D’Amato, A. Furlani, and M. V. Russo, “Z-scan measurements of third-order optical non-linearities in poly(phenylacetylenes),” Synth. Met. 124, 217–219 (2001).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Sampaio, J. A.

S. M. Lima, J. A. Sampaio, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and F. C. G. Grandra, “Time-resolved thermal lens measurements of third-order optical properties of fluoride glasses,” J. Non-Cryst. Solids 256–257, 337–342 (1999).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andre, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, T. Catunda, J. A. Sampaio, and S. Gama, “Neodymium concentration dependence of thermo-optical properties in low silica calcium aluminate glasses,” J. Non-Cryst. Solids 219, 165–169 (1997).
[CrossRef]

Sato, Y.

S. Tatsuura, O. Wada, M. Tian, M. Furuki, Y. Sato, I. Iwasa, L. S. Pu, and H. Kawashima, “Large χ(3) of squarylium dye J aggregates measured using the Z-scan technique,” Appl. Phys. Lett. 79, 2517–2519 (2001).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Sheldon, S. J.

Shen, J.

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelength,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Snook, R. D.

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelength,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Stegeman, G. I.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two-photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

Sun, C. K.

C. K. Sun, J. C. Liang, J. C. Wang, Fu. J. Kao, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76, 439–441 (2000).
[CrossRef]

Y. L. Huang, C. K. Sun, J. C. Liang, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Femtosecond Z-scan measurement of GaN,” Appl. Phys. Lett. 75, 3524–3526 (1999).
[CrossRef]

Tatsuura, S.

S. Tatsuura, O. Wada, M. Tian, M. Furuki, Y. Sato, I. Iwasa, L. S. Pu, and H. Kawashima, “Large χ(3) of squarylium dye J aggregates measured using the Z-scan technique,” Appl. Phys. Lett. 79, 2517–2519 (2001).
[CrossRef]

Terazima, M.

M. Terazima, “Ultrafast rise of translational temperature after photoexcitation to electronic excited state in solution: transient lens study of Ni2+ aqueous solution,” J. Chem. Phys. 105, 6587–6595 (1996).
[CrossRef]

M. Terazima, “Ultrafast transient Kerr lens in solution detected by the dual-beam thermal lens methods,” Opt. Lett. 20, 25–27 (1995).
[CrossRef] [PubMed]

M. Terazima, T. Hara, and N. Hirota, “Separation of transient absorption and population lens effect from the “thermal lens” signal,” J. Phys. Chem. 97, 13668–13672 (1993).
[CrossRef]

M. Terazima, T. Hara, and N. Hirota, “Population lens in thermal lens spectroscopy. 2. Probe wavelength dependence and a new method for subtracting the transient absorption from the thermal lens signal,” J. Phys. Chem. 97, 10554–10560 (1993).
[CrossRef]

M. Terazima and N. Hirota, “Population lens in thermal lens spectroscopy,” J. Phys. Chem. 96, 7147–7150 (1992).
[CrossRef]

Thorne, J. M.

Tian, M.

S. Tatsuura, O. Wada, M. Tian, M. Furuki, Y. Sato, I. Iwasa, L. S. Pu, and H. Kawashima, “Large χ(3) of squarylium dye J aggregates measured using the Z-scan technique,” Appl. Phys. Lett. 79, 2517–2519 (2001).
[CrossRef]

Torruellas, W. E.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two-photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

Tseng, K. Y.

Twarowski, A. J.

A. J. Twarowski and D. S. Kliger, “Multiphoton absorption spectra using thermal blooming. I. Theory,” Chem. Phys. 20, 253–258 (1977).
[CrossRef]

Tykwinski, R. R.

R. R. Tykwinski, K. Kamada, D. Bykowski, F. A. Hegmann, and R. J. Hinkle, “Nonlinear optical properties of thienyl and bithienyl iodonium salts as measured by the Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 5202–5206 (2002).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Varnavski, O.

O. Varnavski, R. G. Ispasoiu, M. Narewal, J. Fugaro, Y. Jin, H. Pass, and T. Goodson III, “Nonlinear optical properties of water-soluble polymeric dyes with biological applications,” Macromolecules 33, 4061–4068 (2000).
[CrossRef]

Wada, O.

