Abstract

We study the enhancement of two-photon absorption (TPA) in a series of porphyrins and tetraazaporphyrins by measuring the absolute TPA cross sections with 100-fs-duration pulses in two ranges of laser wavelengths, from 1100 to 1500 and from 700 to 800 nm. The cross section in the Q transition region is σ2110 GM (where 1 GM=10-50 cm4 s-1 photons-1), a value that is explained by partial lifting of the prohibition that is due to a parity selection rule. In the Soret transition region we find σ2 enhancement by ∼1 order of magnitude owing to the Q transition, which acts as a near-resonance intermediate state, and also owing to the presence of gerade energy levels, which we identify in this spectral region. In tetraazaporphyrins symmetrically substituted with strong electron acceptors, we find further enhancement (up to σ21600 GM). As a possible application, we demonstrate for the first time to our knowledge the photosensitization of singlet-oxygen luminescence by TPA in porphyrin.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Go¨ppert-Meyer, “Elementartakte mit zwei Quantenspru¨ngen,” Ann. Phys. (Leipzig) 9, 275-294 (1931).
  2. G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767-770 (2002).
    [CrossRef] [PubMed]
  3. B. W. Henderson and T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55, 147-157 (1992).
    [CrossRef]
  4. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
    [CrossRef]
  5. M. Drobizhev, A. Karotki, and A. Rebane, “Persistent spectral hole burning by simultaneous two-photon absorption,” Chem. Phys. Lett. 334, 76-82 (2000).
    [CrossRef]
  6. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  7. C. W. Spangler, “Recent developments in the design of organic materials for optical power limiting,” J. Mater. Chem. 9, 2013-2020 (1999).
    [CrossRef]
  8. G. L. Wood, M. J. Miller, and A. G. Mott, “Investigation of tetrabenzoporphyrin by the Z-scan technique,” Opt. Lett. 20, 973-975 (1995).
    [CrossRef]
  9. A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173-176 (1983).
    [CrossRef]
  10. M. Drobizhev, C. Sigel, and A. Rebane, “Phototautomer of Br-porphyrin: a new frequency-selective material for ultrafast time-space holographic storage,” J. Lumin. 86, 391-397 (2000).
    [CrossRef]
  11. N. N. Vsevolodov, L. P. Kostikov, L. P. Kayushin, and V. I. Gorbatenkov, “Two-photon absorption of laser radiation by chlorophyll a and some organic dyes,” Biophysics (USSR) 18, 755-757 (1973).
  12. Yu. P. Meshalkin, E. E. Alfimov, N. E. Vasil’ev, A. N. Denisov, V. K. Makukha, and A. P. Ogirenko, “Two-photon excitation of aluminum phthalocyanines,” Quantum Electron. 29, 1066-1068 (1999).
    [CrossRef]
  13. R. L. Goyan and D. T. Gramb, “Near-infrared two-photon excitation of protoporphyrin IX: photodynamics and photoproduct generation,” Photochem. Photobiol. 72, 821-827 (2000).
    [CrossRef]
  14. E. A. Wachter, W. P. Partridge, W. E. G. Fisher, H. C. Dees, and M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE 3269, 68-75 (1998).
    [CrossRef]
  15. I. Suzuka, M. Kozawa, and Y. Numata, “Two-photon absorption spectra of porphyrins—first observation of the hidden g-excited state,” presented at the XVIII International Union of Pure and Applied Chemistry Symposium on Photochemistry, Dresden, Germany, July 19-22, 2000.
  16. V. A. Kuzmitsky and K. N. Solovyov, “Calculation of electronic spectra of porphin molecule by PPDP/S method,” J. Appl. Spectrosc. 27, 724-730 (1977).
  17. V. I. Gael’, V. A. Kuzmitsky, and K. N. Solovyov, “All-valence calculation by fragments of electronic spectrum of Mg-tetraphenylporphyrin molecule,” J. Appl. Spectrosc. 63, 790-798 (1996).
    [CrossRef]
  18. V. A. Kuz’mitskii, “Excited even-symmetry states of metallocomplexes of porphin and its derivatives,” J. Appl. Spectrosc. 68, 758-765 (2001).
    [CrossRef]
  19. S. S. Dvornikov, V. N. Knyukshto, V. A. Kuzmitsky, A. M. Shulga, and K. N. Solovyov, “Spectral-luminescent and quantum-chemical study of azaroporphyrin molecules,” J. Lumin. 23, 373-392 (1981).
    [CrossRef]
  20. V. G. Maslov, “Calculations of electronic spectra of Mg-P, Mg-Pc and their ionic forms by the PPDP/S method,” Theor. Exp. Chem. (USSR) 20, 288-298 (1984).
  21. M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge, “A theoretical investigation of the one- and two-photon properties of porphyrins,” J. Chem. Phys. 84, 3901-3915 (1986).
    [CrossRef]
  22. H. Nakatsuji, J. Hasegawa, and M. Hado, “Excited and ionized states of free base porphin studied by symmetry adapted cluster-configuration interaction (SAC-CI) method,” J. Chem. Phys. 104, 2321-2329 (1996).
    [CrossRef]
  23. D. Sundholm, “Density functional theory study of the electronic absorption spectrum of Mg-porphyrin and Mg-etioporphyrin,” Chem. Phys. Lett. 317, 392-399 (2000).
    [CrossRef]
  24. E. Orti, M. C. Piqueras, R. Crespo, and J. L. Bredas, “Influence of annelation on the electronic-properties of phthalocyanine macrocycles,” Chem. Mater. 2, 110-116 (1990).
    [CrossRef]
  25. M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
    [CrossRef] [PubMed]
  26. M. Drobizhev, A. Karotki, and A. Rebane, “Dendrimer molecules with record large two-photon absorption cross section,” Opt. Lett. 26, 1081-1083 (2001).
    [CrossRef]
  27. A. M. Shul’ga, senior staff researcher, Institute of Molecular and Atomic Physics of National Academy of Sciences, 70 F. Skaryna Avenue, 220072 Minsk, Belarus.
  28. N. V. Chizhova and V. D. Berezin, “Nitration of octaphenyl-meso-tetraazaporphine,” Zh. Org. Khim. 30, 1678-1680 (1994).
  29. N. V. Chizhova, O. G. Khelevina, and V. D. Berezin, “Bromation of porphyrins,” Izv. Vyssh. Uch. Zav. Khim. Khim. Tekh. 37, 20-23 (1994).
  30. G. P. Das, R. Vaia, A. T. Yeates, and D. S. Dudis, “A theoretical model for excited state absorption,” Synth. Metals 116, 281-283 (2001).
    [CrossRef]
  31. D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235-243 (2001).
    [CrossRef]
  32. M. W. Dowley, K. B. Eisenthal, and W. L. Peticolas, “Two-photon laser excitation of polycyclic aromatic molecules,” J. Chem. Phys. 47, 1609-1619 (1967).
    [CrossRef]
  33. B. Honig and J. Jortner, “Theoretical studies of two-photon absorption processes. I. Molecular benzene,” J. Chem. Phys. 46, 2714-2727 (1967).
    [CrossRef]
  34. V. I. Bredikhin, M. D. Galanin, and V. N. Genkin, “Two-photon absorption and spectroscopy,” Sov. Phys. Usp. 16, 299-321 (1973).
    [CrossRef]
  35. J. Rodriguez, C. Kirmaier, and D. Holten, “Optical properties of metalloporphyrin excited states,” J. Am. Chem. Soc. 111, 6500-6506 (1989).
    [CrossRef]
  36. W. Blau, H. Byrne, W. M. Dennis, and J. M. Kelly, “Reverse saturable absorption in tetraphenylporphyrins,” Opt. Commun. 56, 25-29 (1985).
    [CrossRef]
  37. H. Stiel, A. Volkmer, I. Ru¨ckmann, A. Zeug, B. Ehrenberg, and B. Ro¨der, “Non-linear and transient absorption spectroscopy of magnesium(II)-tetrabenzoporphyrin in solution,” Opt. Commun. 155, 135-143 (1998).
    [CrossRef]
  38. P. Chen, I. V. Tomov, A. S. Dvornikov, M. Nakashima, J. F. Roach, D. M. Alabran, and P. M. Rentzepis, “Picosecond kinetics and reverse saturable absorption of meso-substituted tetrabenzoporphyrins,” J. Phys. Chem. 100, 17,507-17, 512 (1996).
    [CrossRef]
  39. W.-H. Lee, M. Cho, S.-J. Jeon, and B. R. Cho, “Two-photon absorption and second hyperpolarizability of the linear quadrupolar molecule,” J. Phys. Chem. A 104, 11,033-11, 040 (2000).
    [CrossRef]
  40. M. Barzoukas and M. Blanchard-Desce, “Molecular engineering of push-pull dipolar and quadrupolar molecules for two-photon absorption: a multivalence-bond states approach,” J. Chem. Phys. 113, 3951-3959 (2000).
    [CrossRef]
  41. W.-H. Lee, H. Lee, J.-A. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, and B. R. Cho, “Two photon absorption and nonlinear opti-cal properties of octupolar molecules,” J. Am. Chem. Soc. 123, 10,658-10, 667 (2001).
    [CrossRef]
  42. D. H. McDaniel and H. C. Brown, “An extended table of Hammett substituent constants based on the ionization of substituted benzoic acids,” J. Org. Chem. 23, 420-427 (1958).
    [CrossRef]
  43. E. Zojer, D. Beljonne, T. Kogej, H. Vogel, S. R. Marder, J. W. Perry, and J.-L. Bredas, “Tuning of two-photon absorption response of quadrupolar organic molecules,” J. Chem. Phys. 116, 3646-3658 (2002).
    [CrossRef]
  44. S. Wan, J. A. Parrish, R. R. Anderson, and M. Madden, “Transmittance of nonionizing radiation in human tissues,” Photochem. Photobiol. 34, 679-681 (1981).
    [CrossRef] [PubMed]
  45. P. K. Frederiksen, M. Jørgensen, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen,” J. Am. Chem. Soc. 123, 1215-1221 (2001).
    [CrossRef] [PubMed]
  46. N. N. Kruk, S. I. Shishporenok, A. A. Korotky, V. A. Galievsky, V. S. Chirvony, and P.-Y. Turpin, “Binding of the cationic 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin bound at 5CG3 and 5GC3 sequences of hexadeoxyribonucleotides: triplet–triplet transient absorption, steady-state and time-resolved fluorescence and resonance Raman studies,” J. Photochem. Photobiol., B 45, 67–74 (1998).
    [CrossRef]
  47. B. M. Dzhagarov, M. M. Kruk, V. S. Chirvony, V. A. Galievsky, and P.-Y. Turpin, “Guest–host complexes of porphyrins with DNA: porphyrin excited states deactivation channels and interaction with molecular oxygen,” Advances in Porphyrin Chemistry, O. Golubchikov, ed. (St. Petersburg University Publishing House, St. Petersburg, Russia, 1999), pp. 50–69.

