Abstract

We report a simple ad hoc method for designing an aperiodic grating structure to quasi-phase match two arbitrary second-order nonlinear processes simultaneously within the same electric-field-poled crystal. This method also allows the relative strength of the two processes to be adjusted freely, thereby enabling maximization of the overall conversion efficiency. We also report an experiment that is based on an aperiodically poled lithium niobate crystal that was designed by use of our method. In this crystal, parametric oscillation and second-harmonic generation are simultaneously phase matched for upconversion of a femtosecond Ti:sapphire laser to 570 nm. This self-doubling optical parametric oscillator provides an experimental verification of our design method.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Andrews, H. Rabin, and C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605-608 (1970).
    [CrossRef]
  2. V. Petrov and F. Noack, “Frequency upconversion of tunable femtosecond pulses by parametric amplification and sum-frequency generation in a single nonlinear crystal,” Opt. Lett. 20, 2171-2173 (1995).
    [CrossRef] [PubMed]
  3. T. Kartalog˘lu, K. G. Ko¨pru¨lu¨, and O. Aytu¨r, “Phase-matched self-doubling optical parametric oscillator,” Opt. Lett. 22, 280-282 (1997).
    [CrossRef]
  4. K. G. Ko¨pru¨lu¨, T. Kartalog˘lu, Y. Dikmelik, and O. Aytu¨r, “Single-crystal sum-frequency-generating optical parametric oscillator,” J. Opt. Soc. Am. B 16, 1546-1552 (1999).
    [CrossRef]
  5. O. Aytu¨r and Y. Dikmelik, “Plane-wave theory of self-doubling optical parametric oscillators,” IEEE J. Quantum Electron. 34, 447-458 (1998).
    [CrossRef]
  6. Y. Dikmelik, G. Akgu¨n, and O. Aytu¨r, “Plane-wave dynamics of optical parametric oscillation with simultaneous sum-frequency generation,” IEEE J. Quantum Electron. 35, 897-912 (1999).
    [CrossRef]
  7. G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803-810 (1998).
    [CrossRef]
  8. S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618-620 (1997).
    [CrossRef] [PubMed]
  9. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341-3343 (1997).
    [CrossRef]
  10. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixings in periodically poled crystals: application to a two-step 1.19-10.71-μm frequency bridge,” Opt. Lett. 22, 1211-1213 (1997).
    [CrossRef] [PubMed]
  11. C. McGowan, D. T. Reid, Z. E. Penman, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, “Femtosecond optical paramet-ric oscillator based on periodically poled lithium niobate,” J. Opt. Soc. Am. B 15, 694-701 (1998).
    [CrossRef]
  12. G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006-3008 (2001).
    [CrossRef]
  13. X. P. Zhang, J. Hebling, J. Kuhl, W. W. Ru¨hle, and H. Giessen, “Efficient intracavity generation of visible pulses in a femtosecond near-infrared optical parametric oscillator,” Opt. Lett. 26, 2005-2007 (2001).
    [CrossRef]
  14. J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generations in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578-5582 (1990).
    [CrossRef]
  15. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843-846 (1997).
    [CrossRef]
  16. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752-2755 (1997).
    [CrossRef]
  17. Y. Y. Zhu, R. F. Xiao, J. S. Fu, G. K. L. Wong, and N. B. Ming, “Third harmonic generation through coupled second-order nonlinear optical parametric processes in quasiperiodically domain-inverted Sr0.6Ba0.4Nb2O6 optical superlattices,” Appl. Phys. Lett. 73, 432-434 (1998).
    [CrossRef]
  18. X. Liu, Z. Wang, J. Wu, and N. Ming, “Characterization of third-harmonic generation in Fibonacci optical superlattices,” Phys. Rev. A 58, 4956-4960 (1998).
    [CrossRef]
  19. Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, “Nonlinear optical characterization of a generalized Fibonacci optical superlattice,” Appl. Phys. Lett. 75, 448-450 (1999).
    [CrossRef]
  20. Y. B. Chen, Y. Y. Zhu, Y. Q. Qin, C. Zhang, S. N. Zhu, and N. B. Ming, “Second-harmonic and third-harmonic generation in a three-component Fibonacci optical superlattice,” J. Phys. Condens. Matter 12, 529-537 (2000).
    [CrossRef]
  21. Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577-579 (2001).
    [CrossRef]
  22. Y. Y. Zhu and N. B. Ming, “Dielectric superlattices for nonlinear optical effects,” Opt. Quantum Electron. 31, 1093-1128 (1999).
    [CrossRef]
  23. K. F. Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649-1656 (1999).
    [CrossRef]
  24. K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, “Multiple nonlinear optical interactions with arbitrary wave vector differences,” Phys. Rev. Lett. 88, 023903 (2002).
    [CrossRef]
  25. C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899-901 (2001).
    [CrossRef]
  26. B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
    [CrossRef]
  27. B. Y. Gu, Y. Zhang, and B. Z. Dong, “Investigations of harmonic generations in aperiodic optical superlattices,” J. Appl. Phys. 87, 7629-7637 (2000).
    [CrossRef]
  28. Y. Zhang and B. Y. Gu, “Optimal design of aperiodically poled lithium niobate crystals for multiple wavelengths parametric amplification,” Opt. Commun. 192, 417-425 (2001).
    [CrossRef]
  29. H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728-730 (2001).
    [CrossRef]
  30. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  31. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
    [CrossRef]
  32. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  33. R. L. Byer, “Quasi-phasematched nonlinear interactions and devices,” J. Nonlinear Opt. Phys. Mater. 6, 549-592 (1997).
    [CrossRef]
  34. T. Kartalog˘lu, Z. G. Figen, and O. Aytu¨r, “A self-doubling optical parametric oscillator based on aperiodically-poled lithium niobate,” in 2001 IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), pp. 243-244.
  35. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102-2116 (1995).
    [CrossRef]
  36. R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. QE-15, 432-444 (1979).
    [CrossRef]
  37. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057-2074 (1992).
    [CrossRef]
  38. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373-375 (1984).
    [CrossRef]
  39. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]

