Abstract

The performance of two-center holographic recording is theoretically studied and described in detail. We present a systematic method for global optimization of two-center holographic recording. Whereas the method presented is general, we perform optimization for lithium niobate crystals doped with iron and manganese (LiNbO3:Fe:Mn). Both dynamic range (M/#) and sensitivity (S) are considered for global optimization, and the optimum design parameters for LiNbO3:Fe:Mn crystals are predicted. To achieve optimization we use both an analytic approach and a complete numerical approach. The absorption of light in the crystal is also considered. We show that the optimum design parameters for maximizing M/# are different from those for maximizing S. Therefore a trade-off exists between dynamic range and sensitivity. We also describe the complete dependence of S in two-center recording on the design parameters. We show in particular, for the first time to our knowledge, that S depends on the ratio of recording and sensitizing intensities and not on the absolute intensities.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  2. J. F. Heanue, M. C. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  3. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
    [CrossRef]
  4. D. Psaltis and G. W. Burr, “Holographic data storage,” IEEE Comput. 31 (2), 52–60 (1998).
    [CrossRef]
  5. D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
    [CrossRef]
  6. A. Yariv, S. S. Orlov, and G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996).
    [CrossRef]
  7. O. Mikami, “Cu-diffused layers in LiNbO3 for reversible holographic storage,” Opt. Commun. 11, 30–32 (1975).
    [CrossRef]
  8. P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
    [CrossRef]
  9. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  10. X. An, D. Psaltis, and G. W. Burr, “Thermal fixing of 10, 000 holograms in LiNbO3:Fe,” Appl. Opt. 38, 386–393 (1999).
    [CrossRef]
  11. F. Micheron and G. Bismuth, “Electrical control of fixing and erasure of holographic pattern in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
    [CrossRef]
  12. J. A. Ma, T. Chang, J. Hong, R. Neurgaonkar, G. Barbastathis, and D. Psaltis, “Electrical fixing of 1000 angle-multiplexed holograms in SBN:75,” Opt. Lett. 22, 1116–1118 (1997).
    [CrossRef] [PubMed]
  13. H. C. Kulich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987).
    [CrossRef]
  14. E. Chuang and D. Psaltis, “Storage of 1000 holograms with use of a dual-wavelength method,” Appl. Opt. 36, 8445–8454 (1997).
    [CrossRef]
  15. D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive process for optical storage in LiNbO3” Appl. Phys. Lett. 25, 155–157 (1974).
    [CrossRef]
  16. K. Buse, F. Jermann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
    [CrossRef]
  17. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
    [CrossRef] [PubMed]
  18. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
    [CrossRef]
  19. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [CrossRef]
  20. A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
    [CrossRef]
  21. A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
    [CrossRef]
  22. C. Moser, B. Schupp, and D. Psaltis, “Localized holographic recording in doubly doped lithium niobate,” Opt. Lett. 25, 162–164 (2000).
    [CrossRef]
  23. Y. Liu, L. Liu, and C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
    [CrossRef]
  24. A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
    [CrossRef]
  25. Y. W. Liu, L. R. Liu, Y. C. Guo, and C. H. Zhou, “The dynamics of holographic storage in doubly doped LiNbO3:Fe:Mn,” Acta Phys. Sin. 49, 880–886 (2000).
  26. Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Y. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
    [CrossRef]
  27. Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
    [CrossRef]
  28. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tao, “Angle-multiplexed hologram storage in LiNbO3:Tb, Fe,” Opt. Lett. 25, 1337–1339 (2000).
    [CrossRef]
  29. I. G. Kim, M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, L. Galambos, and L. Hesselink, “Volume holographic storage in near-stoichiometric LiNbO3:Ce:Mn,” Jpn. J. Appl. Phys., Part 2 39, L1094–L1069 (2000).
    [CrossRef]
  30. R. Fujimura, S. Ashihara, O. Matoba, T. Shimura, and K. Kuroda, “Enhancement of nonvolatile recording by an external field in doubly doped lithium niobate,” in Photorefractive Effects, Materials, and Devices, Vol. 62 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 212–216.
  31. A. Adibi, K. Buse, and D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001).
    [CrossRef]
  32. D. Liu, L. R. Liu, C. H. Zhou, J. Zhang, and L. Y. Xu, “Experimental study of accumulative recording during nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Microwave Opt. Technol. Lett. 32, 423–425 (2002).
    [CrossRef]
  33. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
    [CrossRef]
  34. H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  35. D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical network using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
    [CrossRef]
  36. A. Adibi, K. Buse, and D. Psaltis, “System measure for persistence in holographic recording and application to singly doped and doubly doped lithium niobate,” Appl. Opt. 40, 5175–5182 (2001).
    [CrossRef]
  37. C. Gu, J. Hong, H. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
    [CrossRef]
  38. I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
    [CrossRef]
  39. Y. P. Yang, K. Buse, and D. Psaltis, “Photorefractive recording in LiNbO3:Mn,” Opt. Lett. 27, 158–160 (2002).
    [CrossRef]
  40. Y. W. Liu, L. R. Liu, D. A. Liu, L. Y. Xu, C. H. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
    [CrossRef]
  41. E. Kratzig and H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
    [CrossRef]
  42. E. Kratzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
    [CrossRef]