2002 (2)

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767-770 (2002).
[CrossRef] [PubMed]

E. Zojer, D. Beljonne, T. Kogej, H. Vogel, S. R. Marder, J. W. Perry, and J.-L. Bredas, “Tuning of two-photon absorption response of quadrupolar organic molecules,” J. Chem. Phys. 116, 3646-3658 (2002).
[CrossRef]

2001 (6)

P. K. Frederiksen, M. Jørgensen, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen,” J. Am. Chem. Soc. 123, 1215-1221 (2001).
[CrossRef] [PubMed]

W.-H. Lee, H. Lee, J.-A. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, and B. R. Cho, “Two photon absorption and nonlinear opti-cal properties of octupolar molecules,” J. Am. Chem. Soc. 123, 10,658-10, 667 (2001).
[CrossRef]

V. A. Kuz’mitskii, “Excited even-symmetry states of metallocomplexes of porphin and its derivatives,” J. Appl. Spectrosc. 68, 758-765 (2001).
[CrossRef]

G. P. Das, R. Vaia, A. T. Yeates, and D. S. Dudis, “A theoretical model for excited state absorption,” Synth. Metals 116, 281-283 (2001).
[CrossRef]

D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235-243 (2001).
[CrossRef]

M. Drobizhev, A. Karotki, and A. Rebane, “Dendrimer molecules with record large two-photon absorption cross section,” Opt. Lett. 26, 1081-1083 (2001).
[CrossRef]

2000 (6)

D. Sundholm, “Density functional theory study of the electronic absorption spectrum of Mg-porphyrin and Mg-etioporphyrin,” Chem. Phys. Lett. 317, 392-399 (2000).
[CrossRef]

M. Drobizhev, C. Sigel, and A. Rebane, “Phototautomer of Br-porphyrin: a new frequency-selective material for ultrafast time-space holographic storage,” J. Lumin. 86, 391-397 (2000).
[CrossRef]

R. L. Goyan and D. T. Gramb, “Near-infrared two-photon excitation of protoporphyrin IX: photodynamics and photoproduct generation,” Photochem. Photobiol. 72, 821-827 (2000).
[CrossRef]

M. Drobizhev, A. Karotki, and A. Rebane, “Persistent spectral hole burning by simultaneous two-photon absorption,” Chem. Phys. Lett. 334, 76-82 (2000).
[CrossRef]

W.-H. Lee, M. Cho, S.-J. Jeon, and B. R. Cho, “Two-photon absorption and second hyperpolarizability of the linear quadrupolar molecule,” J. Phys. Chem. A 104, 11,033-11, 040 (2000).
[CrossRef]

M. Barzoukas and M. Blanchard-Desce, “Molecular engineering of push-pull dipolar and quadrupolar molecules for two-photon absorption: a multivalence-bond states approach,” J. Chem. Phys. 113, 3951-3959 (2000).
[CrossRef]

1999 (3)

C. W. Spangler, “Recent developments in the design of organic materials for optical power limiting,” J. Mater. Chem. 9, 2013-2020 (1999).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Yu. P. Meshalkin, E. E. Alfimov, N. E. Vasil’ev, A. N. Denisov, V. K. Makukha, and A. P. Ogirenko, “Two-photon excitation of aluminum phthalocyanines,” Quantum Electron. 29, 1066-1068 (1999).
[CrossRef]

1998 (4)

E. A. Wachter, W. P. Partridge, W. E. G. Fisher, H. C. Dees, and M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE 3269, 68-75 (1998).
[CrossRef]

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

H. Stiel, A. Volkmer, I. Ru¨ckmann, A. Zeug, B. Ehrenberg, and B. Ro¨der, “Non-linear and transient absorption spectroscopy of magnesium(II)-tetrabenzoporphyrin in solution,” Opt. Commun. 155, 135-143 (1998).
[CrossRef]

N. N. Kruk, S. I. Shishporenok, A. A. Korotky, V. A. Galievsky, V. S. Chirvony, and P.-Y. Turpin, “Binding of the cationic 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin bound at 5CG3 and 5GC3 sequences of hexadeoxyribonucleotides: triplet–triplet transient absorption, steady-state and time-resolved fluorescence and resonance Raman studies,” J. Photochem. Photobiol., B 45, 67–74 (1998).
[CrossRef]

1996 (3)

P. Chen, I. V. Tomov, A. S. Dvornikov, M. Nakashima, J. F. Roach, D. M. Alabran, and P. M. Rentzepis, “Picosecond kinetics and reverse saturable absorption of meso-substituted tetrabenzoporphyrins,” J. Phys. Chem. 100, 17,507-17, 512 (1996).
[CrossRef]

H. Nakatsuji, J. Hasegawa, and M. Hado, “Excited and ionized states of free base porphin studied by symmetry adapted cluster-configuration interaction (SAC-CI) method,” J. Chem. Phys. 104, 2321-2329 (1996).
[CrossRef]

V. I. Gael’, V. A. Kuzmitsky, and K. N. Solovyov, “All-valence calculation by fragments of electronic spectrum of Mg-tetraphenylporphyrin molecule,” J. Appl. Spectrosc. 63, 790-798 (1996).
[CrossRef]

1995 (1)

1994 (1)

N. V. Chizhova and V. D. Berezin, “Nitration of octaphenyl-meso-tetraazaporphine,” Zh. Org. Khim. 30, 1678-1680 (1994).

1992 (1)

B. W. Henderson and T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55, 147-157 (1992).
[CrossRef]

1990 (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

E. Orti, M. C. Piqueras, R. Crespo, and J. L. Bredas, “Influence of annelation on the electronic-properties of phthalocyanine macrocycles,” Chem. Mater. 2, 110-116 (1990).
[CrossRef]

1989 (1)

J. Rodriguez, C. Kirmaier, and D. Holten, “Optical properties of metalloporphyrin excited states,” J. Am. Chem. Soc. 111, 6500-6506 (1989).
[CrossRef]

1986 (1)

M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge, “A theoretical investigation of the one- and two-photon properties of porphyrins,” J. Chem. Phys. 84, 3901-3915 (1986).
[CrossRef]

1985 (1)

W. Blau, H. Byrne, W. M. Dennis, and J. M. Kelly, “Reverse saturable absorption in tetraphenylporphyrins,” Opt. Commun. 56, 25-29 (1985).
[CrossRef]

1984 (1)

V. G. Maslov, “Calculations of electronic spectra of Mg-P, Mg-Pc and their ionic forms by the PPDP/S method,” Theor. Exp. Chem. (USSR) 20, 288-298 (1984).

