Abstract

We investigate the coupling of two single point-defect microcavities formed in a two-dimensional photonic-crystal slab. The mode structure is probed using photoluminescence spectroscopy of self-assembled InGaAs quantum dots embedded in GaAs/AlGaAs membrane-based, photonic-crystal microcavities. As a baseline, we start from single defect cavities: We observe defect states originating from both the ground and the first-excited slab waveguide mode, depending on the photonic-crystal lattice period. This is explained using three-dimensional, plane-wave-expansion calculations. In the case of coupling between two such single defects, a splitting of the mode energies into binding and antibinding states controlled by the coupling strength is observed. These photonic-defect–molecule states are identified by a comparison of their expected far-field distributions with polarization-dependent measurements.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380-3383 (1991).
    [CrossRef] [PubMed]
  4. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275-285 (1999).
    [CrossRef]
  5. T. Yoshie, A. Scherer, H. Chen, D. Hufaker, and D. Deppe, “Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters,” Appl. Phys. Lett. 79, 114-116 (2001).
    [CrossRef]
  6. C. Reese, B. Gayral, B. D. Geradot, A. Imamoglu, P. M. Petroff, and E. Hu, “High-Q photonic crystal microcavities fabricated in a thin GaAs membrane,” J. Vac. Sci. Technol. B 19, 2749-2752 (2001).
    [CrossRef]
  7. T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289-4291 (2001).
    [CrossRef]
  8. O. Painter and K. Srinivasan, “Polarization properties of dipolelike defect modes in photonic crystal nanocavities,” Opt. Lett. 27, 339-341 (2002).
    [CrossRef]
  9. R. Coccioli, M. Borodsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectronics 145, S. 391-397 (1998).
  10. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282-2285 (2000).
    [CrossRef] [PubMed]
  11. G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903-3906 (2001).
    [CrossRef] [PubMed]
  12. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
    [CrossRef]
  13. A. Imamoglu, D. D. Awschalom, G. Bukard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
    [CrossRef]
  14. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  15. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
    [CrossRef]
  16. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608-610 (2000).
    [CrossRef] [PubMed]
  17. G. Tayeb and D. Maystre, “Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities,” J. Opt. Soc. Am. A 14, 3323-3332 (1997).
    [CrossRef]
  18. E. Centeno and D. Felbacq, “Rabi oscillations in bidimensional photonic crystals,” Phys. Rev. B 62, 10101-10108 (2000).
    [CrossRef]
  19. N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127-12133 (1998).
    [CrossRef]
  20. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999).
    [CrossRef]
  21. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Miniband transmission in a photonic crystal, coupled-resonator optical waveguide,” Opt. Lett. 26, 1019-1021 (2001).
    [CrossRef]
  22. C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487-1489 (2001).
    [CrossRef]
  23. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  24. O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
    [CrossRef]
  25. G. Guttroff, M. Bayer, A. Forchel, P. A. Knipp, and T. L. Reinecke, “Isomeric photonic molecules formed from coupled microresonators,” Phys. Rev. E 63, 036611 (2001).
    [CrossRef]
  26. T. Gutbrod, M. Bayer, A. Forchel, P. A. Knipp, T. L. Reinecke, A. Tartakovskii, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, “Angle dependence of the spontaneous emission from confined optical modes in photonic dots,” Phys. Rev. B 59, 2223–2229 (1999).
    [CrossRef]

2002

2001

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Miniband transmission in a photonic crystal, coupled-resonator optical waveguide,” Opt. Lett. 26, 1019-1021 (2001).
[CrossRef]

G. Guttroff, M. Bayer, A. Forchel, P. A. Knipp, and T. L. Reinecke, “Isomeric photonic molecules formed from coupled microresonators,” Phys. Rev. E 63, 036611 (2001).
[CrossRef]

T. Yoshie, A. Scherer, H. Chen, D. Hufaker, and D. Deppe, “Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters,” Appl. Phys. Lett. 79, 114-116 (2001).
[CrossRef]