2002

K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, “Multiple nonlinear optical interactions with arbitrary wave vector differences,” Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef]

2001

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899-901 (2001).
[CrossRef]

Y. Zhang and B. Y. Gu, “Optimal design of aperiodically poled lithium niobate crystals for multiple wavelengths parametric amplification,” Opt. Commun. 192, 417-425 (2001).
[CrossRef]

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577-579 (2001).
[CrossRef]

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006-3008 (2001).
[CrossRef]

X. P. Zhang, J. Hebling, J. Kuhl, W. W. Ru¨hle, and H. Giessen, “Efficient intracavity generation of visible pulses in a femtosecond near-infrared optical parametric oscillator,” Opt. Lett. 26, 2005-2007 (2001).
[CrossRef]

2000

Y. B. Chen, Y. Y. Zhu, Y. Q. Qin, C. Zhang, S. N. Zhu, and N. B. Ming, “Second-harmonic and third-harmonic generation in a three-component Fibonacci optical superlattice,” J. Phys. Condens. Matter 12, 529-537 (2000).
[CrossRef]

B. Y. Gu, Y. Zhang, and B. Z. Dong, “Investigations of harmonic generations in aperiodic optical superlattices,” J. Appl. Phys. 87, 7629-7637 (2000).
[CrossRef]

1999

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, “Nonlinear optical characterization of a generalized Fibonacci optical superlattice,” Appl. Phys. Lett. 75, 448-450 (1999).
[CrossRef]

Y. Y. Zhu and N. B. Ming, “Dielectric superlattices for nonlinear optical effects,” Opt. Quantum Electron. 31, 1093-1128 (1999).
[CrossRef]

K. F. Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649-1656 (1999).
[CrossRef]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
[CrossRef]