1983 (1)

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173-176 (1983).
[CrossRef]

1981 (2)

S. S. Dvornikov, V. N. Knyukshto, V. A. Kuzmitsky, A. M. Shulga, and K. N. Solovyov, “Spectral-luminescent and quantum-chemical study of azaroporphyrin molecules,” J. Lumin. 23, 373-392 (1981).
[CrossRef]

S. Wan, J. A. Parrish, R. R. Anderson, and M. Madden, “Transmittance of nonionizing radiation in human tissues,” Photochem. Photobiol. 34, 679-681 (1981).
[CrossRef] [PubMed]

1977 (1)

V. A. Kuzmitsky and K. N. Solovyov, “Calculation of electronic spectra of porphin molecule by PPDP/S method,” J. Appl. Spectrosc. 27, 724-730 (1977).

1973 (1)

V. I. Bredikhin, M. D. Galanin, and V. N. Genkin, “Two-photon absorption and spectroscopy,” Sov. Phys. Usp. 16, 299-321 (1973).
[CrossRef]

1967 (2)

M. W. Dowley, K. B. Eisenthal, and W. L. Peticolas, “Two-photon laser excitation of polycyclic aromatic molecules,” J. Chem. Phys. 47, 1609-1619 (1967).
[CrossRef]

B. Honig and J. Jortner, “Theoretical studies of two-photon absorption processes. I. Molecular benzene,” J. Chem. Phys. 46, 2714-2727 (1967).
[CrossRef]

1958 (1)

D. H. McDaniel and H. C. Brown, “An extended table of Hammett substituent constants based on the ionization of substituted benzoic acids,” J. Org. Chem. 23, 420-427 (1958).
[CrossRef]

1931 (1)

M. Go¨ppert-Meyer, “Elementartakte mit zwei Quantenspru¨ngen,” Ann. Phys. (Leipzig) 9, 275-294 (1931).

Alabran, D. M.

P. Chen, I. V. Tomov, A. S. Dvornikov, M. Nakashima, J. F. Roach, D. M. Alabran, and P. M. Rentzepis, “Picosecond kinetics and reverse saturable absorption of meso-substituted tetrabenzoporphyrins,” J. Phys. Chem. 100, 17,507-17, 512 (1996).
[CrossRef]

Albota, M.

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Alfimov, E. E.

Yu. P. Meshalkin, E. E. Alfimov, N. E. Vasil’ev, A. N. Denisov, V. K. Makukha, and A. P. Ogirenko, “Two-photon excitation of aluminum phthalocyanines,” Quantum Electron. 29, 1066-1068 (1999).
[CrossRef]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Anderson, R. R.

S. Wan, J. A. Parrish, R. R. Anderson, and M. Madden, “Transmittance of nonionizing radiation in human tissues,” Photochem. Photobiol. 34, 679-681 (1981).
[CrossRef] [PubMed]

Anijalg, A.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173-176 (1983).
[CrossRef]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Barzoukas, M.

M. Barzoukas and M. Blanchard-Desce, “Molecular engineering of push-pull dipolar and quadrupolar molecules for two-photon absorption: a multivalence-bond states approach,” J. Chem. Phys. 113, 3951-3959 (2000).
[CrossRef]

Beljonne, D.

E. Zojer, D. Beljonne, T. Kogej, H. Vogel, S. R. Marder, J. W. Perry, and J.-L. Bredas, “Tuning of two-photon absorption response of quadrupolar organic molecules,” J. Chem. Phys. 116, 3646-3658 (2002).
[CrossRef]

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Berezin, V. D.

N. V. Chizhova and V. D. Berezin, “Nitration of octaphenyl-meso-tetraazaporphine,” Zh. Org. Khim. 30, 1678-1680 (1994).

Birge, R. R.

M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge, “A theoretical investigation of the one- and two-photon properties of porphyrins,” J. Chem. Phys. 84, 3901-3915 (1986).
[CrossRef]

Blanchard-Desce, M.

M. Barzoukas and M. Blanchard-Desce, “Molecular engineering of push-pull dipolar and quadrupolar molecules for two-photon absorption: a multivalence-bond states approach,” J. Chem. Phys. 113, 3951-3959 (2000).
[CrossRef]

Blau, W.

W. Blau, H. Byrne, W. M. Dennis, and J. M. Kelly, “Reverse saturable absorption in tetraphenylporphyrins,” Opt. Commun. 56, 25-29 (1985).
[CrossRef]

Bocian, D. F.

M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge, “A theoretical investigation of the one- and two-photon properties of porphyrins,” J. Chem. Phys. 84, 3901-3915 (1986).
[CrossRef]

Bredas, J. L.

E. Orti, M. C. Piqueras, R. Crespo, and J. L. Bredas, “Influence of annelation on the electronic-properties of phthalocyanine macrocycles,” Chem. Mater. 2, 110-116 (1990).
[CrossRef]

Bredas, J.-L.

E. Zojer, D. Beljonne, T. Kogej, H. Vogel, S. R. Marder, J. W. Perry, and J.-L. Bredas, “Tuning of two-photon absorption response of quadrupolar organic molecules,” J. Chem. Phys. 116, 3646-3658 (2002).
[CrossRef]

Brédas, J.-L.

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Bredikhin, V. I.

V. I. Bredikhin, M. D. Galanin, and V. N. Genkin, “Two-photon absorption and spectroscopy,” Sov. Phys. Usp. 16, 299-321 (1973).
[CrossRef]

Brown, H. C.

D. H. McDaniel and H. C. Brown, “An extended table of Hammett substituent constants based on the ionization of substituted benzoic acids,” J. Org. Chem. 23, 420-427 (1958).
[CrossRef]

Byrne, H.

W. Blau, H. Byrne, W. M. Dennis, and J. M. Kelly, “Reverse saturable absorption in tetraphenylporphyrins,” Opt. Commun. 56, 25-29 (1985).
[CrossRef]

Chen, P.

P. Chen, I. V. Tomov, A. S. Dvornikov, M. Nakashima, J. F. Roach, D. M. Alabran, and P. M. Rentzepis, “Picosecond kinetics and reverse saturable absorption of meso-substituted tetrabenzoporphyrins,” J. Phys. Chem. 100, 17,507-17, 512 (1996).
[CrossRef]

Chirvony, V. S.

N. N. Kruk, S. I. Shishporenok, A. A. Korotky, V. A. Galievsky, V. S. Chirvony, and P.-Y. Turpin, “Binding of the cationic 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin bound at 5CG3 and 5GC3 sequences of hexadeoxyribonucleotides: triplet–triplet transient absorption, steady-state and time-resolved fluorescence and resonance Raman studies,” J. Photochem. Photobiol., B 45, 67–74 (1998).
[CrossRef]

Chizhova, N. V.

N. V. Chizhova and V. D. Berezin, “Nitration of octaphenyl-meso-tetraazaporphine,” Zh. Org. Khim. 30, 1678-1680 (1994).

Cho, B. R.

W.-H. Lee, H. Lee, J.-A. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, and B. R. Cho, “Two photon absorption and nonlinear opti-cal properties of octupolar molecules,” J. Am. Chem. Soc. 123, 10,658-10, 667 (2001).
[CrossRef]

W.-H. Lee, M. Cho, S.-J. Jeon, and B. R. Cho, “Two-photon absorption and second hyperpolarizability of the linear quadrupolar molecule,” J. Phys. Chem. A 104, 11,033-11, 040 (2000).
[CrossRef]

Cho, M.

W.-H. Lee, H. Lee, J.-A. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, and B. R. Cho, “Two photon absorption and nonlinear opti-cal properties of octupolar molecules,” J. Am. Chem. Soc. 123, 10,658-10, 667 (2001).
[CrossRef]

W.-H. Lee, M. Cho, S.-J. Jeon, and B. R. Cho, “Two-photon absorption and second hyperpolarizability of the linear quadrupolar molecule,” J. Phys. Chem. A 104, 11,033-11, 040 (2000).
[CrossRef]

Choi, J.-H.

W.-H. Lee, H. Lee, J.-A. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, and B. R. Cho, “Two photon absorption and nonlinear opti-cal properties of octupolar molecules,” J. Am. Chem. Soc. 123, 10,658-10, 667 (2001).
[CrossRef]

Crespo, R.

