Abstract

The intracavity diffraction in a multifrequency laser filter with a matched extra dispersion device and a two-wave photoelastic grating is investigated. The opportunity to suppress a hybrid component with an increase in the intensities of basic components in the spectrum of a multifrequency laser is proved if the sound frequency differences are greater than the critical value. The regularity of diffraction and the role of multiphonon processes are determined.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. Hutcheson and R. S. Hughes, “Electronic tuning of a dye laser with simultaneous multiple-wavelength output,” IEEE J. Quantum Electron. QE-19, 462–463 (1974).
    [CrossRef]
  2. D. C. Thompson, G. E. Busch, C. J. Hewitt, D. K. Remelius, T. Shimada, C. E. M. Strauss, C. W. Wilson, and T. J. Zaugg, “High-speed random access laser tuning,” Appl. Opt. 38, 2545–2553 (1999).
    [CrossRef]
  3. M. Kourogi, K. Imai, B. Widyatmuko, T. Shimizu, and M. Ohtsu, “Continuous tuning of electrically tunable external-cavity semiconductor laser,” Opt. Lett. 25, 1165–1167 (2000).
    [CrossRef]
  4. V. I. Balakshij, V. N. Parigin, and L. E. Chirkov, The Physical Principles of Acoustooptics (Radio i Svyaz, Moskow, 1985), in Russian.
  5. V. I. Kravchenko and Yu. N. Parkhomenko, “Electronic tuning lasers on condensed media,” Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 1543–1551 (1990), in Russian.
  6. V. I. Kravchenko, A. I. Lyushchenko, and Yu. N. Parkhomenko, “The competition of spectral components of a tunable laser accompanying the biharmonic excitation of an acoustooptic deflector,” Sov. J. Quantum Electron. 22, 40–43 (1992).
    [CrossRef]
  7. O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, and Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
    [CrossRef]
  8. T. Yano, M. Kawabushi, A. Fukumoto, and A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
    [CrossRef]
  9. W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. SU-14, 123–134 (1967).
    [CrossRef]
  10. V. I. Kravchenko, Yu. N. Parkhomenko, and O. I. Yushchuk, “Peculiarities of spectral component competition in a pulse two-frequency tunable laser,” Opt. Spectrosc. 67, 704–709 (1989).
  11. Yu. N. Parkhomenko, E. I. Kapinus, and V. B. Andrienko, “A new approach to the development of multifrequency lasers,” Tech. Phys. Lett. 26, 64–68 (2000).
    [CrossRef]

2000 (2)

M. Kourogi, K. Imai, B. Widyatmuko, T. Shimizu, and M. Ohtsu, “Continuous tuning of electrically tunable external-cavity semiconductor laser,” Opt. Lett. 25, 1165–1167 (2000).
[CrossRef]

Yu. N. Parkhomenko, E. I. Kapinus, and V. B. Andrienko, “A new approach to the development of multifrequency lasers,” Tech. Phys. Lett. 26, 64–68 (2000).
[CrossRef]

1999 (1)

1994 (1)

O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, and Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
[CrossRef]

1992 (1)

V. I. Kravchenko, A. I. Lyushchenko, and Yu. N. Parkhomenko, “The competition of spectral components of a tunable laser accompanying the biharmonic excitation of an acoustooptic deflector,” Sov. J. Quantum Electron. 22, 40–43 (1992).
[CrossRef]

1990 (1)

V. I. Kravchenko and Yu. N. Parkhomenko, “Electronic tuning lasers on condensed media,” Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 1543–1551 (1990), in Russian.

1989 (1)

V. I. Kravchenko, Yu. N. Parkhomenko, and O. I. Yushchuk, “Peculiarities of spectral component competition in a pulse two-frequency tunable laser,” Opt. Spectrosc. 67, 704–709 (1989).

1975 (1)

T. Yano, M. Kawabushi, A. Fukumoto, and A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
[CrossRef]

1974 (1)

L. D. Hutcheson and R. S. Hughes, “Electronic tuning of a dye laser with simultaneous multiple-wavelength output,” IEEE J. Quantum Electron. QE-19, 462–463 (1974).
[CrossRef]

1967 (1)

W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. SU-14, 123–134 (1967).
[CrossRef]

Andrienko, V. B.

Yu. N. Parkhomenko, E. I. Kapinus, and V. B. Andrienko, “A new approach to the development of multifrequency lasers,” Tech. Phys. Lett. 26, 64–68 (2000).
[CrossRef]

Busch, G. E.

Cook, B. D.

W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. SU-14, 123–134 (1967).
[CrossRef]

Fukumoto, A.