C. Reese, B. Gayral, B. D. Geradot, A. Imamoglu, P. M. Petroff, and E. Hu, “High-Q photonic crystal microcavities fabricated in a thin GaAs membrane,” J. Vac. Sci. Technol. B 19, 2749-2752 (2001).
[CrossRef]

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289-4291 (2001).
[CrossRef]

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903-3906 (2001).
[CrossRef] [PubMed]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

2000

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

E. Centeno and D. Felbacq, “Rabi oscillations in bidimensional photonic crystals,” Phys. Rev. B 62, 10101-10108 (2000).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

1999

A. Imamoglu, D. D. Awschalom, G. Bukard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

T. Gutbrod, M. Bayer, A. Forchel, P. A. Knipp, T. L. Reinecke, A. Tartakovskii, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, “Angle dependence of the spontaneous emission from confined optical modes in photonic dots,” Phys. Rev. B 59, 2223–2229 (1999).
[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275-285 (1999).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999).
[CrossRef]

1998

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127-12133 (1998).
[CrossRef]

R. Coccioli, M. Borodsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectronics 145, S. 391-397 (1998).

1997

1991

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Awschalom, D. D.

A. Imamoglu, D. D. Awschalom, G. Bukard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Bayer, M.

G. Guttroff, M. Bayer, A. Forchel, P. A. Knipp, and T. L. Reinecke, “Isomeric photonic molecules formed from coupled microresonators,” Phys. Rev. E 63, 036611 (2001).
[CrossRef]

T. Gutbrod, M. Bayer, A. Forchel, P. A. Knipp, T. L. Reinecke, A. Tartakovskii, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, “Angle dependence of the spontaneous emission from confined optical modes in photonic dots,” Phys. Rev. B 59, 2223–2229 (1999).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Benisty, H.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Miniband transmission in a photonic crystal, coupled-resonator optical waveguide,” Opt. Lett. 26, 1019-1021 (2001).
[CrossRef]

Borodsky, M.

R. Coccioli, M. Borodsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectronics 145, S. 391-397 (1998).

Brommer, K. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

Bukard, G.

A. Imamoglu, D. D. Awschalom, G. Bukard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Centeno, E.

E. Centeno and D. Felbacq, “Rabi oscillations in bidimensional photonic crystals,” Phys. Rev. B 62, 10101-10108 (2000).
[CrossRef]

Chen, H.

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289-4291 (2001).
[CrossRef]

T. Yoshie, A. Scherer, H. Chen, D. Hufaker, and D. Deppe, “Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters,” Appl. Phys. Lett. 79, 114-116 (2001).
[CrossRef]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Coccioli, R.

R. Coccioli, M. Borodsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectronics 145, S. 391-397 (1998).

Dapkus, P. D.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

De La Rue, R. M.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Deppe, D.

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289-4291 (2001).
[CrossRef]

T. Yoshie, A. Scherer, H. Chen, D. Hufaker, and D. Deppe, “Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters,” Appl. Phys. Lett. 79, 114-116 (2001).
[CrossRef]

DiVincenzo, D. P.

A. Imamoglu, D. D. Awschalom, G. Bukard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Fan, S.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Felbacq, D.

E. Centeno and D. Felbacq, “Rabi oscillations in bidimensional photonic crystals,” Phys. Rev. B 62, 10101-10108 (2000).
[CrossRef]

Forchel, A.

G. Guttroff, M. Bayer, A. Forchel, P. A. Knipp, and T. L. Reinecke, “Isomeric photonic molecules formed from coupled microresonators,” Phys. Rev. E 63, 036611 (2001).
[CrossRef]

T. Gutbrod, M. Bayer, A. Forchel, P. A. Knipp, T. L. Reinecke, A. Tartakovskii, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, “Angle dependence of the spontaneous emission from confined optical modes in photonic dots,” Phys. Rev. B 59, 2223–2229 (1999).
[CrossRef]

Gayral, B.

C. Reese, B. Gayral, B. D. Geradot, A. Imamoglu, P. M. Petroff, and E. Hu, “High-Q photonic crystal microcavities fabricated in a thin GaAs membrane,” J. Vac. Sci. Technol. B 19, 2749-2752 (2001).
[CrossRef]

Geradot, B. D.