E. Orti, M. C. Piqueras, R. Crespo, and J. L. Bredas, “Influence of annelation on the electronic-properties of phthalocyanine macrocycles,” Chem. Mater. 2, 110-116 (1990).
[CrossRef]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Das, G. P.

G. P. Das, R. Vaia, A. T. Yeates, and D. S. Dudis, “A theoretical model for excited state absorption,” Synth. Metals 116, 281-283 (2001).
[CrossRef]

Dees, H. C.

E. A. Wachter, W. P. Partridge, W. E. G. Fisher, H. C. Dees, and M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE 3269, 68-75 (1998).
[CrossRef]

Denisov, A. N.

Yu. P. Meshalkin, E. E. Alfimov, N. E. Vasil’ev, A. N. Denisov, V. K. Makukha, and A. P. Ogirenko, “Two-photon excitation of aluminum phthalocyanines,” Quantum Electron. 29, 1066-1068 (1999).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Dennis, W. M.

W. Blau, H. Byrne, W. M. Dennis, and J. M. Kelly, “Reverse saturable absorption in tetraphenylporphyrins,” Opt. Commun. 56, 25-29 (1985).
[CrossRef]

Dougherty, T. J.

B. W. Henderson and T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55, 147-157 (1992).
[CrossRef]

Dowley, M. W.

M. W. Dowley, K. B. Eisenthal, and W. L. Peticolas, “Two-photon laser excitation of polycyclic aromatic molecules,” J. Chem. Phys. 47, 1609-1619 (1967).
[CrossRef]

Drobizhev, M.

M. Drobizhev, A. Karotki, and A. Rebane, “Dendrimer molecules with record large two-photon absorption cross section,” Opt. Lett. 26, 1081-1083 (2001).
[CrossRef]

M. Drobizhev, A. Karotki, and A. Rebane, “Persistent spectral hole burning by simultaneous two-photon absorption,” Chem. Phys. Lett. 334, 76-82 (2000).
[CrossRef]

M. Drobizhev, C. Sigel, and A. Rebane, “Phototautomer of Br-porphyrin: a new frequency-selective material for ultrafast time-space holographic storage,” J. Lumin. 86, 391-397 (2000).
[CrossRef]

Dudis, D. S.

G. P. Das, R. Vaia, A. T. Yeates, and D. S. Dudis, “A theoretical model for excited state absorption,” Synth. Metals 116, 281-283 (2001).
[CrossRef]

Dvornikov, A. S.

D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235-243 (2001).
[CrossRef]

P. Chen, I. V. Tomov, A. S. Dvornikov, M. Nakashima, J. F. Roach, D. M. Alabran, and P. M. Rentzepis, “Picosecond kinetics and reverse saturable absorption of meso-substituted tetrabenzoporphyrins,” J. Phys. Chem. 100, 17,507-17, 512 (1996).
[CrossRef]

Dvornikov, S. S.

S. S. Dvornikov, V. N. Knyukshto, V. A. Kuzmitsky, A. M. Shulga, and K. N. Solovyov, “Spectral-luminescent and quantum-chemical study of azaroporphyrin molecules,” J. Lumin. 23, 373-392 (1981).
[CrossRef]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Ehrenberg, B.

H. Stiel, A. Volkmer, I. Ru¨ckmann, A. Zeug, B. Ehrenberg, and B. Ro¨der, “Non-linear and transient absorption spectroscopy of magnesium(II)-tetrabenzoporphyrin in solution,” Opt. Commun. 155, 135-143 (1998).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Eisenthal, K. B.

M. W. Dowley, K. B. Eisenthal, and W. L. Peticolas, “Two-photon laser excitation of polycyclic aromatic molecules,” J. Chem. Phys. 47, 1609-1619 (1967).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Findsen, L. A.

M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge, “A theoretical investigation of the one- and two-photon properties of porphyrins,” J. Chem. Phys. 84, 3901-3915 (1986).
[CrossRef]

Fisher, W. E. G.

E. A. Wachter, W. P. Partridge, W. E. G. Fisher, H. C. Dees, and M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE 3269, 68-75 (1998).
[CrossRef]

Frederiksen, P. K.

P. K. Frederiksen, M. Jørgensen, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen,” J. Am. Chem. Soc. 123, 1215-1221 (2001).
[CrossRef] [PubMed]

Fu, J.-Y.

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Gael’, V. I.

V. I. Gael’, V. A. Kuzmitsky, and K. N. Solovyov, “All-valence calculation by fragments of electronic spectrum of Mg-tetraphenylporphyrin molecule,” J. Appl. Spectrosc. 63, 790-798 (1996).
[CrossRef]

Galanin, M. D.

V. I. Bredikhin, M. D. Galanin, and V. N. Genkin, “Two-photon absorption and spectroscopy,” Sov. Phys. Usp. 16, 299-321 (1973).
[CrossRef]

Galievsky, V. A.

N. N. Kruk, S. I. Shishporenok, A. A. Korotky, V. A. Galievsky, V. S. Chirvony, and P.-Y. Turpin, “Binding of the cationic 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin bound at 5CG3 and 5GC3 sequences of hexadeoxyribonucleotides: triplet–triplet transient absorption, steady-state and time-resolved fluorescence and resonance Raman studies,” J. Photochem. Photobiol., B 45, 67–74 (1998).
[CrossRef]

Genkin, V. N.

V. I. Bredikhin, M. D. Galanin, and V. N. Genkin, “Two-photon absorption and spectroscopy,” Sov. Phys. Usp. 16, 299-321 (1973).
[CrossRef]

Go¨ppert-Meyer, M.

M. Go¨ppert-Meyer, “Elementartakte mit zwei Quantenspru¨ngen,” Ann. Phys. (Leipzig) 9, 275-294 (1931).

Goyan, R. L.

R. L. Goyan and D. T. Gramb, “Near-infrared two-photon excitation of protoporphyrin IX: photodynamics and photoproduct generation,” Photochem. Photobiol. 72, 821-827 (2000).
[CrossRef]

Gramb, D. T.

R. L. Goyan and D. T. Gramb, “Near-infrared two-photon excitation of protoporphyrin IX: photodynamics and photoproduct generation,” Photochem. Photobiol. 72, 821-827 (2000).
[CrossRef]

Hado, M.

H. Nakatsuji, J. Hasegawa, and M. Hado, “Excited and ionized states of free base porphin studied by symmetry adapted cluster-configuration interaction (SAC-CI) method,” J. Chem. Phys. 104, 2321-2329 (1996).
[CrossRef]

Hasegawa, J.

H. Nakatsuji, J. Hasegawa, and M. Hado, “Excited and ionized states of free base porphin studied by symmetry adapted cluster-configuration interaction (SAC-CI) method,” J. Chem. Phys. 104, 2321-2329 (1996).
[CrossRef]

He, G. S.

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767-770 (2002).
[CrossRef] [PubMed]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Henderson, B. W.

B. W. Henderson and T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55, 147-157 (1992).
[CrossRef]

Hess, S. E.

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Holten, D.

J. Rodriguez, C. Kirmaier, and D. Holten, “Optical properties of metalloporphyrin excited states,” J. Am. Chem. Soc. 111, 6500-6506 (1989).
[CrossRef]

Honig, B.

B. Honig and J. Jortner, “Theoretical studies of two-photon absorption processes. I. Molecular benzene,” J. Chem. Phys. 46, 2714-2727 (1967).
[CrossRef]

Jeon, S.-J.

W.-H. Lee, H. Lee, J.-A. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, and B. R. Cho, “Two photon absorption and nonlinear opti-cal properties of octupolar molecules,” J. Am. Chem. Soc. 123, 10,658-10, 667 (2001).
[CrossRef]

W.-H. Lee, M. Cho, S.-J. Jeon, and B. R. Cho, “Two-photon absorption and second hyperpolarizability of the linear quadrupolar molecule,” J. Phys. Chem. A 104, 11,033-11, 040 (2000).
[CrossRef]

Jørgensen, M.

P. K. Frederiksen, M. Jørgensen, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen,” J. Am. Chem. Soc. 123, 1215-1221 (2001).
[CrossRef] [PubMed]

Jortner, J.

B. Honig and J. Jortner, “Theoretical studies of two-photon absorption processes. I. Molecular benzene,” J. Chem. Phys. 46, 2714-2727 (1967).
[CrossRef]

Kaarli, R.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173-176 (1983).
[CrossRef]

Karotki, A.