K. G. Ko¨pru¨lu¨, T. Kartalog˘lu, Y. Dikmelik, and O. Aytu¨r, “Single-crystal sum-frequency-generating optical parametric oscillator,” J. Opt. Soc. Am. B 16, 1546-1552 (1999).
[CrossRef]

Y. Dikmelik, G. Akgu¨n, and O. Aytu¨r, “Plane-wave dynamics of optical parametric oscillation with simultaneous sum-frequency generation,” IEEE J. Quantum Electron. 35, 897-912 (1999).
[CrossRef]

1998

G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803-810 (1998).
[CrossRef]

O. Aytu¨r and Y. Dikmelik, “Plane-wave theory of self-doubling optical parametric oscillators,” IEEE J. Quantum Electron. 34, 447-458 (1998).
[CrossRef]

C. McGowan, D. T. Reid, Z. E. Penman, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, “Femtosecond optical paramet-ric oscillator based on periodically poled lithium niobate,” J. Opt. Soc. Am. B 15, 694-701 (1998).
[CrossRef]

Y. Y. Zhu, R. F. Xiao, J. S. Fu, G. K. L. Wong, and N. B. Ming, “Third harmonic generation through coupled second-order nonlinear optical parametric processes in quasiperiodically domain-inverted Sr0.6Ba0.4Nb2O6 optical superlattices,” Appl. Phys. Lett. 73, 432-434 (1998).
[CrossRef]

X. Liu, Z. Wang, J. Wu, and N. Ming, “Characterization of third-harmonic generation in Fibonacci optical superlattices,” Phys. Rev. A 58, 4956-4960 (1998).
[CrossRef]

1997

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843-846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752-2755 (1997).
[CrossRef]

T. Kartalog˘lu, K. G. Ko¨pru¨lu¨, and O. Aytu¨r, “Phase-matched self-doubling optical parametric oscillator,” Opt. Lett. 22, 280-282 (1997).
[CrossRef]

S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618-620 (1997).
[CrossRef] [PubMed]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341-3343 (1997).
[CrossRef]

O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixings in periodically poled crystals: application to a two-step 1.19-10.71-μm frequency bridge,” Opt. Lett. 22, 1211-1213 (1997).
[CrossRef] [PubMed]

R. L. Byer, “Quasi-phasematched nonlinear interactions and devices,” J. Nonlinear Opt. Phys. Mater. 6, 549-592 (1997).
[CrossRef]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

1995

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057-2074 (1992).
[CrossRef]

1990

J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generations in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578-5582 (1990).
[CrossRef]

1984

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373-375 (1984).
[CrossRef]

1979

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. QE-15, 432-444 (1979).
[CrossRef]

1970

R. A. Andrews, H. Rabin, and C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605-608 (1970).
[CrossRef]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Akgu¨n, G.

Y. Dikmelik, G. Akgu¨n, and O. Aytu¨r, “Plane-wave dynamics of optical parametric oscillation with simultaneous sum-frequency generation,” IEEE J. Quantum Electron. 35, 897-912 (1999).
[CrossRef]

Andrews, R. A.

R. A. Andrews, H. Rabin, and C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605-608 (1970).
[CrossRef]

Arbore, M. A.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341-3343 (1997).
[CrossRef]

Arie, A.

K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, “Multiple nonlinear optical interactions with arbitrary wave vector differences,” Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef]

K. F. Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649-1656 (1999).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Aytu¨r, O.

Y. Dikmelik, G. Akgu¨n, and O. Aytu¨r, “Plane-wave dynamics of optical parametric oscillation with simultaneous sum-frequency generation,” IEEE J. Quantum Electron. 35, 897-912 (1999).
[CrossRef]

K. G. Ko¨pru¨lu¨, T. Kartalog˘lu, Y. Dikmelik, and O. Aytu¨r, “Single-crystal sum-frequency-generating optical parametric oscillator,” J. Opt. Soc. Am. B 16, 1546-1552 (1999).
[CrossRef]

O. Aytu¨r and Y. Dikmelik, “Plane-wave theory of self-doubling optical parametric oscillators,” IEEE J. Quantum Electron. 34, 447-458 (1998).
[CrossRef]

T. Kartalog˘lu, K. G. Ko¨pru¨lu¨, and O. Aytu¨r, “Phase-matched self-doubling optical parametric oscillator,” Opt. Lett. 22, 280-282 (1997).
[CrossRef]

Baumgartner, R. A.

