Abstract

We numerically investigate the characteristics of a longitudinally pumped 18.9-nm nickellike molybdenum x-ray laser generated by use of plasma waveguides. We take into account the temporal deformation of the longitudinal pump pulse, which is shown greatly to affect the overall x-ray laser’s performance. The dependence of the spatial and temporal distribution of gain within the waveguide on parameters such as electron density, pump intensity, and wavelength is investigated. The problem of small-scale density perturbations within the relatively high-density preplasma is also addressed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Li, T. Ozaki, T. Kanai, and H. Kuroda, “Proposal of a longitudinally pumped saturated Ni-like Mo ion x-ray laser at 18.9 nm,” Phys. Rev. E 57, 7093-7102 (1998).
    [CrossRef]
  2. R. Li and Z. Z. Xu, “Highly efficient transient collisional excitation x-ray laser in Ni-like Mo ions,” J. Phys. IV 11, 27-34 (2001).
  3. K. A. Janulewicz, J. J. Rocca, F. Bortolotto, M. P. Kalachnikov, V. N. Shlyaptsev, W. Sandner, and P. V. Nickles, “Demonstration of a hybrid collisional soft-x-ray laser,” Phys. Rev. A 63, 033803/1-5 (2001).
    [CrossRef]
  4. P. V. Nickles, K. A. Janulewicz, J. J. Rocca, F. Bortolotto, A. Lucianetti, and W. Wandner, “Hybridly pumped collisional soft x-ray laser in Ne-like sulphur,” J. Phys. IV 11, PR2/93-PR2/98 (2001).
  5. K. G. Whitney and J. Davis, “Hot-spot model of K-line emission from laser-heated plasmas,” J. Appl. Phys. 45, 5294-5302 (1974).
    [CrossRef]
  6. D. S. Goodman, “Geometric optics,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), pp. 1.20-1.24.
  7. C. G. Durfee III, J. Lynch, and H. M. Milchberg, “Development of a plasma waveguide for high-intensity laser pulses,” Phys. Rev. E 51, 2368-2389 (1995).
    [CrossRef]
  8. K. G. Whitney, A. Dasgupta, and P. E. Pulsifer, “Transient ultrahigh gains as a diagnostic in short-pulse heated selenium plasmas,” Phys. Rev. E 50, 468-473 (1994).
    [CrossRef]
  9. R. Li, T. Ozaki, and H. Kuroda, “Simulation and optimization of the picosecond-laser-driven Ne-like Ge x-ray laser,” J. Opt. Soc. Am. B 15, 2240-2248 (1998).
    [CrossRef]
  10. J. Nilsen, “Design of a picosecond-laser-driven Ni-like Mo x-ray laser near 20 nm,” J. Opt. Soc. Am. B 14, 1511-1514 (1997).
    [CrossRef]
  11. J. Itatani, T. Kanai, T. Ozaki, and H. Kuroda, “Nd:glass and Ti:sapphire hybrid short pulse laser system,” Prog. Cryst. Growth Charact. Mater. 33, 281-284 (1996).
    [CrossRef]
  12. T. Ozaki, H. Nakano, and H. Kuroda, “Effects of pump propagation and absorption on the gain distribution of longitudinally pumped nickellike molybdenum x-ray lasers,” Phys. Rev. E (to be published).
  13. H. Hora, Plasmas at High Temperature and Density (Springer-Verlag, Berlin, 1991).
  14. J. D. Moody, B. J. MacGowan, S. H. Glenzer, R. K. Kirkwood, W. L. Kruer, D. S. Montgomery, A. J. Schmitt, E. A. Williams, and G. F. Stone, “Experimental investigation of short scalelength density fluctuations in laser-produced plasmas,” Phys. Plasmas 7, 2114–2125 (2000).
    [CrossRef]

2001 (3)

R. Li and Z. Z. Xu, “Highly efficient transient collisional excitation x-ray laser in Ni-like Mo ions,” J. Phys. IV 11, 27-34 (2001).