C. Reese, B. Gayral, B. D. Geradot, A. Imamoglu, P. M. Petroff, and E. Hu, “High-Q photonic crystal microcavities fabricated in a thin GaAs membrane,” J. Vac. Sci. Technol. B 19, 2749-2752 (2001).
[CrossRef]

Gippius, N. A.

T. Gutbrod, M. Bayer, A. Forchel, P. A. Knipp, T. L. Reinecke, A. Tartakovskii, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, “Angle dependence of the spontaneous emission from confined optical modes in photonic dots,” Phys. Rev. B 59, 2223–2229 (1999).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

Gutbrod, T.

T. Gutbrod, M. Bayer, A. Forchel, P. A. Knipp, T. L. Reinecke, A. Tartakovskii, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, “Angle dependence of the spontaneous emission from confined optical modes in photonic dots,” Phys. Rev. B 59, 2223–2229 (1999).
[CrossRef]

Guttroff, G.

G. Guttroff, M. Bayer, A. Forchel, P. A. Knipp, and T. L. Reinecke, “Isomeric photonic molecules formed from coupled microresonators,” Phys. Rev. E 63, 036611 (2001).
[CrossRef]

Haus, H. A.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Houdré, R.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Miniband transmission in a photonic crystal, coupled-resonator optical waveguide,” Opt. Lett. 26, 1019-1021 (2001).
[CrossRef]

Hu, E.

C. Reese, B. Gayral, B. D. Geradot, A. Imamoglu, P. M. Petroff, and E. Hu, “High-Q photonic crystal microcavities fabricated in a thin GaAs membrane,” J. Vac. Sci. Technol. B 19, 2749-2752 (2001).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Hufaker, D.

T. Yoshie, A. Scherer, H. Chen, D. Hufaker, and D. Deppe, “Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters,” Appl. Phys. Lett. 79, 114-116 (2001).
[CrossRef]

Husain, A.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Imamoglu, A.

C. Reese, B. Gayral, B. D. Geradot, A. Imamoglu, P. M. Petroff, and E. Hu, “High-Q photonic crystal microcavities fabricated in a thin GaAs membrane,” J. Vac. Sci. Technol. B 19, 2749-2752 (2001).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

A. Imamoglu, D. D. Awschalom, G. Bukard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

Kim, I.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kim, K. W.

R. Coccioli, M. Borodsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectronics 145, S. 391-397 (1998).

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Knipp, P. A.

G. Guttroff, M. Bayer, A. Forchel, P. A. Knipp, and T. L. Reinecke, “Isomeric photonic molecules formed from coupled microresonators,” Phys. Rev. E 63, 036611 (2001).
[CrossRef]

T. Gutbrod, M. Bayer, A. Forchel, P. A. Knipp, T. L. Reinecke, A. Tartakovskii, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, “Angle dependence of the spontaneous emission from confined optical modes in photonic dots,” Phys. Rev. B 59, 2223–2229 (1999).
[CrossRef]

Krauss, T.

Krauss, T. F.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Kulakovskii, V. D.

T. Gutbrod, M. Bayer, A. Forchel, P. A. Knipp, T. L. Reinecke, A. Tartakovskii, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, “Angle dependence of the spontaneous emission from confined optical modes in photonic dots,” Phys. Rev. B 59, 2223–2229 (1999).
[CrossRef]

Lee, P. T.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

Lee, R. K.

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Loncar, M.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Loss, D.

A. Imamoglu, D. D. Awschalom, G. Bukard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Mabuchi, H.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Maystre, D.

Meade, R. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Modinos, A.

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127-12133 (1998).
[CrossRef]

Noda, S.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

O’Brien, J. D.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Oesterle, U.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Miniband transmission in a photonic crystal, coupled-resonator optical waveguide,” Opt. Lett. 26, 1019-1021 (2001).
[CrossRef]

Olivier, S.