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. QE-15, 432-444 (1979).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Bosenberg, W. R.

Burr, K. C.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341-3343 (1997).
[CrossRef]

Butterworth, S. D.

Byer, R. L.

R. L. Byer, “Quasi-phasematched nonlinear interactions and devices,” J. Nonlinear Opt. Phys. Mater. 6, 549-592 (1997).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102-2116 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. QE-15, 432-444 (1979).
[CrossRef]

Chen, Y. B.

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577-579 (2001).
[CrossRef]

Y. B. Chen, Y. Y. Zhu, Y. Q. Qin, C. Zhang, S. N. Zhu, and N. B. Ming, “Second-harmonic and third-harmonic generation in a three-component Fibonacci optical superlattice,” J. Phys. Condens. Matter 12, 529-537 (2000).
[CrossRef]

Dearborn, M. E.

G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803-810 (1998).
[CrossRef]

Dikmelik, Y.

Y. Dikmelik, G. Akgu¨n, and O. Aytu¨r, “Plane-wave dynamics of optical parametric oscillation with simultaneous sum-frequency generation,” IEEE J. Quantum Electron. 35, 897-912 (1999).
[CrossRef]

K. G. Ko¨pru¨lu¨, T. Kartalog˘lu, Y. Dikmelik, and O. Aytu¨r, “Single-crystal sum-frequency-generating optical parametric oscillator,” J. Opt. Soc. Am. B 16, 1546-1552 (1999).
[CrossRef]

O. Aytu¨r and Y. Dikmelik, “Plane-wave theory of self-doubling optical parametric oscillators,” IEEE J. Quantum Electron. 34, 447-458 (1998).
[CrossRef]

Dong, B. Z.

B. Y. Gu, Y. Zhang, and B. Z. Dong, “Investigations of harmonic generations in aperiodic optical superlattices,” J. Appl. Phys. 87, 7629-7637 (2000).
[CrossRef]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Ebrahimzadeh, M.

Eckardt, R. C.

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373-375 (1984).
[CrossRef]

Fejer, M. M.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341-3343 (1997).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102-2116 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Feng, J.

J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generations in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578-5582 (1990).
[CrossRef]

Fu, J. S.

Y. Y. Zhu, R. F. Xiao, J. S. Fu, G. K. L. Wong, and N. B. Ming, “Third harmonic generation through coupled second-order nonlinear optical parametric processes in quasiperiodically domain-inverted Sr0.6Ba0.4Nb2O6 optical superlattices,” Appl. Phys. Lett. 73, 432-434 (1998).
[CrossRef]

Ge, C. Z.

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752-2755 (1997).
[CrossRef]

Giessen, H.

Gu, B. Y.

Y. Zhang and B. Y. Gu, “Optimal design of aperiodically poled lithium niobate crystals for multiple wavelengths parametric amplification,” Opt. Commun. 192, 417-425 (2001).
[CrossRef]

B. Y. Gu, Y. Zhang, and B. Z. Dong, “Investigations of harmonic generations in aperiodic optical superlattices,” J. Appl. Phys. 87, 7629-7637 (2000).
[CrossRef]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
[CrossRef]

Hanna, D. C.

He, J. L.

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006-3008 (2001).
[CrossRef]

Hebling, J.

Hollberg, L.

Jundt, D. H.

Kartalog?lu, T.

Kashi, K. F.

K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, “Multiple nonlinear optical interactions with arbitrary wave vector differences,” Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef]

K. F. Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649-1656 (1999).
[CrossRef]

Ko¨pru¨lu¨, K. G.

Koch, K.