2002 (2)

D. Liu, L. R. Liu, C. H. Zhou, J. Zhang, and L. Y. Xu, “Experimental study of accumulative recording during nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Microwave Opt. Technol. Lett. 32, 423–425 (2002).
[CrossRef]

Y. P. Yang, K. Buse, and D. Psaltis, “Photorefractive recording in LiNbO3:Mn,” Opt. Lett. 27, 158–160 (2002).
[CrossRef]

2001 (4)

Y. W. Liu, L. R. Liu, D. A. Liu, L. Y. Xu, C. H. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “System measure for persistence in holographic recording and application to singly doped and doubly doped lithium niobate,” Appl. Opt. 40, 5175–5182 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

2000 (9)

C. Moser, B. Schupp, and D. Psaltis, “Localized holographic recording in doubly doped lithium niobate,” Opt. Lett. 25, 162–164 (2000).
[CrossRef]

Y. Liu, L. Liu, and C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

Y. W. Liu, L. R. Liu, Y. C. Guo, and C. H. Zhou, “The dynamics of holographic storage in doubly doped LiNbO3:Fe:Mn,” Acta Phys. Sin. 49, 880–886 (2000).

Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Y. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tao, “Angle-multiplexed hologram storage in LiNbO3:Tb, Fe,” Opt. Lett. 25, 1337–1339 (2000).
[CrossRef]

I. G. Kim, M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, L. Galambos, and L. Hesselink, “Volume holographic storage in near-stoichiometric LiNbO3:Ce:Mn,” Jpn. J. Appl. Phys., Part 2 39, L1094–L1069 (2000).
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

1999 (2)

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

X. An, D. Psaltis, and G. W. Burr, “Thermal fixing of 10, 000 holograms in LiNbO3:Fe,” Appl. Opt. 38, 386–393 (1999).
[CrossRef]

1998 (4)

D. Psaltis and G. W. Burr, “Holographic data storage,” IEEE Comput. 31 (2), 52–60 (1998).
[CrossRef]

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

1997 (2)

1996 (1)

1995 (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

1994 (1)

J. F. Heanue, M. C. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

1993 (3)

1991 (1)

C. Gu, J. Hong, H. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

1988 (1)

1987 (2)

H. C. Kulich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987).
[CrossRef]

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

1977 (1)

E. Kratzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

1976 (1)

E. Kratzig and H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
[CrossRef]

1975 (1)

O. Mikami, “Cu-diffused layers in LiNbO3 for reversible holographic storage,” Opt. Commun. 11, 30–32 (1975).
[CrossRef]

1974 (1)

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive process for optical storage in LiNbO3” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

1972 (2)

F. Micheron and G. Bismuth, “Electrical control of fixing and erasure of holographic pattern in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

1971 (1)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Adibi, A.

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “System measure for persistence in holographic recording and application to singly doped and doubly doped lithium niobate,” Appl. Opt. 40, 5175–5182 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Akella, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Amodei, J. J.

D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

An, X.

Barbastathis, G.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Bismuth, G.

F. Micheron and G. Bismuth, “Electrical control of fixing and erasure of holographic pattern in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Brady, D.

Burr, G. W.

Buse, K.

Y. P. Yang, K. Buse, and D. Psaltis, “Photorefractive recording in LiNbO3:Mn,” Opt. Lett. 27, 158–160 (2002).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “System measure for persistence in holographic recording and application to singly doped and doubly doped lithium niobate,” Appl. Opt. 40, 5175–5182 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

K. Buse, F. Jermann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

Chang, T.