S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Miniband transmission in a photonic crystal, coupled-resonator optical waveguide,” Opt. Lett. 26, 1019-1021 (2001).
[CrossRef]

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Painter, O.

O. Painter and K. Srinivasan, “Polarization properties of dipolelike defect modes in photonic crystal nanocavities,” Opt. Lett. 27, 339-341 (2002).
[CrossRef]

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275-285 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Pelton, M.

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903-3906 (2001).
[CrossRef] [PubMed]

Petroff, P. M.

C. Reese, B. Gayral, B. D. Geradot, A. Imamoglu, P. M. Petroff, and E. Hu, “High-Q photonic crystal microcavities fabricated in a thin GaAs membrane,” J. Vac. Sci. Technol. B 19, 2749-2752 (2001).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Rahmat-Samii, Y.

R. Coccioli, M. Borodsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectronics 145, S. 391-397 (1998).

Rappe, A. M.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

Rattier, M.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Miniband transmission in a photonic crystal, coupled-resonator optical waveguide,” Opt. Lett. 26, 1019-1021 (2001).
[CrossRef]

Reese, C.

C. Reese, B. Gayral, B. D. Geradot, A. Imamoglu, P. M. Petroff, and E. Hu, “High-Q photonic crystal microcavities fabricated in a thin GaAs membrane,” J. Vac. Sci. Technol. B 19, 2749-2752 (2001).
[CrossRef]

Reinecke, T. L.

G. Guttroff, M. Bayer, A. Forchel, P. A. Knipp, and T. L. Reinecke, “Isomeric photonic molecules formed from coupled microresonators,” Phys. Rev. E 63, 036611 (2001).
[CrossRef]

T. Gutbrod, M. Bayer, A. Forchel, P. A. Knipp, T. L. Reinecke, A. Tartakovskii, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, “Angle dependence of the spontaneous emission from confined optical modes in photonic dots,” Phys. Rev. B 59, 2223–2229 (1999).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, H. Chen, D. Hufaker, and D. Deppe, “Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters,” Appl. Phys. Lett. 79, 114-116 (2001).
[CrossRef]

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289-4291 (2001).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275-285 (1999).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Sherwin, M.

A. Imamoglu, D. D. Awschalom, G. Bukard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Small, A.

A. Imamoglu, D. D. Awschalom, G. Bukard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

Smith, C.

Smith, C. J. M.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Solomon, G. S.

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903-3906 (2001).
[CrossRef] [PubMed]

Srinivasan, K.

Stefanou, N.

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127-12133 (1998).
[CrossRef]

Tartakovskii, A.

T. Gutbrod, M. Bayer, A. Forchel, P. A. Knipp, T. L. Reinecke, A. Tartakovskii, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, “Angle dependence of the spontaneous emission from confined optical modes in photonic dots,” Phys. Rev. B 59, 2223–2229 (1999).
[CrossRef]

Tayeb, G.

Tikhodeev, S. G.

T. Gutbrod, M. Bayer, A. Forchel, P. A. Knipp, T. L. Reinecke, A. Tartakovskii, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, “Angle dependence of the spontaneous emission from confined optical modes in photonic dots,” Phys. Rev. B 59, 2223–2229 (1999).
[CrossRef]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Vuckovic, J.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289-4291 (2001).
[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275-285 (1999).
[CrossRef]

Weisbuch, C.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Miniband transmission in a photonic crystal, coupled-resonator optical waveguide,” Opt. Lett. 26, 1019-1021 (2001).
[CrossRef]

Xu, Y.

Yablonovitch, E.

R. Coccioli, M. Borodsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectronics 145, S. 391-397 (1998).

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yamamoto, Y.

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903-3906 (2001).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999).
[CrossRef]

Yoshie, T.