G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803-810 (1998).
[CrossRef]

Kuhl, J.

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373-375 (1984).
[CrossRef]

Levenson, M. D.

Liu, H.

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

Liu, X.

X. Liu, Z. Wang, J. Wu, and N. Ming, “Characterization of third-harmonic generation in Fibonacci optical superlattices,” Phys. Rev. A 58, 4956-4960 (1998).
[CrossRef]

Liu, Z. W.

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006-3008 (2001).
[CrossRef]

Luo, G. P.

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, “Nonlinear optical characterization of a generalized Fibonacci optical superlattice,” Appl. Phys. Lett. 75, 448-450 (1999).
[CrossRef]

Luo, G. Z.

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006-3008 (2001).
[CrossRef]

Ma, J.

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, “Nonlinear optical characterization of a generalized Fibonacci optical superlattice,” Appl. Phys. Lett. 75, 448-450 (1999).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

McGowan, C.

Ming, N.

X. Liu, Z. Wang, J. Wu, and N. Ming, “Characterization of third-harmonic generation in Fibonacci optical superlattices,” Phys. Rev. A 58, 4956-4960 (1998).
[CrossRef]

Ming, N. B.

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006-3008 (2001).
[CrossRef]

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577-579 (2001).
[CrossRef]

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899-901 (2001).
[CrossRef]

Y. B. Chen, Y. Y. Zhu, Y. Q. Qin, C. Zhang, S. N. Zhu, and N. B. Ming, “Second-harmonic and third-harmonic generation in a three-component Fibonacci optical superlattice,” J. Phys. Condens. Matter 12, 529-537 (2000).
[CrossRef]

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, “Nonlinear optical characterization of a generalized Fibonacci optical superlattice,” Appl. Phys. Lett. 75, 448-450 (1999).
[CrossRef]

Y. Y. Zhu and N. B. Ming, “Dielectric superlattices for nonlinear optical effects,” Opt. Quantum Electron. 31, 1093-1128 (1999).
[CrossRef]

Y. Y. Zhu, R. F. Xiao, J. S. Fu, G. K. L. Wong, and N. B. Ming, “Third harmonic generation through coupled second-order nonlinear optical parametric processes in quasiperiodically domain-inverted Sr0.6Ba0.4Nb2O6 optical superlattices,” Appl. Phys. Lett. 73, 432-434 (1998).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843-846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752-2755 (1997).
[CrossRef]

J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generations in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578-5582 (1990).
[CrossRef]

Moore, G. T.

G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803-810 (1998).
[CrossRef]

Myers, L. E.

Noack, F.

Penman, Z. E.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Petrov, V.

Pfister, O.

Pierce, J. W.

Qin, Y. Q.

Y. B. Chen, Y. Y. Zhu, Y. Q. Qin, C. Zhang, S. N. Zhu, and N. B. Ming, “Second-harmonic and third-harmonic generation in a three-component Fibonacci optical superlattice,” J. Phys. Condens. Matter 12, 529-537 (2000).
[CrossRef]

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, “Nonlinear optical characterization of a generalized Fibonacci optical superlattice,” Appl. Phys. Lett. 75, 448-450 (1999).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752-2755 (1997).
[CrossRef]

Rabin, H.

R. A. Andrews, H. Rabin, and C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605-608 (1970).
[CrossRef]

Reid, D. T.

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057-2074 (1992).
[CrossRef]

Rosenman, G.

K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, “Multiple nonlinear optical interactions with arbitrary wave vector differences,” Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef]

Ru¨hle, W. W.

Sibbett, W.

Smith, P. G. R.

Tang, C. L.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341-3343 (1997).
[CrossRef]

R. A. Andrews, H. Rabin, and C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605-608 (1970).
[CrossRef]

Urenski, P.

K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, “Multiple nonlinear optical interactions with arbitrary wave vector differences,” Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef]

Vaidyanathan, M.

G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803-810 (1998).
[CrossRef]

Van Baak, D. A.

Wang, H. F.