Chuang, E.

Furukawa, Y.

Galambos, L.

I. G. Kim, M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, L. Galambos, and L. Hesselink, “Volume holographic storage in near-stoichiometric LiNbO3:Ce:Mn,” Jpn. J. Appl. Phys., Part 2 39, L1094–L1069 (2000).
[CrossRef]

Glass, A. M.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive process for optical storage in LiNbO3” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Gu, C.

C. Gu, J. Hong, H. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Guenther, H.

Guo, Y. C.

Y. W. Liu, L. R. Liu, Y. C. Guo, and C. H. Zhou, “The dynamics of holographic storage in doubly doped LiNbO3:Fe:Mn,” Acta Phys. Sin. 49, 880–886 (2000).

Hatano, H.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hertel, P.

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Hesselink, L.

I. G. Kim, M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, L. Galambos, and L. Hesselink, “Volume holographic storage in near-stoichiometric LiNbO3:Ce:Mn,” Jpn. J. Appl. Phys., Part 2 39, L1094–L1069 (2000).
[CrossRef]

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hong, J.

J. A. Ma, T. Chang, J. Hong, R. Neurgaonkar, G. Barbastathis, and D. Psaltis, “Electrical fixing of 1000 angle-multiplexed holograms in SBN:75,” Opt. Lett. 22, 1116–1118 (1997).
[CrossRef] [PubMed]

C. Gu, J. Hong, H. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Jermann, F.

F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
[CrossRef]

K. Buse, F. Jermann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

Kim, I. G.

I. G. Kim, M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, L. Galambos, and L. Hesselink, “Volume holographic storage in near-stoichiometric LiNbO3:Ce:Mn,” Jpn. J. Appl. Phys., Part 2 39, L1094–L1069 (2000).
[CrossRef]

Kitamura, K.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kratzig, E.

E. Kratzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

E. Kratzig and H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
[CrossRef]

Krätzig, E.

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

K. Buse, F. Jermann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

Kulich, H. C.

H. C. Kulich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987).
[CrossRef]

Kurz, H.

E. Kratzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

E. Kratzig and H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
[CrossRef]

Lande, D.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Lee, M.

I. G. Kim, M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, L. Galambos, and L. Hesselink, “Volume holographic storage in near-stoichiometric LiNbO3:Ce:Mn,” Jpn. J. Appl. Phys., Part 2 39, L1094–L1069 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tao, “Angle-multiplexed hologram storage in LiNbO3:Tb, Fe,” Opt. Lett. 25, 1337–1339 (2000).
[CrossRef]

Li, H.

C. Gu, J. Hong, H. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Liu, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Liu, D.

D. Liu, L. R. Liu, C. H. Zhou, J. Zhang, and L. Y. Xu, “Experimental study of accumulative recording during nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Microwave Opt. Technol. Lett. 32, 423–425 (2002).
[CrossRef]

Liu, D. A.

Y. W. Liu, L. R. Liu, D. A. Liu, L. Y. Xu, C. H. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

Liu, L.

Liu, L. R.

D. Liu, L. R. Liu, C. H. Zhou, J. Zhang, and L. Y. Xu, “Experimental study of accumulative recording during nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Microwave Opt. Technol. Lett. 32, 423–425 (2002).
[CrossRef]

Y. W. Liu, L. R. Liu, D. A. Liu, L. Y. Xu, C. H. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
[CrossRef]

Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Y. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

Y. W. Liu, L. R. Liu, Y. C. Guo, and C. H. Zhou, “The dynamics of holographic storage in doubly doped LiNbO3:Fe:Mn,” Acta Phys. Sin. 49, 880–886 (2000).

Liu, Y.

Liu, Y. W.

Y. W. Liu, L. R. Liu, D. A. Liu, L. Y. Xu, C. H. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Y. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
[CrossRef]

Y. W. Liu, L. R. Liu, Y. C. Guo, and C. H. Zhou, “The dynamics of holographic storage in doubly doped LiNbO3:Fe:Mn,” Acta Phys. Sin. 49, 880–886 (2000).

Ma, J. A.

Macfarlane, R.

Micheron, F.

F. Micheron and G. Bismuth, “Electrical control of fixing and erasure of holographic pattern in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Mikami, O.