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289-4291 (2001).
[CrossRef]

T. Yoshie, A. Scherer, H. Chen, D. Hufaker, and D. Deppe, “Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters,” Appl. Phys. Lett. 79, 114-116 (2001).
[CrossRef]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. Yoshie, A. Scherer, H. Chen, D. Hufaker, and D. Deppe, “Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters,” Appl. Phys. Lett. 79, 114-116 (2001).
[CrossRef]

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289-4291 (2001).
[CrossRef]

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

IEE Proc.: Optoelectronics

R. Coccioli, M. Borodsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectronics 145, S. 391-397 (1998).

IEEE Photon. Technol. Lett.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. B

C. Reese, B. Gayral, B. D. Geradot, A. Imamoglu, P. M. Petroff, and E. Hu, “High-Q photonic crystal microcavities fabricated in a thin GaAs membrane,” J. Vac. Sci. Technol. B 19, 2749-2752 (2001).
[CrossRef]

Nature

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

E. Centeno and D. Felbacq, “Rabi oscillations in bidimensional photonic crystals,” Phys. Rev. B 62, 10101-10108 (2000).
[CrossRef]

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127-12133 (1998).
[CrossRef]

T. Gutbrod, M. Bayer, A. Forchel, P. A. Knipp, T. L. Reinecke, A. Tartakovskii, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, “Angle dependence of the spontaneous emission from confined optical modes in photonic dots,” Phys. Rev. B 59, 2223–2229 (1999).
[CrossRef]

Phys. Rev. E

G. Guttroff, M. Bayer, A. Forchel, P. A. Knipp, and T. L. Reinecke, “Isomeric photonic molecules formed from coupled microresonators,” Phys. Rev. E 63, 036611 (2001).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Phys. Rev. Lett.

A. Imamoglu, D. D. Awschalom, G. Bukard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903-3906 (2001).
[CrossRef] [PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Science

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Unpolarized PL spectrum of an H1 defect cavity with a=290 nm lattice constant and r=0.34a hole radius. Inset: Scanning electron micrograph of the PC cavity (top view). Fabrication variation such as the slightly elliptical hole shape result in the observed mode splitting.

Fig. 2
Fig. 2

Experimentally observed H1-cavity-mode frequencies for different PC-lattice constants (points). The data agree well with the frequencies expected from a 3D model calculation (curves) with field distributions corresponding to the ground (lower series) and first-excited (upper series) slab–waveguide mode. The error bars mark the numerical uncertainties caused by the discretization of the refractive-index distribution.

Fig. 3
Fig. 3

3D rendering of the (time-averaged) electric-field energy density distribution of the H1 defect corresponding to the ground (upper panel) and the first-excited slab–waveguide mode (lower panel) as obtained from a 3D, frequency-domain eigenmode calculation.

Fig. 4
Fig. 4

Normalized cavity mode frequencies for the different defect configurations denoted in the insets as calculated using a 2D eigenmode calculation for r=0.034 nm and neff=3.18. Lines are only a guide to the eye.

Fig. 5
Fig. 5

Normalized, time-averaged magnetic field (Hz, left column) and electric-field energy density (|E|2, right column) of the H12 M1 photonic molecule’s four modes. Depending on the relative orientation of the individual modes, binding or antibinding combinations are realized. The binding modes (lower rows) feature an increased energy density between the defects (corresponding to the node in the H field), while the antibinding modes have a lowered intensity between the defects and therefore a larger separation of the intensity maxima.

Fig. 6
Fig. 6

Normalized PL spectra from the different cavity geometries as indicated in the individual panels. For smaller separation of the individual point defects the coupling strength increases, resulting in a larger mode splitting (H12 M2, H12 K1, H12 M1). For comparison, the spectrum of a single defect (H1) indicates the intrinsic mode splitting resulting from anisotropy introduced by fabrication variations.

Fig. 7
Fig. 7

Polarization dependence of the cavity modes for a single defect and for the different coupling geometries. The different modes are distinguished by their experimentally obtained frequency a/λ as displayed in Fig. 6.

Fig. 8
Fig. 8

Calculated, normalized, far-field distributions in spherical coordinates of the Ex and Ey mode components for the photonic molecule with strongest coupling, H12 M1. The modes are completely polarized along either the x- or y-direction for all observation angles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(θ, φ)=E(x, y)exp[i(kxx+kyy)]dxdy2

Metrics