T. Yano, M. Kawabushi, A. Fukumoto, and A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
[CrossRef]

Galkin, O. N.

O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, and Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
[CrossRef]

Hewitt, C. J.

Hughes, R. S.

L. D. Hutcheson and R. S. Hughes, “Electronic tuning of a dye laser with simultaneous multiple-wavelength output,” IEEE J. Quantum Electron. QE-19, 462–463 (1974).
[CrossRef]

Hutcheson, L. D.

L. D. Hutcheson and R. S. Hughes, “Electronic tuning of a dye laser with simultaneous multiple-wavelength output,” IEEE J. Quantum Electron. QE-19, 462–463 (1974).
[CrossRef]

Imai, K.

Kapinus, E. I.

Yu. N. Parkhomenko, E. I. Kapinus, and V. B. Andrienko, “A new approach to the development of multifrequency lasers,” Tech. Phys. Lett. 26, 64–68 (2000).
[CrossRef]

Kawabushi, M.

T. Yano, M. Kawabushi, A. Fukumoto, and A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
[CrossRef]

Klein, W. R.

W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. SU-14, 123–134 (1967).
[CrossRef]

Kourogi, M.

Kravchenko, V. I.

O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, and Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
[CrossRef]

V. I. Kravchenko, A. I. Lyushchenko, and Yu. N. Parkhomenko, “The competition of spectral components of a tunable laser accompanying the biharmonic excitation of an acoustooptic deflector,” Sov. J. Quantum Electron. 22, 40–43 (1992).
[CrossRef]

V. I. Kravchenko and Yu. N. Parkhomenko, “Electronic tuning lasers on condensed media,” Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 1543–1551 (1990), in Russian.

V. I. Kravchenko, Yu. N. Parkhomenko, and O. I. Yushchuk, “Peculiarities of spectral component competition in a pulse two-frequency tunable laser,” Opt. Spectrosc. 67, 704–709 (1989).

Liushenko, A. I.

O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, and Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
[CrossRef]

Lyushchenko, A. I.

V. I. Kravchenko, A. I. Lyushchenko, and Yu. N. Parkhomenko, “The competition of spectral components of a tunable laser accompanying the biharmonic excitation of an acoustooptic deflector,” Sov. J. Quantum Electron. 22, 40–43 (1992).
[CrossRef]

Ohtsu, M.

Parkhomenko, Yu. N.

Yu. N. Parkhomenko, E. I. Kapinus, and V. B. Andrienko, “A new approach to the development of multifrequency lasers,” Tech. Phys. Lett. 26, 64–68 (2000).
[CrossRef]

O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, and Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
[CrossRef]

V. I. Kravchenko, A. I. Lyushchenko, and Yu. N. Parkhomenko, “The competition of spectral components of a tunable laser accompanying the biharmonic excitation of an acoustooptic deflector,” Sov. J. Quantum Electron. 22, 40–43 (1992).
[CrossRef]

V. I. Kravchenko and Yu. N. Parkhomenko, “Electronic tuning lasers on condensed media,” Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 1543–1551 (1990), in Russian.

V. I. Kravchenko, Yu. N. Parkhomenko, and O. I. Yushchuk, “Peculiarities of spectral component competition in a pulse two-frequency tunable laser,” Opt. Spectrosc. 67, 704–709 (1989).

Remelius, D. K.

Shimada, T.

Shimizu, T.

Strauss, C. E. M.

Thompson, D. C.

Watanabe, A.

T. Yano, M. Kawabushi, A. Fukumoto, and A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
[CrossRef]

Widyatmuko, B.

Wilson, C. W.

Yano, T.

T. Yano, M. Kawabushi, A. Fukumoto, and A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
[CrossRef]

Yushchuk, O. I.

V. I. Kravchenko, Yu. N. Parkhomenko, and O. I. Yushchuk, “Peculiarities of spectral component competition in a pulse two-frequency tunable laser,” Opt. Spectrosc. 67, 704–709 (1989).

Zaugg, T. J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Yano, M. Kawabushi, A. Fukumoto, and A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. D. Hutcheson and R. S. Hughes, “Electronic tuning of a dye laser with simultaneous multiple-wavelength output,” IEEE J. Quantum Electron. QE-19, 462–463 (1974).
[CrossRef]

IEEE Trans. Sonics Ultrason. (1)

W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. SU-14, 123–134 (1967).
[CrossRef]

Int. J. Nonlinear Opt. Phys. (1)

O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, and Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
[CrossRef]

Izv. Akad. Nauk SSSR, Ser. Fiz. (1)

V. I. Kravchenko and Yu. N. Parkhomenko, “Electronic tuning lasers on condensed media,” Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 1543–1551 (1990), in Russian.