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752-2755 (1997).
[CrossRef]

Wang, H. T.

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006-3008 (2001).
[CrossRef]

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577-579 (2001).
[CrossRef]

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899-901 (2001).
[CrossRef]

Wang, Z.

X. Liu, Z. Wang, J. Wu, and N. Ming, “Characterization of third-harmonic generation in Fibonacci optical superlattices,” Phys. Rev. A 58, 4956-4960 (1998).
[CrossRef]

Wei, H.

Wells, J. S.

Wong, G. K. L.

Y. Y. Zhu, R. F. Xiao, J. S. Fu, G. K. L. Wong, and N. B. Ming, “Third harmonic generation through coupled second-order nonlinear optical parametric processes in quasiperiodically domain-inverted Sr0.6Ba0.4Nb2O6 optical superlattices,” Appl. Phys. Lett. 73, 432-434 (1998).
[CrossRef]

Wu, J.

X. Liu, Z. Wang, J. Wu, and N. Ming, “Characterization of third-harmonic generation in Fibonacci optical superlattices,” Phys. Rev. A 58, 4956-4960 (1998).
[CrossRef]

Xiao, R. F.

Y. Y. Zhu, R. F. Xiao, J. S. Fu, G. K. L. Wong, and N. B. Ming, “Third harmonic generation through coupled second-order nonlinear optical parametric processes in quasiperiodically domain-inverted Sr0.6Ba0.4Nb2O6 optical superlattices,” Appl. Phys. Lett. 73, 432-434 (1998).
[CrossRef]

Yang, G. Z.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
[CrossRef]

Zhang, C.

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006-3008 (2001).
[CrossRef]

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577-579 (2001).
[CrossRef]

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899-901 (2001).
[CrossRef]

Y. B. Chen, Y. Y. Zhu, Y. Q. Qin, C. Zhang, S. N. Zhu, and N. B. Ming, “Second-harmonic and third-harmonic generation in a three-component Fibonacci optical superlattice,” J. Phys. Condens. Matter 12, 529-537 (2000).
[CrossRef]

Zhang, X. P.

Zhang, Y.

Y. Zhang and B. Y. Gu, “Optimal design of aperiodically poled lithium niobate crystals for multiple wavelengths parametric amplification,” Opt. Commun. 192, 417-425 (2001).
[CrossRef]

B. Y. Gu, Y. Zhang, and B. Z. Dong, “Investigations of harmonic generations in aperiodic optical superlattices,” J. Appl. Phys. 87, 7629-7637 (2000).
[CrossRef]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
[CrossRef]

Zhu, S. N.

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006-3008 (2001).
[CrossRef]

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577-579 (2001).
[CrossRef]

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899-901 (2001).
[CrossRef]

Y. B. Chen, Y. Y. Zhu, Y. Q. Qin, C. Zhang, S. N. Zhu, and N. B. Ming, “Second-harmonic and third-harmonic generation in a three-component Fibonacci optical superlattice,” J. Phys. Condens. Matter 12, 529-537 (2000).
[CrossRef]

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, “Nonlinear optical characterization of a generalized Fibonacci optical superlattice,” Appl. Phys. Lett. 75, 448-450 (1999).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752-2755 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843-846 (1997).
[CrossRef]

Zhu, Y. Y.

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899-901 (2001).
[CrossRef]

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577-579 (2001).
[CrossRef]

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006-3008 (2001).
[CrossRef]

Y. B. Chen, Y. Y. Zhu, Y. Q. Qin, C. Zhang, S. N. Zhu, and N. B. Ming, “Second-harmonic and third-harmonic generation in a three-component Fibonacci optical superlattice,” J. Phys. Condens. Matter 12, 529-537 (2000).
[CrossRef]

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, “Nonlinear optical characterization of a generalized Fibonacci optical superlattice,” Appl. Phys. Lett. 75, 448-450 (1999).
[CrossRef]