M. Drobizhev, A. Karotki, and A. Rebane, “Dendrimer molecules with record large two-photon absorption cross section,” Opt. Lett. 26, 1081-1083 (2001).
[CrossRef]

M. Drobizhev, A. Karotki, and A. Rebane, “Persistent spectral hole burning by simultaneous two-photon absorption,” Chem. Phys. Lett. 334, 76-82 (2000).
[CrossRef]

Kelly, J. M.

W. Blau, H. Byrne, W. M. Dennis, and J. M. Kelly, “Reverse saturable absorption in tetraphenylporphyrins,” Opt. Commun. 56, 25-29 (1985).
[CrossRef]

Kim, J.-A.

W.-H. Lee, H. Lee, J.-A. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, and B. R. Cho, “Two photon absorption and nonlinear opti-cal properties of octupolar molecules,” J. Am. Chem. Soc. 123, 10,658-10, 667 (2001).
[CrossRef]

Kirmaier, C.

J. Rodriguez, C. Kirmaier, and D. Holten, “Optical properties of metalloporphyrin excited states,” J. Am. Chem. Soc. 111, 6500-6506 (1989).
[CrossRef]

Knyukshto, V. N.

S. S. Dvornikov, V. N. Knyukshto, V. A. Kuzmitsky, A. M. Shulga, and K. N. Solovyov, “Spectral-luminescent and quantum-chemical study of azaroporphyrin molecules,” J. Lumin. 23, 373-392 (1981).
[CrossRef]

Kogej, T.

E. Zojer, D. Beljonne, T. Kogej, H. Vogel, S. R. Marder, J. W. Perry, and J.-L. Bredas, “Tuning of two-photon absorption response of quadrupolar organic molecules,” J. Chem. Phys. 116, 3646-3658 (2002).
[CrossRef]

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Korotky, A. A.

N. N. Kruk, S. I. Shishporenok, A. A. Korotky, V. A. Galievsky, V. S. Chirvony, and P.-Y. Turpin, “Binding of the cationic 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin bound at 5CG3 and 5GC3 sequences of hexadeoxyribonucleotides: triplet–triplet transient absorption, steady-state and time-resolved fluorescence and resonance Raman studies,” J. Photochem. Photobiol., B 45, 67–74 (1998).
[CrossRef]

Kruk, N. N.

N. N. Kruk, S. I. Shishporenok, A. A. Korotky, V. A. Galievsky, V. S. Chirvony, and P.-Y. Turpin, “Binding of the cationic 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin bound at 5CG3 and 5GC3 sequences of hexadeoxyribonucleotides: triplet–triplet transient absorption, steady-state and time-resolved fluorescence and resonance Raman studies,” J. Photochem. Photobiol., B 45, 67–74 (1998).
[CrossRef]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Kuz’mitskii, V. A.

V. A. Kuz’mitskii, “Excited even-symmetry states of metallocomplexes of porphin and its derivatives,” J. Appl. Spectrosc. 68, 758-765 (2001).
[CrossRef]

Kuzmitsky, V. A.

V. I. Gael’, V. A. Kuzmitsky, and K. N. Solovyov, “All-valence calculation by fragments of electronic spectrum of Mg-tetraphenylporphyrin molecule,” J. Appl. Spectrosc. 63, 790-798 (1996).
[CrossRef]

S. S. Dvornikov, V. N. Knyukshto, V. A. Kuzmitsky, A. M. Shulga, and K. N. Solovyov, “Spectral-luminescent and quantum-chemical study of azaroporphyrin molecules,” J. Lumin. 23, 373-392 (1981).
[CrossRef]

V. A. Kuzmitsky and K. N. Solovyov, “Calculation of electronic spectra of porphin molecule by PPDP/S method,” J. Appl. Spectrosc. 27, 724-730 (1977).

Lee, H.

W.-H. Lee, H. Lee, J.-A. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, and B. R. Cho, “Two photon absorption and nonlinear opti-cal properties of octupolar molecules,” J. Am. Chem. Soc. 123, 10,658-10, 667 (2001).
[CrossRef]

Lee, I.-Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Lee, W.-H.

W.-H. Lee, H. Lee, J.-A. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, and B. R. Cho, “Two photon absorption and nonlinear opti-cal properties of octupolar molecules,” J. Am. Chem. Soc. 123, 10,658-10, 667 (2001).
[CrossRef]

W.-H. Lee, M. Cho, S.-J. Jeon, and B. R. Cho, “Two-photon absorption and second hyperpolarizability of the linear quadrupolar molecule,” J. Phys. Chem. A 104, 11,033-11, 040 (2000).
[CrossRef]

Levin, M. D.

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Lin, T.-C.

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767-770 (2002).
[CrossRef] [PubMed]

Lindsey, J. S.

M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge, “A theoretical investigation of the one- and two-photon properties of porphyrins,” J. Chem. Phys. 84, 3901-3915 (1986).
[CrossRef]

Madden, M.

S. Wan, J. A. Parrish, R. R. Anderson, and M. Madden, “Transmittance of nonionizing radiation in human tissues,” Photochem. Photobiol. 34, 679-681 (1981).
[CrossRef] [PubMed]

Makukha, V. K.

Yu. P. Meshalkin, E. E. Alfimov, N. E. Vasil’ev, A. N. Denisov, V. K. Makukha, and A. P. Ogirenko, “Two-photon excitation of aluminum phthalocyanines,” Quantum Electron. 29, 1066-1068 (1999).
[CrossRef]

Marder, S. R.

E. Zojer, D. Beljonne, T. Kogej, H. Vogel, S. R. Marder, J. W. Perry, and J.-L. Bredas, “Tuning of two-photon absorption response of quadrupolar organic molecules,” J. Chem. Phys. 116, 3646-3658 (2002).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Markowicz, P. P.

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767-770 (2002).
[CrossRef] [PubMed]

Maslov, V. G.

V. G. Maslov, “Calculations of electronic spectra of Mg-P, Mg-Pc and their ionic forms by the PPDP/S method,” Theor. Exp. Chem. (USSR) 20, 288-298 (1984).

Masthay, M. B.

M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge, “A theoretical investigation of the one- and two-photon properties of porphyrins,” J. Chem. Phys. 84, 3901-3915 (1986).
[CrossRef]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

McDaniel, D. H.

D. H. McDaniel and H. C. Brown, “An extended table of Hammett substituent constants based on the ionization of substituted benzoic acids,” J. Org. Chem. 23, 420-427 (1958).
[CrossRef]

Meshalkin, Yu. P.

Yu. P. Meshalkin, E. E. Alfimov, N. E. Vasil’ev, A. N. Denisov, V. K. Makukha, and A. P. Ogirenko, “Two-photon excitation of aluminum phthalocyanines,” Quantum Electron. 29, 1066-1068 (1999).
[CrossRef]

Miller, M. J.

Mott, A. G.

Nakashima, M.

P. Chen, I. V. Tomov, A. S. Dvornikov, M. Nakashima, J. F. Roach, D. M. Alabran, and P. M. Rentzepis, “Picosecond kinetics and reverse saturable absorption of meso-substituted tetrabenzoporphyrins,” J. Phys. Chem. 100, 17,507-17, 512 (1996).
[CrossRef]

Nakatsuji, H.

H. Nakatsuji, J. Hasegawa, and M. Hado, “Excited and ionized states of free base porphin studied by symmetry adapted cluster-configuration interaction (SAC-CI) method,” J. Chem. Phys. 104, 2321-2329 (1996).
[CrossRef]

Ogilby, P. R.

P. K. Frederiksen, M. Jørgensen, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen,” J. Am. Chem. Soc. 123, 1215-1221 (2001).
[CrossRef] [PubMed]

Ogirenko, A. P.

Yu. P. Meshalkin, E. E. Alfimov, N. E. Vasil’ev, A. N. Denisov, V. K. Makukha, and A. P. Ogirenko, “Two-photon excitation of aluminum phthalocyanines,” Quantum Electron. 29, 1066-1068 (1999).
[CrossRef]

Orti, E.

E. Orti, M. C. Piqueras, R. Crespo, and J. L. Bredas, “Influence of annelation on the electronic-properties of phthalocyanine macrocycles,” Chem. Mater. 2, 110-116 (1990).
[CrossRef]

Oulianov, D. A.

D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235-243 (2001).
[CrossRef]

Parrish, J. A.

S. Wan, J. A. Parrish, R. R. Anderson, and M. Madden, “Transmittance of nonionizing radiation in human tissues,” Photochem. Photobiol. 34, 679-681 (1981).
[CrossRef] [PubMed]

Partridge, W. P.

E. A. Wachter, W. P. Partridge, W. E. G. Fisher, H. C. Dees, and M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE 3269, 68-75 (1998).
[CrossRef]

Perry, J. W.