K. A. Janulewicz, J. J. Rocca, F. Bortolotto, M. P. Kalachnikov, V. N. Shlyaptsev, W. Sandner, and P. V. Nickles, “Demonstration of a hybrid collisional soft-x-ray laser,” Phys. Rev. A 63, 033803/1-5 (2001).
[CrossRef]

P. V. Nickles, K. A. Janulewicz, J. J. Rocca, F. Bortolotto, A. Lucianetti, and W. Wandner, “Hybridly pumped collisional soft x-ray laser in Ne-like sulphur,” J. Phys. IV 11, PR2/93-PR2/98 (2001).

2000 (1)

J. D. Moody, B. J. MacGowan, S. H. Glenzer, R. K. Kirkwood, W. L. Kruer, D. S. Montgomery, A. J. Schmitt, E. A. Williams, and G. F. Stone, “Experimental investigation of short scalelength density fluctuations in laser-produced plasmas,” Phys. Plasmas 7, 2114–2125 (2000).
[CrossRef]

1998 (2)

R. Li, T. Ozaki, T. Kanai, and H. Kuroda, “Proposal of a longitudinally pumped saturated Ni-like Mo ion x-ray laser at 18.9 nm,” Phys. Rev. E 57, 7093-7102 (1998).
[CrossRef]

R. Li, T. Ozaki, and H. Kuroda, “Simulation and optimization of the picosecond-laser-driven Ne-like Ge x-ray laser,” J. Opt. Soc. Am. B 15, 2240-2248 (1998).
[CrossRef]

1997 (1)

1996 (1)

J. Itatani, T. Kanai, T. Ozaki, and H. Kuroda, “Nd:glass and Ti:sapphire hybrid short pulse laser system,” Prog. Cryst. Growth Charact. Mater. 33, 281-284 (1996).
[CrossRef]

1995 (1)

C. G. Durfee III, J. Lynch, and H. M. Milchberg, “Development of a plasma waveguide for high-intensity laser pulses,” Phys. Rev. E 51, 2368-2389 (1995).
[CrossRef]

1994 (1)

K. G. Whitney, A. Dasgupta, and P. E. Pulsifer, “Transient ultrahigh gains as a diagnostic in short-pulse heated selenium plasmas,” Phys. Rev. E 50, 468-473 (1994).
[CrossRef]

1974 (1)

K. G. Whitney and J. Davis, “Hot-spot model of K-line emission from laser-heated plasmas,” J. Appl. Phys. 45, 5294-5302 (1974).
[CrossRef]

Bortolotto, F.

K. A. Janulewicz, J. J. Rocca, F. Bortolotto, M. P. Kalachnikov, V. N. Shlyaptsev, W. Sandner, and P. V. Nickles, “Demonstration of a hybrid collisional soft-x-ray laser,” Phys. Rev. A 63, 033803/1-5 (2001).
[CrossRef]

P. V. Nickles, K. A. Janulewicz, J. J. Rocca, F. Bortolotto, A. Lucianetti, and W. Wandner, “Hybridly pumped collisional soft x-ray laser in Ne-like sulphur,” J. Phys. IV 11, PR2/93-PR2/98 (2001).

Dasgupta, A.

K. G. Whitney, A. Dasgupta, and P. E. Pulsifer, “Transient ultrahigh gains as a diagnostic in short-pulse heated selenium plasmas,” Phys. Rev. E 50, 468-473 (1994).
[CrossRef]

Davis, J.

K. G. Whitney and J. Davis, “Hot-spot model of K-line emission from laser-heated plasmas,” J. Appl. Phys. 45, 5294-5302 (1974).
[CrossRef]

Durfee III, C. G.

C. G. Durfee III, J. Lynch, and H. M. Milchberg, “Development of a plasma waveguide for high-intensity laser pulses,” Phys. Rev. E 51, 2368-2389 (1995).
[CrossRef]

Glenzer, S. H.

J. D. Moody, B. J. MacGowan, S. H. Glenzer, R. K. Kirkwood, W. L. Kruer, D. S. Montgomery, A. J. Schmitt, E. A. Williams, and G. F. Stone, “Experimental investigation of short scalelength density fluctuations in laser-produced plasmas,” Phys. Plasmas 7, 2114–2125 (2000).
[CrossRef]

Itatani, J.