O. Mikami, “Cu-diffused layers in LiNbO3 for reversible holographic storage,” Opt. Commun. 11, 30–32 (1975).
[CrossRef]

Mok, F.

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Mok, F. H.

Moser, C.

Müller, M.

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

Nee, I.

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

Neurgaonkar, R.

Neurgaonkar, R. R.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Orlov, S. S.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

A. Yariv, S. S. Orlov, and G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996).
[CrossRef]

Otten, J.

Psaltis, D.

Y. P. Yang, K. Buse, and D. Psaltis, “Photorefractive recording in LiNbO3:Mn,” Opt. Lett. 27, 158–160 (2002).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “System measure for persistence in holographic recording and application to singly doped and doubly doped lithium niobate,” Appl. Opt. 40, 5175–5182 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

C. Moser, B. Schupp, and D. Psaltis, “Localized holographic recording in doubly doped lithium niobate,” Opt. Lett. 25, 162–164 (2000).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

X. An, D. Psaltis, and G. W. Burr, “Thermal fixing of 10, 000 holograms in LiNbO3:Fe,” Appl. Opt. 38, 386–393 (1999).
[CrossRef]

D. Psaltis and G. W. Burr, “Holographic data storage,” IEEE Comput. 31 (2), 52–60 (1998).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

J. A. Ma, T. Chang, J. Hong, R. Neurgaonkar, G. Barbastathis, and D. Psaltis, “Electrical fixing of 1000 angle-multiplexed holograms in SBN:75,” Opt. Lett. 22, 1116–1118 (1997).
[CrossRef] [PubMed]

E. Chuang and D. Psaltis, “Storage of 1000 holograms with use of a dual-wavelength method,” Appl. Opt. 36, 8445–8454 (1997).
[CrossRef]

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

C. Gu, J. Hong, H. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical network using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
[CrossRef]

Rakuljic, G. A.

Ringhofer, K. H.

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Rodgers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive process for optical storage in LiNbO3” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Schupp, B.

Sommerfeldt, R.

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Staebler, D. L.

D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Takekawa, S.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tao, “Angle-multiplexed hologram storage in LiNbO3:Tb, Fe,” Opt. Lett. 25, 1337–1339 (2000).
[CrossRef]

I. G. Kim, M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, L. Galambos, and L. Hesselink, “Volume holographic storage in near-stoichiometric LiNbO3:Ce:Mn,” Jpn. J. Appl. Phys., Part 2 39, L1094–L1069 (2000).
[CrossRef]

Tao, S.

von der Linde, D.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive process for optical storage in LiNbO3” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Wagner, K.

Xu, L.

Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
[CrossRef]

Xu, L. Y.

D. Liu, L. R. Liu, C. H. Zhou, J. Zhang, and L. Y. Xu, “Experimental study of accumulative recording during nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Microwave Opt. Technol. Lett. 32, 423–425 (2002).
[CrossRef]

Y. W. Liu, L. R. Liu, D. A. Liu, L. Y. Xu, C. H. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Y. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

Yang, Y. P.

Yariv, A.

Yeh, P.

C. Gu, J. Hong, H. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Zhang, J.

D. Liu, L. R. Liu, C. H. Zhou, J. Zhang, and L. Y. Xu, “Experimental study of accumulative recording during nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Microwave Opt. Technol. Lett. 32, 423–425 (2002).
[CrossRef]

Zhou, C.

Zhou, C. H.

D. Liu, L. R. Liu, C. H. Zhou, J. Zhang, and L. Y. Xu, “Experimental study of accumulative recording during nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Microwave Opt. Technol. Lett. 32, 423–425 (2002).
[CrossRef]

Y. W. Liu, L. R. Liu, D. A. Liu, L. Y. Xu, C. H. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
[CrossRef]

Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Y. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

Y. W. Liu, L. R. Liu, Y. C. Guo, and C. H. Zhou, “The dynamics of holographic storage in doubly doped LiNbO3:Fe:Mn,” Acta Phys. Sin. 49, 880–886 (2000).

Acta Phys. Sin. (1)

Y. W. Liu, L. R. Liu, Y. C. Guo, and C. H. Zhou, “The dynamics of holographic storage in doubly doped LiNbO3:Fe:Mn,” Acta Phys. Sin. 49, 880–886 (2000).