E. Zojer, D. Beljonne, T. Kogej, H. Vogel, S. R. Marder, J. W. Perry, and J.-L. Bredas, “Tuning of two-photon absorption response of quadrupolar organic molecules,” J. Chem. Phys. 116, 3646-3658 (2002).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Petersen, M. G.

E. A. Wachter, W. P. Partridge, W. E. G. Fisher, H. C. Dees, and M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE 3269, 68-75 (1998).
[CrossRef]

Peticolas, W. L.

M. W. Dowley, K. B. Eisenthal, and W. L. Peticolas, “Two-photon laser excitation of polycyclic aromatic molecules,” J. Chem. Phys. 47, 1609-1619 (1967).
[CrossRef]

Pierce, B. M.

M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge, “A theoretical investigation of the one- and two-photon properties of porphyrins,” J. Chem. Phys. 84, 3901-3915 (1986).
[CrossRef]

Piqueras, M. C.

E. Orti, M. C. Piqueras, R. Crespo, and J. L. Bredas, “Influence of annelation on the electronic-properties of phthalocyanine macrocycles,” Chem. Mater. 2, 110-116 (1990).
[CrossRef]

Prasad, P. N.

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767-770 (2002).
[CrossRef] [PubMed]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

Rebane, A.

M. Drobizhev, A. Karotki, and A. Rebane, “Dendrimer molecules with record large two-photon absorption cross section,” Opt. Lett. 26, 1081-1083 (2001).
[CrossRef]

M. Drobizhev, A. Karotki, and A. Rebane, “Persistent spectral hole burning by simultaneous two-photon absorption,” Chem. Phys. Lett. 334, 76-82 (2000).
[CrossRef]

M. Drobizhev, C. Sigel, and A. Rebane, “Phototautomer of Br-porphyrin: a new frequency-selective material for ultrafast time-space holographic storage,” J. Lumin. 86, 391-397 (2000).
[CrossRef]

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173-176 (1983).
[CrossRef]

Rentzepis, P. M.

D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235-243 (2001).
[CrossRef]

P. Chen, I. V. Tomov, A. S. Dvornikov, M. Nakashima, J. F. Roach, D. M. Alabran, and P. M. Rentzepis, “Picosecond kinetics and reverse saturable absorption of meso-substituted tetrabenzoporphyrins,” J. Phys. Chem. 100, 17,507-17, 512 (1996).
[CrossRef]

Ro¨ckel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Ro¨der, B.

H. Stiel, A. Volkmer, I. Ru¨ckmann, A. Zeug, B. Ehrenberg, and B. Ro¨der, “Non-linear and transient absorption spectroscopy of magnesium(II)-tetrabenzoporphyrin in solution,” Opt. Commun. 155, 135-143 (1998).
[CrossRef]

Roach, J. F.

P. Chen, I. V. Tomov, A. S. Dvornikov, M. Nakashima, J. F. Roach, D. M. Alabran, and P. M. Rentzepis, “Picosecond kinetics and reverse saturable absorption of meso-substituted tetrabenzoporphyrins,” J. Phys. Chem. 100, 17,507-17, 512 (1996).
[CrossRef]

Rodriguez, J.

J. Rodriguez, C. Kirmaier, and D. Holten, “Optical properties of metalloporphyrin excited states,” J. Am. Chem. Soc. 111, 6500-6506 (1989).
[CrossRef]

Ru¨ckmann, I.

H. Stiel, A. Volkmer, I. Ru¨ckmann, A. Zeug, B. Ehrenberg, and B. Ro¨der, “Non-linear and transient absorption spectroscopy of magnesium(II)-tetrabenzoporphyrin in solution,” Opt. Commun. 155, 135-143 (1998).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Saari, P.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173-176 (1983).
[CrossRef]

Shishporenok, S. I.

N. N. Kruk, S. I. Shishporenok, A. A. Korotky, V. A. Galievsky, V. S. Chirvony, and P.-Y. Turpin, “Binding of the cationic 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin bound at 5CG3 and 5GC3 sequences of hexadeoxyribonucleotides: triplet–triplet transient absorption, steady-state and time-resolved fluorescence and resonance Raman studies,” J. Photochem. Photobiol., B 45, 67–74 (1998).
[CrossRef]

Shulga, A. M.

S. S. Dvornikov, V. N. Knyukshto, V. A. Kuzmitsky, A. M. Shulga, and K. N. Solovyov, “Spectral-luminescent and quantum-chemical study of azaroporphyrin molecules,” J. Lumin. 23, 373-392 (1981).
[CrossRef]

Sigel, C.

M. Drobizhev, C. Sigel, and A. Rebane, “Phototautomer of Br-porphyrin: a new frequency-selective material for ultrafast time-space holographic storage,” J. Lumin. 86, 391-397 (2000).
[CrossRef]

Solovyov, K. N.

V. I. Gael’, V. A. Kuzmitsky, and K. N. Solovyov, “All-valence calculation by fragments of electronic spectrum of Mg-tetraphenylporphyrin molecule,” J. Appl. Spectrosc. 63, 790-798 (1996).
[CrossRef]

S. S. Dvornikov, V. N. Knyukshto, V. A. Kuzmitsky, A. M. Shulga, and K. N. Solovyov, “Spectral-luminescent and quantum-chemical study of azaroporphyrin molecules,” J. Lumin. 23, 373-392 (1981).
[CrossRef]

V. A. Kuzmitsky and K. N. Solovyov, “Calculation of electronic spectra of porphin molecule by PPDP/S method,” J. Appl. Spectrosc. 27, 724-730 (1977).

Spangler, C. W.

C. W. Spangler, “Recent developments in the design of organic materials for optical power limiting,” J. Mater. Chem. 9, 2013-2020 (1999).
[CrossRef]

Stiel, H.

H. Stiel, A. Volkmer, I. Ru¨ckmann, A. Zeug, B. Ehrenberg, and B. Ro¨der, “Non-linear and transient absorption spectroscopy of magnesium(II)-tetrabenzoporphyrin in solution,” Opt. Commun. 155, 135-143 (1998).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Subramaniam, G.

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Sundholm, D.

D. Sundholm, “Density functional theory study of the electronic absorption spectrum of Mg-porphyrin and Mg-etioporphyrin,” Chem. Phys. Lett. 317, 392-399 (2000).
[CrossRef]

Timpmann, K.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173-176 (1983).
[CrossRef]

Tomov, I. V.

D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235-243 (2001).
[CrossRef]

P. Chen, I. V. Tomov, A. S. Dvornikov, M. Nakashima, J. F. Roach, D. M. Alabran, and P. M. Rentzepis, “Picosecond kinetics and reverse saturable absorption of meso-substituted tetrabenzoporphyrins,” J. Phys. Chem. 100, 17,507-17, 512 (1996).
[CrossRef]

Turpin, P.-Y.

N. N. Kruk, S. I. Shishporenok, A. A. Korotky, V. A. Galievsky, V. S. Chirvony, and P.-Y. Turpin, “Binding of the cationic 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin bound at 5CG3 and 5GC3 sequences of hexadeoxyribonucleotides: triplet–triplet transient absorption, steady-state and time-resolved fluorescence and resonance Raman studies,” J. Photochem. Photobiol., B 45, 67–74 (1998).
[CrossRef]

Vaia, R.

G. P. Das, R. Vaia, A. T. Yeates, and D. S. Dudis, “A theoretical model for excited state absorption,” Synth. Metals 116, 281-283 (2001).
[CrossRef]

Vasil’ev, N. E.

Yu. P. Meshalkin, E. E. Alfimov, N. E. Vasil’ev, A. N. Denisov, V. K. Makukha, and A. P. Ogirenko, “Two-photon excitation of aluminum phthalocyanines,” Quantum Electron. 29, 1066-1068 (1999).
[CrossRef]

Vogel, H.

E. Zojer, D. Beljonne, T. Kogej, H. Vogel, S. R. Marder, J. W. Perry, and J.-L. Bredas, “Tuning of two-photon absorption response of quadrupolar organic molecules,” J. Chem. Phys. 116, 3646-3658 (2002).
[CrossRef]

Volkmer, A.

H. Stiel, A. Volkmer, I. Ru¨ckmann, A. Zeug, B. Ehrenberg, and B. Ro¨der, “Non-linear and transient absorption spectroscopy of magnesium(II)-tetrabenzoporphyrin in solution,” Opt. Commun. 155, 135-143 (1998).
[CrossRef]

Wachter, E. A.