J. Itatani, T. Kanai, T. Ozaki, and H. Kuroda, “Nd:glass and Ti:sapphire hybrid short pulse laser system,” Prog. Cryst. Growth Charact. Mater. 33, 281-284 (1996).
[CrossRef]

Janulewicz, K. A.

P. V. Nickles, K. A. Janulewicz, J. J. Rocca, F. Bortolotto, A. Lucianetti, and W. Wandner, “Hybridly pumped collisional soft x-ray laser in Ne-like sulphur,” J. Phys. IV 11, PR2/93-PR2/98 (2001).

K. A. Janulewicz, J. J. Rocca, F. Bortolotto, M. P. Kalachnikov, V. N. Shlyaptsev, W. Sandner, and P. V. Nickles, “Demonstration of a hybrid collisional soft-x-ray laser,” Phys. Rev. A 63, 033803/1-5 (2001).
[CrossRef]

Kalachnikov, M. P.

K. A. Janulewicz, J. J. Rocca, F. Bortolotto, M. P. Kalachnikov, V. N. Shlyaptsev, W. Sandner, and P. V. Nickles, “Demonstration of a hybrid collisional soft-x-ray laser,” Phys. Rev. A 63, 033803/1-5 (2001).
[CrossRef]

Kanai, T.

R. Li, T. Ozaki, T. Kanai, and H. Kuroda, “Proposal of a longitudinally pumped saturated Ni-like Mo ion x-ray laser at 18.9 nm,” Phys. Rev. E 57, 7093-7102 (1998).
[CrossRef]

J. Itatani, T. Kanai, T. Ozaki, and H. Kuroda, “Nd:glass and Ti:sapphire hybrid short pulse laser system,” Prog. Cryst. Growth Charact. Mater. 33, 281-284 (1996).
[CrossRef]

Kirkwood, R. K.

J. D. Moody, B. J. MacGowan, S. H. Glenzer, R. K. Kirkwood, W. L. Kruer, D. S. Montgomery, A. J. Schmitt, E. A. Williams, and G. F. Stone, “Experimental investigation of short scalelength density fluctuations in laser-produced plasmas,” Phys. Plasmas 7, 2114–2125 (2000).
[CrossRef]

Kruer, W. L.

J. D. Moody, B. J. MacGowan, S. H. Glenzer, R. K. Kirkwood, W. L. Kruer, D. S. Montgomery, A. J. Schmitt, E. A. Williams, and G. F. Stone, “Experimental investigation of short scalelength density fluctuations in laser-produced plasmas,” Phys. Plasmas 7, 2114–2125 (2000).
[CrossRef]

Kuroda, H.

R. Li, T. Ozaki, T. Kanai, and H. Kuroda, “Proposal of a longitudinally pumped saturated Ni-like Mo ion x-ray laser at 18.9 nm,” Phys. Rev. E 57, 7093-7102 (1998).
[CrossRef]

R. Li, T. Ozaki, and H. Kuroda, “Simulation and optimization of the picosecond-laser-driven Ne-like Ge x-ray laser,” J. Opt. Soc. Am. B 15, 2240-2248 (1998).
[CrossRef]

J. Itatani, T. Kanai, T. Ozaki, and H. Kuroda, “Nd:glass and Ti:sapphire hybrid short pulse laser system,” Prog. Cryst. Growth Charact. Mater. 33, 281-284 (1996).
[CrossRef]

Li, R.

R. Li and Z. Z. Xu, “Highly efficient transient collisional excitation x-ray laser in Ni-like Mo ions,” J. Phys. IV 11, 27-34 (2001).

R. Li, T. Ozaki, T. Kanai, and H. Kuroda, “Proposal of a longitudinally pumped saturated Ni-like Mo ion x-ray laser at 18.9 nm,” Phys. Rev. E 57, 7093-7102 (1998).
[CrossRef]

R. Li, T. Ozaki, and H. Kuroda, “Simulation and optimization of the picosecond-laser-driven Ne-like Ge x-ray laser,” J. Opt. Soc. Am. B 15, 2240-2248 (1998).
[CrossRef]

Lucianetti, A.