S. Tatsuura, O. Wada, M. Tian, M. Furuki, Y. Sato, I. Iwasa, L. S. Pu, and H. Kawashima, “Large χ(3) of squarylium dye J aggregates measured using the Z-scan technique,” Appl. Phys. Lett. 79, 2517–2519 (2001).
[CrossRef]

Wang, J. C.

C. K. Sun, J. C. Liang, J. C. Wang, Fu. J. Kao, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76, 439–441 (2000).
[CrossRef]

Wang, R.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, J. Liu, G. He, Y. Li, and R. Wang, “Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect,” Physica B 305, 147–154 (2001).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Whinnery, J. R.

J. R. Whinnery, “Laser measurement of optical absorption in liquids,” Acc. Chem. Res. 7, 255–231 (1974).
[CrossRef]

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Wise, F. W.

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
[CrossRef]

Wong, G. K. L.

Wong, K. S.

Xu, G. Q.

B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, “PbS-polymer nanocomposite with third-order nonlinear optical response in femtosecond regime,” Mater. Lett. 51, 461–469 (2001).
[CrossRef]

H. P. Li, B. Liu, C. H. Kam, Y. L. Lam, W. X. Que, L. M. Gan, C. H. Chew, and G. Q. Xu, “Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles,” Opt. Mater. 14, 321–327 (2000).
[CrossRef]

Acc. Chem. Res. (1)

J. R. Whinnery, “Laser measurement of optical absorption in liquids,” Acc. Chem. Res. 7, 255–231 (1974).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (6)

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two-photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

S. Tatsuura, O. Wada, M. Tian, M. Furuki, Y. Sato, I. Iwasa, L. S. Pu, and H. Kawashima, “Large χ(3) of squarylium dye J aggregates measured using the Z-scan technique,” Appl. Phys. Lett. 79, 2517–2519 (2001).
[CrossRef]

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
[CrossRef]

Y. L. Huang, C. K. Sun, J. C. Liang, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Femtosecond Z-scan measurement of GaN,” Appl. Phys. Lett. 75, 3524–3526 (1999).
[CrossRef]

C. K. Sun, J. C. Liang, J. C. Wang, Fu. J. Kao, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76, 439–441 (2000).
[CrossRef]

K. S. Bindra and A. K. Kar, “Role of femtosecond pulses in distinguishing third- and fifth-order nonlinearity for semiconductor-doped glasses,” Appl. Phys. Lett. 79, 3761–3763 (2001).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. (2)

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

A. J. Twarowski and D. S. Kliger, “Multiphoton absorption spectra using thermal blooming. I. Theory,” Chem. Phys. 20, 253–258 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Appl. Phys. (5)

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607–4610 (2002).
[CrossRef]

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelength,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

J. H. Rohling, A. M. F. Caldeira, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, L. C. M. Miranda, and A. F. Rubira, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

S. S. Gupte, A. Marcano O., R. D. Pradhan, C. F. Desai, and N. Melikechi, “Pump-probe thermal lens near-infrared spectroscopy and Z-scan study of zinc(tris)thiourea sulfate,” J. Appl. Phys. 89, 4939–4943 (2001).
[CrossRef]

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

J. Chem. Phys. (1)

M. Terazima, “Ultrafast rise of translational temperature after photoexcitation to electronic excited state in solution: transient lens study of Ni2+ aqueous solution,” J. Chem. Phys. 105, 6587–6595 (1996).
[CrossRef]

J. Lumin. (1)

R. Nakamura and Y. Kanematsu, “A simple and effective method for femtosecond spectral snapshots,” J. Lumin. 94–95, 559–563 (2001).
[CrossRef]

J. Non-Cryst. Solids (2)

M. L. Baesso, A. C. Bento, A. A. Andrade, T. Catunda, J. A. Sampaio, and S. Gama, “Neodymium concentration dependence of thermo-optical properties in low silica calcium aluminate glasses,” J. Non-Cryst. Solids 219, 165–169 (1997).
[CrossRef]