Appl. Opt. (5)

Appl. Phys. B (1)

A. Adibi, K. Buse, and D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001).
[CrossRef]

Appl. Phys. Lett. (4)

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

F. Micheron and G. Bismuth, “Electrical control of fixing and erasure of holographic pattern in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive process for optical storage in LiNbO3” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Chin. Phys. Lett. (1)

Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
[CrossRef]

Ferroelectrics (2)

K. Buse, F. Jermann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

E. Kratzig and H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
[CrossRef]

IEEE Comput. (1)

D. Psaltis and G. W. Burr, “Holographic data storage,” IEEE Comput. 31 (2), 52–60 (1998).
[CrossRef]

J. Appl. Phys. (3)

D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

C. Gu, J. Hong, H. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys., Part 2 (1)

I. G. Kim, M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, L. Galambos, and L. Hesselink, “Volume holographic storage in near-stoichiometric LiNbO3:Ce:Mn,” Jpn. J. Appl. Phys., Part 2 39, L1094–L1069 (2000).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

D. Liu, L. R. Liu, C. H. Zhou, J. Zhang, and L. Y. Xu, “Experimental study of accumulative recording during nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Microwave Opt. Technol. Lett. 32, 423–425 (2002).
[CrossRef]

Nature (1)

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Opt. Acta (1)

E. Kratzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

Opt. Commun. (3)

Y. W. Liu, L. R. Liu, D. A. Liu, L. Y. Xu, C. H. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

O. Mikami, “Cu-diffused layers in LiNbO3 for reversible holographic storage,” Opt. Commun. 11, 30–32 (1975).
[CrossRef]

H. C. Kulich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987).
[CrossRef]

Opt. Lett. (8)

Phys. Status Solidi A (1)

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Sci. Am. (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Science (2)

J. F. Heanue, M. C. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Other (1)

R. Fujimura, S. Ashihara, O. Matoba, T. Shimura, and K. Kuroda, “Enhancement of nonvolatile recording by an external field in doubly doped lithium niobate,” in Photorefractive Effects, Materials, and Devices, Vol. 62 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 212–216.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Typical recording readout curve for two-center holographic recording. During the readout the hologram is partially erased. The remaining hologram persists against further readout.

Fig. 2
Fig. 2

Hologram strength versus time for a typical recording in a 1-mm-thick LiNbO3 crystal doped with 0.15 wt. % Fe2O3 and 0.002 wt. % MnO by transmission geometry with Θ=21.7°. Initially, 80% of the Mn traps are filled with electrons. Sensitizing and recording intensities are 20 and 250 mW/cm2, respectively. The absorption of both recording and sensitizing beams is neglected in this simulation. The polarization of the recording beams is ordinary.

Fig. 3
Fig. 3

Hologram strength at the beginning of recording used to show the difference between a monoexponential approximation and the accurate numerical solution. Sensitivity, by definition, is the initial slope of each curve. The parameters of recording are the same as those given in the caption of Fig. 2.

Fig. 4
Fig. 4

Effect of readout intensity on hologram strength during the readout phase. The hologram is recorded in a 1-mm-thick LiNbO3 crystal doped with 0.075 wt. % Fe2O3 and 0.01 wt. % MnO. Initially, 90% of the Mn traps are filled with electrons. Sensitizing and recording intensities are 20 and 500 mW/cm2, respectively. The recording dynamics is the same in all cases. Readout intensities I=150 mW/cm2 and I=25 mW/cm2 are constant with time; for I=12.5(1-cos[(t-500)/16])mW/cm2, t represents time in minutes.

Fig. 5
Fig. 5

Variation of (a) M/# and (b) S with Fe concentration in a 1-mm-thick LiNbO3:Fe:Mn crystal. The Mn concentration is fixed at 3.8×1024 m-3. Initially, 90% of the Mn traps are filled with electrons. The sensitizing and recording wavelengths are 365 nm (UV) and 633 nm (red), respectively. Intensity ratio (IR/IUV) is 25 for both cases.

Fig. 6
Fig. 6

Variation of S with sensitizing intensity for a 1-mm-thick LiNbO3:Fe:Mn crystal doped with 0.075 wt. % Fe2O3 and 0.01 wt. % MnO. Initially, 90% of the Mn traps are filled with electrons. The sensitizing and recording wavelengths are 365 nm (UV) and 633 nm (red), respectively. The intensity ratio is fixed, and both the sensitizing and the recording intensities vary.