P. V. Nickles, K. A. Janulewicz, J. J. Rocca, F. Bortolotto, A. Lucianetti, and W. Wandner, “Hybridly pumped collisional soft x-ray laser in Ne-like sulphur,” J. Phys. IV 11, PR2/93-PR2/98 (2001).

Lynch, J.

C. G. Durfee III, J. Lynch, and H. M. Milchberg, “Development of a plasma waveguide for high-intensity laser pulses,” Phys. Rev. E 51, 2368-2389 (1995).
[CrossRef]

MacGowan, B. J.

J. D. Moody, B. J. MacGowan, S. H. Glenzer, R. K. Kirkwood, W. L. Kruer, D. S. Montgomery, A. J. Schmitt, E. A. Williams, and G. F. Stone, “Experimental investigation of short scalelength density fluctuations in laser-produced plasmas,” Phys. Plasmas 7, 2114–2125 (2000).
[CrossRef]

Milchberg, H. M.

C. G. Durfee III, J. Lynch, and H. M. Milchberg, “Development of a plasma waveguide for high-intensity laser pulses,” Phys. Rev. E 51, 2368-2389 (1995).
[CrossRef]

Montgomery, D. S.

J. D. Moody, B. J. MacGowan, S. H. Glenzer, R. K. Kirkwood, W. L. Kruer, D. S. Montgomery, A. J. Schmitt, E. A. Williams, and G. F. Stone, “Experimental investigation of short scalelength density fluctuations in laser-produced plasmas,” Phys. Plasmas 7, 2114–2125 (2000).
[CrossRef]

Moody, J. D.

J. D. Moody, B. J. MacGowan, S. H. Glenzer, R. K. Kirkwood, W. L. Kruer, D. S. Montgomery, A. J. Schmitt, E. A. Williams, and G. F. Stone, “Experimental investigation of short scalelength density fluctuations in laser-produced plasmas,” Phys. Plasmas 7, 2114–2125 (2000).
[CrossRef]

Nickles, P. V.

K. A. Janulewicz, J. J. Rocca, F. Bortolotto, M. P. Kalachnikov, V. N. Shlyaptsev, W. Sandner, and P. V. Nickles, “Demonstration of a hybrid collisional soft-x-ray laser,” Phys. Rev. A 63, 033803/1-5 (2001).
[CrossRef]

P. V. Nickles, K. A. Janulewicz, J. J. Rocca, F. Bortolotto, A. Lucianetti, and W. Wandner, “Hybridly pumped collisional soft x-ray laser in Ne-like sulphur,” J. Phys. IV 11, PR2/93-PR2/98 (2001).

Nilsen, J.

Ozaki, T.

R. Li, T. Ozaki, and H. Kuroda, “Simulation and optimization of the picosecond-laser-driven Ne-like Ge x-ray laser,” J. Opt. Soc. Am. B 15, 2240-2248 (1998).
[CrossRef]

R. Li, T. Ozaki, T. Kanai, and H. Kuroda, “Proposal of a longitudinally pumped saturated Ni-like Mo ion x-ray laser at 18.9 nm,” Phys. Rev. E 57, 7093-7102 (1998).
[CrossRef]

J. Itatani, T. Kanai, T. Ozaki, and H. Kuroda, “Nd:glass and Ti:sapphire hybrid short pulse laser system,” Prog. Cryst. Growth Charact. Mater. 33, 281-284 (1996).
[CrossRef]

Pulsifer, P. E.

K. G. Whitney, A. Dasgupta, and P. E. Pulsifer, “Transient ultrahigh gains as a diagnostic in short-pulse heated selenium plasmas,” Phys. Rev. E 50, 468-473 (1994).
[CrossRef]

Rocca, J. J.

P. V. Nickles, K. A. Janulewicz, J. J. Rocca, F. Bortolotto, A. Lucianetti, and W. Wandner, “Hybridly pumped collisional soft x-ray laser in Ne-like sulphur,” J. Phys. IV 11, PR2/93-PR2/98 (2001).

K. A. Janulewicz, J. J. Rocca, F. Bortolotto, M. P. Kalachnikov, V. N. Shlyaptsev, W. Sandner, and P. V. Nickles, “Demonstration of a hybrid collisional soft-x-ray laser,” Phys. Rev. A 63, 033803/1-5 (2001).
[CrossRef]

Sandner, W.