E. A. Wachter, W. P. Partridge, W. E. G. Fisher, H. C. Dees, and M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE 3269, 68-75 (1998).
[CrossRef]

Wan, S.

S. Wan, J. A. Parrish, R. R. Anderson, and M. Madden, “Transmittance of nonionizing radiation in human tissues,” Photochem. Photobiol. 34, 679-681 (1981).
[CrossRef] [PubMed]

Webb, W. W.

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Wood, G. L.

Wu, X.-L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Xu, C.

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Yeates, A. T.

G. P. Das, R. Vaia, A. T. Yeates, and D. S. Dudis, “A theoretical model for excited state absorption,” Synth. Metals 116, 281-283 (2001).
[CrossRef]

Zeug, A.

H. Stiel, A. Volkmer, I. Ru¨ckmann, A. Zeug, B. Ehrenberg, and B. Ro¨der, “Non-linear and transient absorption spectroscopy of magnesium(II)-tetrabenzoporphyrin in solution,” Opt. Commun. 155, 135-143 (1998).
[CrossRef]

Zojer, E.

E. Zojer, D. Beljonne, T. Kogej, H. Vogel, S. R. Marder, J. W. Perry, and J.-L. Bredas, “Tuning of two-photon absorption response of quadrupolar organic molecules,” J. Chem. Phys. 116, 3646-3658 (2002).
[CrossRef]

Ann. Phys. (Leipzig) (1)

M. Go¨ppert-Meyer, “Elementartakte mit zwei Quantenspru¨ngen,” Ann. Phys. (Leipzig) 9, 275-294 (1931).

Chem. Mater. (1)

E. Orti, M. C. Piqueras, R. Crespo, and J. L. Bredas, “Influence of annelation on the electronic-properties of phthalocyanine macrocycles,” Chem. Mater. 2, 110-116 (1990).
[CrossRef]

Chem. Phys. Lett. (2)

D. Sundholm, “Density functional theory study of the electronic absorption spectrum of Mg-porphyrin and Mg-etioporphyrin,” Chem. Phys. Lett. 317, 392-399 (2000).
[CrossRef]

M. Drobizhev, A. Karotki, and A. Rebane, “Persistent spectral hole burning by simultaneous two-photon absorption,” Chem. Phys. Lett. 334, 76-82 (2000).
[CrossRef]

J. Am. Chem. Soc. (3)

J. Rodriguez, C. Kirmaier, and D. Holten, “Optical properties of metalloporphyrin excited states,” J. Am. Chem. Soc. 111, 6500-6506 (1989).
[CrossRef]

W.-H. Lee, H. Lee, J.-A. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, and B. R. Cho, “Two photon absorption and nonlinear opti-cal properties of octupolar molecules,” J. Am. Chem. Soc. 123, 10,658-10, 667 (2001).
[CrossRef]

P. K. Frederiksen, M. Jørgensen, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen,” J. Am. Chem. Soc. 123, 1215-1221 (2001).
[CrossRef] [PubMed]

J. Appl. Spectrosc. (3)

V. A. Kuzmitsky and K. N. Solovyov, “Calculation of electronic spectra of porphin molecule by PPDP/S method,” J. Appl. Spectrosc. 27, 724-730 (1977).

V. I. Gael’, V. A. Kuzmitsky, and K. N. Solovyov, “All-valence calculation by fragments of electronic spectrum of Mg-tetraphenylporphyrin molecule,” J. Appl. Spectrosc. 63, 790-798 (1996).
[CrossRef]

V. A. Kuz’mitskii, “Excited even-symmetry states of metallocomplexes of porphin and its derivatives,” J. Appl. Spectrosc. 68, 758-765 (2001).
[CrossRef]

J. Chem. Phys. (6)

M. W. Dowley, K. B. Eisenthal, and W. L. Peticolas, “Two-photon laser excitation of polycyclic aromatic molecules,” J. Chem. Phys. 47, 1609-1619 (1967).
[CrossRef]

B. Honig and J. Jortner, “Theoretical studies of two-photon absorption processes. I. Molecular benzene,” J. Chem. Phys. 46, 2714-2727 (1967).
[CrossRef]

M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge, “A theoretical investigation of the one- and two-photon properties of porphyrins,” J. Chem. Phys. 84, 3901-3915 (1986).
[CrossRef]

H. Nakatsuji, J. Hasegawa, and M. Hado, “Excited and ionized states of free base porphin studied by symmetry adapted cluster-configuration interaction (SAC-CI) method,” J. Chem. Phys. 104, 2321-2329 (1996).
[CrossRef]

E. Zojer, D. Beljonne, T. Kogej, H. Vogel, S. R. Marder, J. W. Perry, and J.-L. Bredas, “Tuning of two-photon absorption response of quadrupolar organic molecules,” J. Chem. Phys. 116, 3646-3658 (2002).
[CrossRef]

M. Barzoukas and M. Blanchard-Desce, “Molecular engineering of push-pull dipolar and quadrupolar molecules for two-photon absorption: a multivalence-bond states approach,” J. Chem. Phys. 113, 3951-3959 (2000).
[CrossRef]

J. Lumin. (2)

S. S. Dvornikov, V. N. Knyukshto, V. A. Kuzmitsky, A. M. Shulga, and K. N. Solovyov, “Spectral-luminescent and quantum-chemical study of azaroporphyrin molecules,” J. Lumin. 23, 373-392 (1981).
[CrossRef]

M. Drobizhev, C. Sigel, and A. Rebane, “Phototautomer of Br-porphyrin: a new frequency-selective material for ultrafast time-space holographic storage,” J. Lumin. 86, 391-397 (2000).
[CrossRef]

J. Mater. Chem. (1)

C. W. Spangler, “Recent developments in the design of organic materials for optical power limiting,” J. Mater. Chem. 9, 2013-2020 (1999).
[CrossRef]

J. Org. Chem. (1)

D. H. McDaniel and H. C. Brown, “An extended table of Hammett substituent constants based on the ionization of substituted benzoic acids,” J. Org. Chem. 23, 420-427 (1958).
[CrossRef]

J. Photochem. Photobiol., B (1)

N. N. Kruk, S. I. Shishporenok, A. A. Korotky, V. A. Galievsky, V. S. Chirvony, and P.-Y. Turpin, “Binding of the cationic 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin bound at 5CG3 and 5GC3 sequences of hexadeoxyribonucleotides: triplet–triplet transient absorption, steady-state and time-resolved fluorescence and resonance Raman studies,” J. Photochem. Photobiol., B 45, 67–74 (1998).
[CrossRef]

J. Phys. Chem. (1)

P. Chen, I. V. Tomov, A. S. Dvornikov, M. Nakashima, J. F. Roach, D. M. Alabran, and P. M. Rentzepis, “Picosecond kinetics and reverse saturable absorption of meso-substituted tetrabenzoporphyrins,” J. Phys. Chem. 100, 17,507-17, 512 (1996).
[CrossRef]

J. Phys. Chem. A (1)

W.-H. Lee, M. Cho, S.-J. Jeon, and B. R. Cho, “Two-photon absorption and second hyperpolarizability of the linear quadrupolar molecule,” J. Phys. Chem. A 104, 11,033-11, 040 (2000).
[CrossRef]

Nature (2)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
[CrossRef]

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767-770 (2002).
[CrossRef] [PubMed]

Opt. Commun. (4)

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173-176 (1983).
[CrossRef]

W. Blau, H. Byrne, W. M. Dennis, and J. M. Kelly, “Reverse saturable absorption in tetraphenylporphyrins,” Opt. Commun. 56, 25-29 (1985).
[CrossRef]

H. Stiel, A. Volkmer, I. Ru¨ckmann, A. Zeug, B. Ehrenberg, and B. Ro¨der, “Non-linear and transient absorption spectroscopy of magnesium(II)-tetrabenzoporphyrin in solution,” Opt. Commun. 155, 135-143 (1998).
[CrossRef]

D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235-243 (2001).
[CrossRef]

Opt. Lett. (2)

Photochem. Photobiol. (3)

B. W. Henderson and T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55, 147-157 (1992).
[CrossRef]

R. L. Goyan and D. T. Gramb, “Near-infrared two-photon excitation of protoporphyrin IX: photodynamics and photoproduct generation,” Photochem. Photobiol. 72, 821-827 (2000).
[CrossRef]

S. Wan, J. A. Parrish, R. R. Anderson, and M. Madden, “Transmittance of nonionizing radiation in human tissues,” Photochem. Photobiol. 34, 679-681 (1981).
[CrossRef] [PubMed]

Proc. SPIE (1)

E. A. Wachter, W. P. Partridge, W. E. G. Fisher, H. C. Dees, and M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE 3269, 68-75 (1998).
[CrossRef]

Quantum Electron. (1)

Yu. P. Meshalkin, E. E. Alfimov, N. E. Vasil’ev, A. N. Denisov, V. K. Makukha, and A. P. Ogirenko, “Two-photon excitation of aluminum phthalocyanines,” Quantum Electron. 29, 1066-1068 (1999).
[CrossRef]

Science (2)

M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. I. Bredikhin, M. D. Galanin, and V. N. Genkin, “Two-photon absorption and spectroscopy,” Sov. Phys. Usp. 16, 299-321 (1973).
[CrossRef]

Synth. Metals (1)

G. P. Das, R. Vaia, A. T. Yeates, and D. S. Dudis, “A theoretical model for excited state absorption,” Synth. Metals 116, 281-283 (2001).
[CrossRef]

Theor. Exp. Chem. (USSR) (1)

V. G. Maslov, “Calculations of electronic spectra of Mg-P, Mg-Pc and their ionic forms by the PPDP/S method,” Theor. Exp. Chem. (USSR) 20, 288-298 (1984).