Opt. Lett. (1)

Opt. Spectrosc. (1)

V. I. Kravchenko, Yu. N. Parkhomenko, and O. I. Yushchuk, “Peculiarities of spectral component competition in a pulse two-frequency tunable laser,” Opt. Spectrosc. 67, 704–709 (1989).

Sov. J. Quantum Electron. (1)

V. I. Kravchenko, A. I. Lyushchenko, and Yu. N. Parkhomenko, “The competition of spectral components of a tunable laser accompanying the biharmonic excitation of an acoustooptic deflector,” Sov. J. Quantum Electron. 22, 40–43 (1992).
[CrossRef]

Tech. Phys. Lett. (1)

Yu. N. Parkhomenko, E. I. Kapinus, and V. B. Andrienko, “A new approach to the development of multifrequency lasers,” Tech. Phys. Lett. 26, 64–68 (2000).
[CrossRef]

Other (1)

V. I. Balakshij, V. N. Parigin, and L. E. Chirkov, The Physical Principles of Acoustooptics (Radio i Svyaz, Moskow, 1985), in Russian.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Proposed scheme of the multifrequency tunable laser with a filter composed of matched dispersion devices G1 and G2 and acousto-optic deflector Df. Here A is an active medium and M is a mirror. One can tune the wavelength of each spectral component λ1, λ2  λn by changing sound frequencies f1, f2  fn. (b) Scheme of the proposed acousto-optic interaction: k1, k2  kn, wave vectors of incident light; K1, K2  Kn, sound wave vectors; k1*, k2*  kn*, wave vectors of light diffracted on a corresponding sound wave.

Fig. 2
Fig. 2

(a) Formation of spectral components in an ideal case of highly selective acousto-optic interaction. (b) Formation of basic and hybrid components real system. The * denotes resonator feedback: autocollimated reflection from intracavity grating for basic components and nonautocollimated reflection for hybrid components.

Fig. 3
Fig. 3

Geometric arrangement of wave vectors for basic and hybrid components. The angles are exaggerated to show the physics of interaction.

Fig. 4
Fig. 4

Dependence of reflectivity T of the filter in Fig. 1(a) on the relative difference of frequencies δf of sound waves and their powers P for (a) basic and (b) hybrid spectral components.

Fig. 5
Fig. 5

Sections of reflectivity functional surfaces of the filter in Fig. 1(a) for different P: (a) with separation of losses of basic and hybrid components in the range δf<δfs, (b) with degeneration of their losses. δfs is determined by the condition Thybrid(δfs)=Tbasic(δfs).

Fig. 6
Fig. 6

Efficiency J of energy transformation to the lowest orders for diffraction in the direction from dispersion elements G1 to G2 for an (a) basic component and (b) hybrid component.

Fig. 7
Fig. 7

Comparison of dependencies of reflectivity T in taking into account the multiphonon interactions (solid curves) and one-phonon approach (dashed curves) for the (a) basic component at P=1.2, and the hybrid component at (b) P=1.2 and (c) P=1.55.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

forthefirstbasiccomponent,Δ2012κα(α-β);
forthesecondbasiccomponent,
Δ1102κβ(β-α).
ε=ε0+Δε1sin(K1x-Ω1t)+Δε2sin(K2x-Ω2t).
E=s,mcsm(z)exp[i(ksmxx+ksmzz-ωsmt)],
2dcsm/dz=q1sm[cs-1mexp(iΔ1s-1mz)-cs+1mexp(-iΔ1smz)]+q2sm[csm-1exp(iΔ2sm-1z)-csm+1exp(-iΔ2smz)],
Tbasic1=T10= |c10|4,Tbasic2=T01= |c01|4,
Thybrid=2|c10|2|c01|2,
T10= |c10|4 =(G+C+/q100)2,
T01= |c01|4 =(G+C-/q200)2,
Thybrid=2|c10|2|c01|2,
C±=j=13Sjexp(iΛjG+)[Λj2-1+(ν+±ν-)Λj]/ν-2,
Sj=ΛmΛn+1(Λj-Λm)(Λj-Λn),
j, m, n=1, 2, 3;jmn; mn,
Λ3+2ν+Λ2-Λ(u-ν+2)+ν-g-ν+=0,
ν±=I(Δ100±Δ200)/(2G+),g=G-/G+,
G±=l2(q110q100±q201q200)/4;u=1+ν-2.
Thybrid=[sin2 H+(1-cos H)2ν-2/u]2/(2u2),
H=G+u.

Metrics