K. A. Janulewicz, J. J. Rocca, F. Bortolotto, M. P. Kalachnikov, V. N. Shlyaptsev, W. Sandner, and P. V. Nickles, “Demonstration of a hybrid collisional soft-x-ray laser,” Phys. Rev. A 63, 033803/1-5 (2001).
[CrossRef]

Schmitt, A. J.

J. D. Moody, B. J. MacGowan, S. H. Glenzer, R. K. Kirkwood, W. L. Kruer, D. S. Montgomery, A. J. Schmitt, E. A. Williams, and G. F. Stone, “Experimental investigation of short scalelength density fluctuations in laser-produced plasmas,” Phys. Plasmas 7, 2114–2125 (2000).
[CrossRef]

Shlyaptsev, V. N.

K. A. Janulewicz, J. J. Rocca, F. Bortolotto, M. P. Kalachnikov, V. N. Shlyaptsev, W. Sandner, and P. V. Nickles, “Demonstration of a hybrid collisional soft-x-ray laser,” Phys. Rev. A 63, 033803/1-5 (2001).
[CrossRef]

Stone, G. F.

J. D. Moody, B. J. MacGowan, S. H. Glenzer, R. K. Kirkwood, W. L. Kruer, D. S. Montgomery, A. J. Schmitt, E. A. Williams, and G. F. Stone, “Experimental investigation of short scalelength density fluctuations in laser-produced plasmas,” Phys. Plasmas 7, 2114–2125 (2000).
[CrossRef]

Wandner, W.

P. V. Nickles, K. A. Janulewicz, J. J. Rocca, F. Bortolotto, A. Lucianetti, and W. Wandner, “Hybridly pumped collisional soft x-ray laser in Ne-like sulphur,” J. Phys. IV 11, PR2/93-PR2/98 (2001).

Whitney, K. G.

K. G. Whitney, A. Dasgupta, and P. E. Pulsifer, “Transient ultrahigh gains as a diagnostic in short-pulse heated selenium plasmas,” Phys. Rev. E 50, 468-473 (1994).
[CrossRef]

K. G. Whitney and J. Davis, “Hot-spot model of K-line emission from laser-heated plasmas,” J. Appl. Phys. 45, 5294-5302 (1974).
[CrossRef]

Williams, E. A.

J. D. Moody, B. J. MacGowan, S. H. Glenzer, R. K. Kirkwood, W. L. Kruer, D. S. Montgomery, A. J. Schmitt, E. A. Williams, and G. F. Stone, “Experimental investigation of short scalelength density fluctuations in laser-produced plasmas,” Phys. Plasmas 7, 2114–2125 (2000).
[CrossRef]

Xu, Z. Z.

R. Li and Z. Z. Xu, “Highly efficient transient collisional excitation x-ray laser in Ni-like Mo ions,” J. Phys. IV 11, 27-34 (2001).

J. Appl. Phys. (1)

K. G. Whitney and J. Davis, “Hot-spot model of K-line emission from laser-heated plasmas,” J. Appl. Phys. 45, 5294-5302 (1974).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. IV (2)

R. Li and Z. Z. Xu, “Highly efficient transient collisional excitation x-ray laser in Ni-like Mo ions,” J. Phys. IV 11, 27-34 (2001).

P. V. Nickles, K. A. Janulewicz, J. J. Rocca, F. Bortolotto, A. Lucianetti, and W. Wandner, “Hybridly pumped collisional soft x-ray laser in Ne-like sulphur,” J. Phys. IV 11, PR2/93-PR2/98 (2001).