S. M. Lima, J. A. Sampaio, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and F. C. G. Grandra, “Time-resolved thermal lens measurements of third-order optical properties of fluoride glasses,” J. Non-Cryst. Solids 256–257, 337–342 (1999).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

R. R. Tykwinski, K. Kamada, D. Bykowski, F. A. Hegmann, and R. J. Hinkle, “Nonlinear optical properties of thienyl and bithienyl iodonium salts as measured by the Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 5202–5206 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (3)

M. Terazima and N. Hirota, “Population lens in thermal lens spectroscopy,” J. Phys. Chem. 96, 7147–7150 (1992).
[CrossRef]

M. Terazima, T. Hara, and N. Hirota, “Population lens in thermal lens spectroscopy. 2. Probe wavelength dependence and a new method for subtracting the transient absorption from the thermal lens signal,” J. Phys. Chem. 97, 10554–10560 (1993).
[CrossRef]

M. Terazima, T. Hara, and N. Hirota, “Separation of transient absorption and population lens effect from the “thermal lens” signal,” J. Phys. Chem. 97, 13668–13672 (1993).
[CrossRef]

Macromolecules (1)

O. Varnavski, R. G. Ispasoiu, M. Narewal, J. Fugaro, Y. Jin, H. Pass, and T. Goodson III, “Nonlinear optical properties of water-soluble polymeric dyes with biological applications,” Macromolecules 33, 4061–4068 (2000).
[CrossRef]

Mater. Lett. (1)

B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, “PbS-polymer nanocomposite with third-order nonlinear optical response in femtosecond regime,” Mater. Lett. 51, 461–469 (2001).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (2)

H. P. Li, B. Liu, C. H. Kam, Y. L. Lam, W. X. Que, L. M. Gan, C. H. Chew, and G. Q. Xu, “Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles,” Opt. Mater. 14, 321–327 (2000).
[CrossRef]

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001).
[CrossRef]

Phys. Rev. B (1)

M. L. Baesso, A. C. Bento, A. A. Andre, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

Physica B (1)

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, J. Liu, G. He, Y. Li, and R. Wang, “Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect,” Physica B 305, 147–154 (2001).
[CrossRef]

Proc. SPIE (1)

A. Mito and H. Moriwaki, “Dispersion of third order nonlinear optical constants in high-refractive-index glasses associated with two-photon absorption,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 188–195 (1999).
[CrossRef]

Synth. Met. (1)

M. Falconieri, R. D’Amato, A. Furlani, and M. V. Russo, “Z-scan measurements of third-order optical non-linearities in poly(phenylacetylenes),” Synth. Met. 124, 217–219 (2001).
[CrossRef]

Other (6)

E. W. Van Stryland and M. Sheik-Bahae, “Z-scan,” in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, M. G. Kuzyk and C. W. Dirk, eds., (Marcel Dekker, New York, 1998), pp. 655–692.

M. J. Shin, and J. W. Wu, “Femtosecond measurement of the third order nonlinear optical coefficients of CuPc, CoPc, and ZnPc thin films using Z-scan measurement method,” in Conference on Lasers and Electro-Optics (CLEO/Pacific Rim), 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 867–868.

J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic Solvents—Physical Properties and Methods of Purification, 4th ed. (Wiley, New York, 1986).

D. R. Lide ed., CRC Handbook of Chemistry and Physics, 79th ed. (CRC Press, Boca Raton, Fla., 1998), Sect. 6, p. 177.

In the formulation of the TL signal, the temporal shape of the excitation pulse is assumed to be square although the actual shape was near Gaussian. Assuming a Gaussian temporal shape makes the formulation too complex, so we assume a square temporal shape for simplicity.

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), p. 502.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Block diagram of the experimental setup for a Z-scan measurement and a TL experiment: CC, chopper controller; MC, mechanical chopper; BS, beam splitter; L, plano-convex lens; PS, power stage; S, sample; A, iris aperture; ND, neutral-density filter; NBP, narrow bandpass filter; PD0, PD1, PD2, PD3, Si photodiodes for closed-aperture, open-aperture, intensity-reference, and thermal-lens signals, respectively; fs-OPA, femtosecond optical parametric amplifier. For the TL experiment, only fs-OPA, He–Ne, PD3, NBP, and OSC (a digital oscilloscope) were used.