Y. Y. Zhu and N. B. Ming, “Dielectric superlattices for nonlinear optical effects,” Opt. Quantum Electron. 31, 1093-1128 (1999).
[CrossRef]

Y. Y. Zhu, R. F. Xiao, J. S. Fu, G. K. L. Wong, and N. B. Ming, “Third harmonic generation through coupled second-order nonlinear optical parametric processes in quasiperiodically domain-inverted Sr0.6Ba0.4Nb2O6 optical superlattices,” Appl. Phys. Lett. 73, 432-434 (1998).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843-846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752-2755 (1997).
[CrossRef]

J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generations in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578-5582 (1990).
[CrossRef]

Zink, L.

Appl. Phys. Lett.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341-3343 (1997).
[CrossRef]

Y. Y. Zhu, R. F. Xiao, J. S. Fu, G. K. L. Wong, and N. B. Ming, “Third harmonic generation through coupled second-order nonlinear optical parametric processes in quasiperiodically domain-inverted Sr0.6Ba0.4Nb2O6 optical superlattices,” Appl. Phys. Lett. 73, 432-434 (1998).
[CrossRef]

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, “Nonlinear optical characterization of a generalized Fibonacci optical superlattice,” Appl. Phys. Lett. 75, 448-450 (1999).
[CrossRef]

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577-579 (2001).
[CrossRef]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
[CrossRef]

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006-3008 (2001).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. QE-15, 432-444 (1979).
[CrossRef]

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057-2074 (1992).
[CrossRef]

K. F. Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649-1656 (1999).
[CrossRef]

O. Aytu¨r and Y. Dikmelik, “Plane-wave theory of self-doubling optical parametric oscillators,” IEEE J. Quantum Electron. 34, 447-458 (1998).
[CrossRef]

Y. Dikmelik, G. Akgu¨n, and O. Aytu¨r, “Plane-wave dynamics of optical parametric oscillation with simultaneous sum-frequency generation,” IEEE J. Quantum Electron. 35, 897-912 (1999).
[CrossRef]

G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803-810 (1998).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

J. Appl. Phys.

B. Y. Gu, Y. Zhang, and B. Z. Dong, “Investigations of harmonic generations in aperiodic optical superlattices,” J. Appl. Phys. 87, 7629-7637 (2000).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

R. L. Byer, “Quasi-phasematched nonlinear interactions and devices,” J. Nonlinear Opt. Phys. Mater. 6, 549-592 (1997).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

Y. B. Chen, Y. Y. Zhu, Y. Q. Qin, C. Zhang, S. N. Zhu, and N. B. Ming, “Second-harmonic and third-harmonic generation in a three-component Fibonacci optical superlattice,” J. Phys. Condens. Matter 12, 529-537 (2000).
[CrossRef]

Opt. Commun.

Y. Zhang and B. Y. Gu, “Optimal design of aperiodically poled lithium niobate crystals for multiple wavelengths parametric amplification,” Opt. Commun. 192, 417-425 (2001).
[CrossRef]

Opt. Lett.

T. Kartalog˘lu, K. G. Ko¨pru¨lu¨, and O. Aytu¨r, “Phase-matched self-doubling optical parametric oscillator,” Opt. Lett. 22, 280-282 (1997).
[CrossRef]

S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618-620 (1997).
[CrossRef] [PubMed]

O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixings in periodically poled crystals: application to a two-step 1.19-10.71-μm frequency bridge,” Opt. Lett. 22, 1211-1213 (1997).
[CrossRef] [PubMed]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899-901 (2001).
[CrossRef]

X. P. Zhang, J. Hebling, J. Kuhl, W. W. Ru¨hle, and H. Giessen, “Efficient intracavity generation of visible pulses in a femtosecond near-infrared optical parametric oscillator,” Opt. Lett. 26, 2005-2007 (2001).
[CrossRef]

V. Petrov and F. Noack, “Frequency upconversion of tunable femtosecond pulses by parametric amplification and sum-frequency generation in a single nonlinear crystal,” Opt. Lett. 20, 2171-2173 (1995).
[CrossRef] [PubMed]