Fig. 7
Fig. 7

Energy-band diagram for a typical LiNbO3 crystal doped with Fe and Mn. CB and VB are conduction and valence bands, respectively.

Fig. 8
Fig. 8

Variation of (a) M/# and (b) S with Mn concentration for a 1-mm-thick LiNbO3:Fe:Mn crystal doped with 0.15 wt. % Fe2O3. The sensitizing and recording wavelengths are 365 nm (UV) and 633 nm (red), respectively. For M/# in (a) the intensity ratio (IR/IUV) is 1, and initially 85% of the Mn traps are filled with electrons. For sensitivity in (b) the intensity ratio (IR/IUV) is 0.01 and initially 90% of the Mn traps are filled with electrons. These parameter values were selected to include the optimum M/# and S in the figures.

Fig. 9
Fig. 9

Variation of (a) M/# and (b) S with initial oxidization–reduction state for a 1-mm-thick LiNbO3:Fe:Mn crystal doped with 0.15 wt. % Fe2O3. The sensitizing and recording wavelengths, are 365 nm (UV) and 633 nm (red), respectively. For M/# in (a) the intensity ratio and the Mn concentration are 1 and 8.8×1023 m-3, respectively. For sensitivity in (b) the intensity ratio and the Mn concentration are 0.01 and 3.7×1025 m-3, respectively. The parameter values were chosen to include the optimum M/# and S in the figures.

Fig. 10
Fig. 10

Variation of (a) M/# and (b) S with intensity ratio for a 1-mm-thick LiNbO3:Fe:Mn crystal doped with 0.15 wt. % Fe2O3. The sensitizing and recording wavelengths are 365 nm (UV) and 633 nm (red), respectively. For M/# in (a) the Mn concentration and the acceptor concentration (NA) are 8.8×1023 and 7.5×1023 m-3, respectively. For sensitivity in (b) the Mn concentration and the acceptor concentration are 3.7×1025 and 3.3×1025 m-3, respectively. The parameter values are chosen to include the optimum M/# and S in the figures.

Tables (3)

Tables Icon

Table 1 Description of the Parameters Used in the Notation in This Paper a

Tables Icon

Table 2 Crystal Parameters for LiNbO3 at 514- and 404-nm Wavelengths

Tables Icon

Table 3 Optimum Design Parameters and Optimum M/# and S for LiNbO3:Fe:Mn a

Equations (51)

Equations on this page are rendered with MathJax. Learn more.