Phys. Plasmas (1)

J. D. Moody, B. J. MacGowan, S. H. Glenzer, R. K. Kirkwood, W. L. Kruer, D. S. Montgomery, A. J. Schmitt, E. A. Williams, and G. F. Stone, “Experimental investigation of short scalelength density fluctuations in laser-produced plasmas,” Phys. Plasmas 7, 2114–2125 (2000).
[CrossRef]

Phys. Rev. A (1)

K. A. Janulewicz, J. J. Rocca, F. Bortolotto, M. P. Kalachnikov, V. N. Shlyaptsev, W. Sandner, and P. V. Nickles, “Demonstration of a hybrid collisional soft-x-ray laser,” Phys. Rev. A 63, 033803/1-5 (2001).
[CrossRef]

Phys. Rev. E (3)

R. Li, T. Ozaki, T. Kanai, and H. Kuroda, “Proposal of a longitudinally pumped saturated Ni-like Mo ion x-ray laser at 18.9 nm,” Phys. Rev. E 57, 7093-7102 (1998).
[CrossRef]

C. G. Durfee III, J. Lynch, and H. M. Milchberg, “Development of a plasma waveguide for high-intensity laser pulses,” Phys. Rev. E 51, 2368-2389 (1995).
[CrossRef]

K. G. Whitney, A. Dasgupta, and P. E. Pulsifer, “Transient ultrahigh gains as a diagnostic in short-pulse heated selenium plasmas,” Phys. Rev. E 50, 468-473 (1994).
[CrossRef]

Prog. Cryst. Growth Charact. Mater. (1)

J. Itatani, T. Kanai, T. Ozaki, and H. Kuroda, “Nd:glass and Ti:sapphire hybrid short pulse laser system,” Prog. Cryst. Growth Charact. Mater. 33, 281-284 (1996).
[CrossRef]

Other (3)

T. Ozaki, H. Nakano, and H. Kuroda, “Effects of pump propagation and absorption on the gain distribution of longitudinally pumped nickellike molybdenum x-ray lasers,” Phys. Rev. E (to be published).

H. Hora, Plasmas at High Temperature and Density (Springer-Verlag, Berlin, 1991).

D. S. Goodman, “Geometric optics,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), pp. 1.20-1.24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) 18.9-nm gain, (b) gain–length product, and (c) pump intensity and delay as functions of distance from the entrance of the waveguide. The electron density and the temperature of the waveguide plasma are 3×1020 cm-3 and 65 eV, respectively. Time t=+0.15 ps corresponds to the x-ray beam’s experiencing maximum gain; the other two curves represent times 0.5 ps before and after this maximum.

Fig. 2
Fig. 2

Maximum gain–length (gL) product as a function of peak pump intensity. The numbers on the curves correspond to length of the waveguide. The electron density and the temperature of the waveguide are 3×1020 cm-3 and 65 eV, respectively.

Fig. 3
Fig. 3

Maximum gain–length (gL) product as a function of waveguide electron density for a Nd:glass laser pump. The numbers on the curves correspond to the length of the waveguide. The pump intensity and the temperature of the waveguide are 100 PW cm-2 and 65 eV, respectively.

Fig. 4
Fig. 4

Maximum gain–length (gL) product as a function of waveguide electron density for a KrF laser pump. The numbers on the curves correspond to the length of the waveguide. The pump intensity and the temperature of the waveguide are 100 PW cm-2 and 65 eV, respectively.

Fig. 5
Fig. 5

Longitudinal pump delay Δt as a function of pump intensity for (a) a KrF laser and ne/nc=0.30, (b) a KrF laser and ne/nc=0.15, (c) a Nd:glass laser and ne/nc=0.30, and (d) a Nd:glass laser and ne/nc=0.15.

Fig. 6
Fig. 6

Results of ray-trace calculations for Nd:glass laser beams within a waveguide with maximum density perturbations of (a) 8% and (b) 5%. The electron density of the waveguide is 3×1020 cm-3.

Fig. 7
Fig. 7

Spatial distribution of 18.9-nm gain within a plasma waveguide with an electron density of 3×1020 cm-3 and a maximum density perturbation of 8%. The pump is a Nd:glass laser with a peak intensity of 100 PW cm-2.

Fig. 8
Fig. 8

Results of ray-trace calculations for KrF laser beams within a waveguide with a maximum density perturbation of 8% and an electron density of 3×1020 cm-3.

Fig. 9
Fig. 9

Spatial distribution of an 18.9-nm gain within a plasma waveguide with an electron density of 3×1020 cm-3 and a maximum density perturbation of 8%. The pump is a KrF laser with a peak intensity of 100 PW cm-2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ne=n0(rw0)n0+d×(r-w0)2(rw0),

Metrics