Fig. 2
Fig. 2

Closed-aperture Z-scan traces of (A) DANS/CHCl3 solution and (B) pure CHCl3 at three repetition rates of 1 kHz, 100 Hz, and 10 Hz. The ordinate is transmittance normalized to that at the z position far from the focal point (z50 mm).

Fig. 3
Fig. 3

Open-aperture Z-scan traces of DANS/CHCl3 solution at various incident pulse energies with curve fits (top). The ordinate is transmittance normalized to that at a z position far from the focal point (z50 mm). Linearity of incident pulse energy and parameter q0 obtained from the curve fits (bottom).

Fig. 4
Fig. 4

(A) Time-resolved TL signal and (B) its simulation of DANS/CHCl3 solution at various z positions. From top to bottom, z=46, 48, 50, 52, 54, 56, 58, and 60 mm. Each curve is vertically shifted for readability. The repetition rate of incident pulse is 10 Hz for the experiments.

Fig. 5
Fig. 5

Time-resolved TL signal at various repetition rates of the excitation pulse. From top to bottom, the repetition rate is 1 kHz, 100 Hz, and 10 Hz. Each curve is vertically shifted for readability.

Fig. 6
Fig. 6

Sample position (z) dependence of the maximum intensity of the TL signal (circle) and simulations for TPA (solid curve) and OPA (dashed curve).

Fig. 7
Fig. 7

Excitation-pulse energy dependence of the maximum intensity of the TL signal. Experiment (circles) and simulation (solid curve) with a line with slope of 2 (dashed curve).

Fig. 8
Fig. 8

Plots of maximum intensity of (A) the simulated TL signal versus its lifetime and (B) parameters θ versus tc for various solvents: BN, benzene; TL, toluene; nH, n-hexane; cH, cyclohexane; CF, chloroform (CHCl3); CT, carbon tetrachloride (CCl4); AC, acetone; AN, acetonitrile; TF, tetrahydrofuran (THF); Me, methanol; Et, ethanol; Pr, 2-propanol; and WT, water.

Tables (2)

Tables Icon

Table 1 Parameters used for the Simulation of the Time-Resolved Thermal-Lens Signal

Tables Icon

Table 2 Thermodynamic and Thermo-Optical Parameters of the Solvent Used for Simulation a

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

I(r)=I0exp-2r2w1e2,
I(r)=I(r)1+α(2)I(r)L,
Q(r)=I(r)-I(r)L Δt=α(2)[I(r)]2Δt1+α(2)I(r)L,
Q(r)=α(2)[I(r)]2Δt=α(2)I02Δt exp-4r2w1e2.
Q(r)=αI0Δt exp-2r2w1e2.
wh=w1e/2(weekTPA)w1e(OPA)
 
ΔT(r, t=0)=Q(r)cρ=Q0cρexp-2r2wh2,
cρ t Δt(r, t)-k2ΔT(r, t)=0,
ΔT(r, t)=Q0cρ11+2t/tcexp-2r2/wh21+2t/tc
tc=wh2cρ/4k
Φ(r, t)=2πLλpdndT [ΔT(r, t)-ΔT(0, t)]=θ1+2t/tc1-exp-2r2/wh21+2t/tc,
θ=-2πLλpQ0cρdndT,
Up(t)=C0dg[1-iΦ(r, t)]exp[-(1+iv)g]
g=r2/w1p2,
C=πiw1p2λpz2 B exp-2πiλp z2,
B=2Pπw1p21/2exp-2πiλp z1,
v=z1/zc+(zc/z2)[1+(z1/zc)2],
Up(t)=C1+iv1-iθt1-(1+iv)t2m+(1+iv)t
|Up(t)|2=C1+iv2(2m+t)2(2θm/t-vt)2(2m+t)2+v2t2.
S(t)=|Up(t)|2-|Up()|2|Up()|2=(2m+t)2(2θm/t-vt)2(2m+t)2+v2t2-1,
T(ζ)=(1-R)2πq0(ζ)-ln[1+q0(ζ)exp(-x2)]dx,
q0(ζ)=q0/(1+ζ2),

Metrics