ND-t=-(qD,LsD,LIL+qD,HsD,HIH)ND-+γDn(ND-ND-),
NS-t=-(qS,LsS,LIL+qS,HsS,HIH)NS-+γSn(NS-NS-),
jx=eND-t+NS-t+nt,
j=eμnE+kBTμ nx+(κD,LIL+κD,HIH)ND-+(κS,LIL+κS,HIH)NS-,
Ex=-eεε0 (ND-+NS-+n-NA),
dND0-dt=-(qD,LsD,LIL0+qD,HsD,HIH)ND0-+γDn0(ND-ND0-),
dNS0-dt=-(qS,LsS,LIL0+qS,HsS,HIH)NS0-+γSn0(NS-NS0-),
0=ND0-+NS0-+n0-NA,
dND1-dt=-(qD,LsD,LIL0+qD,HsD,HIH)ND1--qD,LsD,LmIL0ND0-+γDn1(ND-ND0-)-γDn0ND1-,
dNS1-dt=-(qS,LsS,LIL0+qS,HsS,HIH)NS1--qS,LsS,LmIL0NS0-+γSn1(NS-NS0-)-γSn0NS1-,
-iKe j1=dND1-dt+dNS1-dt+dn1dt,
j1=eμn0E1-ikBTμKn1+(κD,LIL0+κD,HIH)ND1-+κD,LmIL0ND0-+(κS,LIL0+κS,HIH)NS1-+κS,LmIL0NS0-,
iKe E1=ND1-+NS1-+n1εε0.
S=1ILd×dηdtt=0,
E1ESC[1-exp(-t/τr)],
M/#=πn3rd2λrcos(Θ) ESC β,
ESCκFe,RNFe0-eμn0 mIR0×CF,
τrεε0eμn0+γFe(NFe-NFe0-)+γMn(NMn-NMn0-)H.
S=1εε0πn3r2λrcos(Θ) (κD,LND0-|t=0+κS,LNS0-|t=0)mβ,
P(W) d2E1dW2+Q(W) dE1dW+R(W)E1=0,
W=ND-NA+NS0-(t)
(M/#)total=alli(M/#)i.
Stotal=Δzdalli Si.
M/#NFeO-n0CF,
SNFeO-NMnNMn+ξ,
ESC=E1|t-1εε0BSγS(NS-NS0-)+BDγD(ND-ND0-)CSγS(NS-NS0-)+CDγD(ND-ND0-)mIL0,
BS=(κS,LNS0-+κD,LND0-)(qD,LsD,LIL0+qD,HsD,HIH+γDn0)+qD,LsD,LND0-[(κS,L-κD,L)IL0+(κS,H-κD,H)IH],
BD=(κS,LNS0-+κD,LND0-)(qS,LsS,LIL0+qS,HsS,HIH+γSn0)+qS,LsS,LNS0-[(κD,L-κS,L)IL0+(κD,H-κS,H)IH],
CS=eμn0εε0+iKe (κS,LIL0+κS,HIH)(qD,LsD,LIL0+qD,HsD,HIH+γDn0),
CD=eμn0εε0+iKe (κD,LIL0+κD,HIH)(qS,LsS,LIL0+qS,HsS,HIH+γSn0),
NS0-={[ΓD(ND-NA)-ΓS(NS-NA)]2+4ΓDΓSNDNS}1/2-ΓS(NS+NA)-ΓD(ND-NA)2(ΓD-ΓS),
ND0-=NA-NS0-,
n0=(ΓD/γS)NS0-+(ΓS/γD)ND0-γS(NS-NS0-)+γD(ND-ND0-),
ΓS=γS(qD,LsD,LIL0+qD,HsD,HIH),
ΓD=γD(qS,LsS,LIL0+qS,HsS,HIH).
τrGSγS(NS-NS0-)+GDγD(ND-ND0-)CSγS(NS-NS0-)+CDγD(ND-ND0-),
GS=eμn0εε0+iKe (κS,LIL0+κS,HIH)+(qD,LsD,LIL0+qD,HsD,HIH+γDn0),
GD=eμn0εε0+iKe (κD,LIL0+κD,HIH)+(qS,LsS,LIL0+qS,HsS,HIH+γSn0).
ESC=κFe,RNFe0-eμn0 mIR0×CF,
CF=1+qFe,RsFe,RIR0γMn(NMn-NMn0-)H-1,
H=qFe,UVsFe,UVIUVγMn(NMn-NMn0-)+qMn,UVsMn,UVIUVγFe(NFe-NFe0-)+γFeγMnn0(NMn+NFe-NA).
τrεε0eμn0+γFe(NFe-NFe0-)+γMn(NMn-NMn0-)H.
IR(t)=I0γFeNFeγMn[NMn-NA+NFe0-(t)]+1,
NFe0-(t)=N0exp(-qFe,RsFe,RI0t),
ddt=-qFe,RsFe,RI0(W-NMn+NA) ddW.
P(W) d2E1dW2+Q(W) dE1dW+R(W)E1=0,
P(W)=γMnW2(γMnW2+[γFeNFe+γMn(NA-NMn)]W+γFeNFe(NA-NMn)),
Q(W)=-WγMneμεε0+γFeW2+eμεε0 [γFeNFe+γMn(NA-NMn)]+γFeγMn(NA-NMn)+iKκFe,ReqFe,RsFe,R γFeγMnNFeW+eμεε0γFeNFe(NA-NMn)+iKκFe,ReqFe,RsFe,R γFe2NFe2,
R(W)=eμεε0 (γFe+γMn)W2+eμεε0 [γFeNFe+(γFe+γMn)(NA-NMn)]+iKκFe,ReqFe,RsFe,R γFeγMnNFeW+eμεε0 γFeNFe(NA-NMn)+iKκFe,ReqFe,RsFe,R γFe2NFe2,
E1(W0)=E1(t=0)=ESC,
dE1dWW=W0=eεε02μiK1γMnW0+κFe,Rεε0qFe,RsFe,R1N0×1+γFeNFeγMnW0NFe1-(t=0),

Metrics