Zh. Org. Khim. (1)

N. V. Chizhova and V. D. Berezin, “Nitration of octaphenyl-meso-tetraazaporphine,” Zh. Org. Khim. 30, 1678-1680 (1994).

Other (5)

N. V. Chizhova, O. G. Khelevina, and V. D. Berezin, “Bromation of porphyrins,” Izv. Vyssh. Uch. Zav. Khim. Khim. Tekh. 37, 20-23 (1994).

A. M. Shul’ga, senior staff researcher, Institute of Molecular and Atomic Physics of National Academy of Sciences, 70 F. Skaryna Avenue, 220072 Minsk, Belarus.

I. Suzuka, M. Kozawa, and Y. Numata, “Two-photon absorption spectra of porphyrins—first observation of the hidden g-excited state,” presented at the XVIII International Union of Pure and Applied Chemistry Symposium on Photochemistry, Dresden, Germany, July 19-22, 2000.

N. N. Vsevolodov, L. P. Kostikov, L. P. Kayushin, and V. I. Gorbatenkov, “Two-photon absorption of laser radiation by chlorophyll a and some organic dyes,” Biophysics (USSR) 18, 755-757 (1973).

B. M. Dzhagarov, M. M. Kruk, V. S. Chirvony, V. A. Galievsky, and P.-Y. Turpin, “Guest–host complexes of porphyrins with DNA: porphyrin excited states deactivation channels and interaction with molecular oxygen,” Advances in Porphyrin Chemistry, O. Golubchikov, ed. (St. Petersburg University Publishing House, St. Petersburg, Russia, 1999), pp. 50–69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Chemical structures of molecules discussed in this paper: (a) 2,3,7,8,12,13,17,18-octaethylporphine zinc (II) (ZnOEP); (b) 5,10,15,20-tetraphenylporphine (H2TPP); (c) tetrabenzoporphine (H2TBP); (d) 5-monophenyltetrabenzoporphine zinc (II) (ZnMPTBP); (e) 5,15-diphenyltetrabenzoporphine zinc (II) (ZnDiPTBP); (f) 5,10,15-triphenyltetrabenzoporphine zinc (II) (ZnTriPTBP); (g) 5,10,15,20-tetraphenyltetrabenzoporphine zinc (II) (ZnTPTBP); (h) 2,7,12,17-tetra-tert-butyl-tetraazaporphine (Bu4TAP); (i) 2,3,7,8,12,13,17,18-(4-bromophenyl)-tetraazaporphine [(BrPh)8TAP]; (j) 2,3,7,8,12,13,17,18-(4-nitrophenyl)-tetraazaporphine [(NO2Ph)8TAP]; (k) 5-phenyl,15-(2,6-dichlorophenyl)-porphine (DPP); (l) 5,10,15,20-tetrakis(4-N-methylpyridyl)-porphine (H2TMPyP); (m) 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphine (H2TSPP); (n) 5-(4-diphenylamino-stilbene), 15-(2,6-dichlorophenyl)-porphine (DPASP); (o) 7,8-dihydroporphine (chlorin).

Fig. 2
Fig. 2

Schematic of experimental setup: SHG, second-harmonic generator; PM, photomultiplier.

Fig. 3
Fig. 3

TPA cross section as a function of transition wavelength in the Q region. Filled squares, TPA spectra; solid curves, linear absorption spectra; H2TMPyP and H2TSPP in water, H2TPP in toluene, Bu4TAP and (NO2Bh)8TAP in dichloromethane, and chlorin in poly(vinyl butyral) film.

Fig. 4
Fig. 4

TPA cross section as a function of transition wavelength in the Soret region. Filled squares, TPA spectra; solid curves, linear absorption spectra; ZnTPTBP and H2TBP in toluene, H2TBP in pyridine, and Bu4TAP, (NO2Ph)8TAP, and ZnOEP in dichloromethane.

Fig. 5
Fig. 5

TPA cross section as a function of excitation photon frequency (one half of the transition frequency) for the same molecules as in Fig. 4. Filled squares, TPA spectra; solid curves, linear absorption spectra.

Fig. 6
Fig. 6

Correlation between the TPA cross section and a combination of linear absorption parameters for a number of porphyrins (see text for explanation).

Fig. 7
Fig. 7

Quantity σ2[(νi0-νL)2+Γi02]/νL2 plotted as a function of 2νL for the same molecules as in Fig. 4. A deviation from a straight horizontal line represents the spectral profile of the gg transition.

Fig. 8
Fig. 8

Dependence of the TPA cross section (measured at the maximum gg transition) on the substituent’s Hammett constant for three tetraazaporphyrins.

Fig. 9
Fig. 9

TPA cross section as a function of transition wavelength in the Soret region. Filled squares, TPA spectrum; solid curves, linear absorption. DPP and DPASP in toluene.

Fig. 10
Fig. 10

(a) 1Δg3Σg- luminescence spectra of molecular oxygen in an air-saturated toluene solution of DPASP. Dashed curve, one-photon excitation; solid curve, two-photon excitation. Both spectra are normalized to unity. (b) Dependence of 1Δg3Σg- oxygen luminescence intensity IΔ on average illumination intensity P on two-photon excitation. Filled squares, experimental data; solid curve, best power-law fit, IΔ=aPn with n=2.1±0.1.

Tables (1)

Tables Icon

Table 1 Summary of One- and Two-Photon Absorption Properties of Several Porphyrins

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

σ2=(2π)4ν1ν2(ch)2L4n2 |Sf0|2g(ν1+ν2),
|Sf0|2 =iN(p^1μi0)(μfip^2)νi0-ν1+iΓi0+(p^1μi0)(μfip^2)νi0-ν2+iΓi02,
|Sf0|2 =iN2(pˆμi0)(μfipˆ)νi0-νL+iΓi02.
|Sf0|2 =4(pˆμi0)(μfipˆ)νi0-νL+iΓi0+(pˆμ00)(μf0pˆ)ν00-νL+iΓ00+(pˆμf0)(μffpˆ)νf0-νL+iΓf02.
σ2=45(2π)4νL2(ch)2L4n2|μi0|2|μfi|2(νi0-νL)2+Γi02 g(2νL).
α=1σTPAdσTPAdνL=2νL+2(νi0-νL)(νi0-νL)2+Γi02.
νi0=νL+νL+[νL2-Γi02(νLα-2)2]1/2νLα-2.
I(r, t)=I0(r, t)1+σ2nLI0(r, t)
I(r, t)I0(r, t)[1-σ2nLI0(r, t)].
ΔETPA=σ2nL 02πrdr -dtI02(r, t).
I0(r, t)=I0iexp-4t2ln 2τ2,
ΔETPA=σ2nLπ3/2r02I0i2τ8 ln 2.
EiTPA=0r0 2πrdr -dtI0iexp-4t2ln 2τ2=π3/2τr02I0i2ln 2,
ΔETPA=2 ln 2σ2nLEiTPA2π3/2τr02.
NTPA=ΔETPA2h ν2ph=2 ln 2σ2nLEiTPA22h ν2phπ3/2τr02,
ΔE1PA=Ei1PA[1-exp(-σ1nL)]Ei1PAσ1nL,
N1PA=ΔE1PAh ν1ph=σ1nLEi1PAh ν1ph,
FTPAF1PA=2 ln 2σ2EiTPA2ν1ph2ν2phπ3/2τr02σ1E1PA,
σ2=FTPAν2ph2π3/2τr02E1PAF1PAν1phln 2EiTPA2 σ1.

Metrics