Opt. Quantum Electron.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373-375 (1984).
[CrossRef]

Y. Y. Zhu and N. B. Ming, “Dielectric superlattices for nonlinear optical effects,” Opt. Quantum Electron. 31, 1093-1128 (1999).
[CrossRef]

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Phys. Rev. A

X. Liu, Z. Wang, J. Wu, and N. Ming, “Characterization of third-harmonic generation in Fibonacci optical superlattices,” Phys. Rev. A 58, 4956-4960 (1998).
[CrossRef]

Phys. Rev. B

J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generations in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578-5582 (1990).
[CrossRef]

Phys. Rev. Lett.

R. A. Andrews, H. Rabin, and C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605-608 (1970).
[CrossRef]

K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, “Multiple nonlinear optical interactions with arbitrary wave vector differences,” Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752-2755 (1997).
[CrossRef]

Science

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843-846 (1997).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

T. Kartalog˘lu, Z. G. Figen, and O. Aytu¨r, “A self-doubling optical parametric oscillator based on aperiodically-poled lithium niobate,” in 2001 IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), pp. 243-244.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Lengths of (a) inverted and (b) noninverted domains of the first grating (β=0.39) and (c) inverted and (d) noninverted domains of the second grating (β=0.72) as functions of domain number.

Fig. 2
Fig. 2

Expanded diagram illustrating a segment of the first grating (β=0.39). Black (white) stripes represent inverted (noninverted) domains. The grid lines are equally spaced.

Fig. 3
Fig. 3

Magnitude of the normalized Fourier transform |G(Δk)| for the (a) first (β=0.39) and (b) second (β=0.72) gratings.

Fig. 4
Fig. 4

Femtosecond self-doubling OPO setup.

Fig. 5
Fig. 5

(a) Signal and (b) second-harmonic spectra at a pump wavelength of 790 nm for the second grating (β=0.72).

Fig. 6
Fig. 6

Power conversion efficiency as a function of the pump power for the first (β=0.39, open circles) and second (β=0.72, filled circles) gratings.

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

Δka=k3-k1-k2,
Δkb=k6-k4-k5,
g(z)=p=-Gpexp(i2πpz/Λ),
Δka=2πΛ p
Δka=2πΛ p,
Δkb=2πΛ q
debdea=GqGp
g(z)=lc2π-G(Δk)exp(iΔkz)d(Δk),
G(Δk)=1lc0lcg(z)exp(-iΔkz)dz
dea=|G(Δka)||dij|,
deb=|G(Δkb)||dij|,
debdea=G(Δkb)G(Δka).
-|G(Δk)|2d(Δk)=2π/lc
12π/lcΔka-/2Δka+/2|G(Δk)|2d(Δk)+Δkb-/2Δkb+/2|G(Δk)|2d(Δk),
f(z)=cos(Δkaz)+A cos(Δkbz+ϕ),
g(z)=sgn[f(z)],
Em(z, t)=Re{Emexp[i(ωmt-kmz)]},m=1,2,3,
dE1dz=-i ω1den1c E3E2*,
dE2dz=-i ω2den2c E3E1*,
dE3dz=-i ω3den3c E1E2,
E1=-i(2ω1/n1c0)1/2a1,
E2=(2ω2/n2c0)1/2a2,
E3=(2ω3/n3c0)1/2a3.
da1dz=κaa3a2,
da2dz=κaa3a1,
da3dz=-κaa1a2,
κa=dea2c301/2ω1ω2ω3n1n2n31/2.
da4dz=-κba6a4,
da6dz=12 κba42,
κb=deb2c301/22ω43n42n61/2.
da1dz=κaa3a2,
da2dz=κaa3a1-κba6a2,
da3dz=-κaa1a2,
da6dz=12 κba22.
β=κbκa=debdea2ω22n1n3ω1ω3n2n61/2,
D=[κaa3(0)lc]2,
η=2 a62(lc)a32(0).

Metrics