Abstract

The photoinduced polarization-isotropic scattering in strontium barium niobate (SBN) doped with 0.66-mol. % cerium has been studied over a wide temperature range including the region of the relaxor phase transition. The temperature evolution of the scattering pattern has been examined with respect to changes in the domain structure and of optical parameters of the crystal resulting from the phase transition from a ferroelectric state to a paraelectric state. The scattering properties at temperatures above the ferroeletric phase are connected to the relaxor behavior of SBN. We found that a transition temperature TC can be defined from the temperature evolution of the scattering pattern much more precisely than with conventional methods such as frequency-dependent measurements of the dielectric susceptibility.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. V. Voronov, I. R. Dorosh, Yu. S. Kuz’minov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
    [Crossref]
  2. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46–51 (1982).
    [Crossref]
  3. B. Sturman, S. Odoulov, and M. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
    [Crossref]
  4. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
    [Crossref]
  5. D. Rytz, B. A. Wechsler, R. N. Schwarz, C. C. Nelson, C. D. Brandle, A. J. Valentino, and G. W. Berkstresser, “Temperature dependence of photorefractive properties of strontium-barium niobate (Sr0.6Ba0.4Nb2O6),” J. Appl. Phys. 66, 1920–1924 (1989).
    [Crossref]
  6. R. A. Rupp, J. Seglins, and U. van Olfen, “Phase transition of SBN:Ce studied by anisotropic holographic scattering,” Phys. Status Solidi B 168, 445–454 (1991).
    [Crossref]
  7. T. Volk, Th. Woike, U. Dörfler, R. Pankrath, L. Ivleva, and M. Wöhlecke, “Ferroelectric phenomena and holographic properties of strontium-barium-niobate crystals doped with rare-earth elements,” Ferroelectrics 203, 457–470 (1997).
    [Crossref]
  8. P. B. Jamieson, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric tungsten bronze-type crystal structures. I. barium strontium niobate Ba0.27Sr0.75Nb2O5.78,” J. Chem. Phys. 48, 5048–5057 (1968).
    [Crossref]
  9. J. Dec, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: I. Susceptibility of clusters and domains,” Eur. Phys. J. B 14, 627–632 (2000).
    [Crossref]
  10. P. Lehnen, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: II. Linear birefringence studies of spontaneous and precursor polarization,” Eur. Phys. J. B 14, 633–637 (2000).
  11. V. Westphal, W. Kleemann, and M. D. Glinchuk, “Diffuse phase transition and random-field-induced domain states of the ‘relaxor’ ferroelectric PbMg1/3Nb2/3O3,” Phys. Rev. Lett. 68, 847–850 (1992).
    [Crossref] [PubMed]
  12. W. Kleemann, “Random-field induced antiferromagnetic, ferroelectric and structural domain states,” Int. J. Mod. Phys. B 7, 2469–2507 (1993).
    [Crossref]
  13. J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc, and R. Pankrath, “Random field Ising type transition of pure and doped SBN from the relaxor into the ferroelectric state,” Europhys. Lett. 55, 781–787 (2001).
    [Crossref]
  14. W. Kleemann, J. Dec, P. Lehnen, R. Blinc, B. Zalar, and R. Pankrath, “Uniaxial relaxor ferroelectrics: the random-field Ising model materialized at last,” Europhys. Lett. 57, 14–19 (2002).
    [Crossref]
  15. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  16. P. Yeh, “Theory of unidirectional photorefractive ring oscillators,” J. Opt. Soc. Am. B 2, 1924–1928 (1985).
    [Crossref]
  17. D. Kip, S. Aulkemeyer, K. Buse, F. Mersch, R. Pankrath, and E. Krätzig, “Refractive indices of Sr0.61Ba0.39Nb2O6,” Phys. Status Solidi A 154, K5–K7 (1996).
    [Crossref]
  18. U. B. Dörfler, R. Piechatzek, Th. Woike, M. K. Imlau, V. Wirth, L. Bohatý, T. Volk, R. Pankrath, and M. Wöhlecke, “A holographic method for the determination of all linear electrooptic coefficients applied to Ce-doped strontium-barium-niobate,” Appl. Phys. B 68, 843–848 (1999).
    [Crossref]

2002 (1)

W. Kleemann, J. Dec, P. Lehnen, R. Blinc, B. Zalar, and R. Pankrath, “Uniaxial relaxor ferroelectrics: the random-field Ising model materialized at last,” Europhys. Lett. 57, 14–19 (2002).
[Crossref]

2001 (1)

J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc, and R. Pankrath, “Random field Ising type transition of pure and doped SBN from the relaxor into the ferroelectric state,” Europhys. Lett. 55, 781–787 (2001).
[Crossref]

2000 (2)

J. Dec, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: I. Susceptibility of clusters and domains,” Eur. Phys. J. B 14, 627–632 (2000).
[Crossref]

P. Lehnen, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: II. Linear birefringence studies of spontaneous and precursor polarization,” Eur. Phys. J. B 14, 633–637 (2000).

1999 (1)

U. B. Dörfler, R. Piechatzek, Th. Woike, M. K. Imlau, V. Wirth, L. Bohatý, T. Volk, R. Pankrath, and M. Wöhlecke, “A holographic method for the determination of all linear electrooptic coefficients applied to Ce-doped strontium-barium-niobate,” Appl. Phys. B 68, 843–848 (1999).
[Crossref]

1997 (1)

T. Volk, Th. Woike, U. Dörfler, R. Pankrath, L. Ivleva, and M. Wöhlecke, “Ferroelectric phenomena and holographic properties of strontium-barium-niobate crystals doped with rare-earth elements,” Ferroelectrics 203, 457–470 (1997).
[Crossref]

1996 (2)

B. Sturman, S. Odoulov, and M. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[Crossref]

D. Kip, S. Aulkemeyer, K. Buse, F. Mersch, R. Pankrath, and E. Krätzig, “Refractive indices of Sr0.61Ba0.39Nb2O6,” Phys. Status Solidi A 154, K5–K7 (1996).
[Crossref]

1993 (1)

W. Kleemann, “Random-field induced antiferromagnetic, ferroelectric and structural domain states,” Int. J. Mod. Phys. B 7, 2469–2507 (1993).
[Crossref]

1992 (1)

V. Westphal, W. Kleemann, and M. D. Glinchuk, “Diffuse phase transition and random-field-induced domain states of the ‘relaxor’ ferroelectric PbMg1/3Nb2/3O3,” Phys. Rev. Lett. 68, 847–850 (1992).
[Crossref] [PubMed]

1991 (1)

R. A. Rupp, J. Seglins, and U. van Olfen, “Phase transition of SBN:Ce studied by anisotropic holographic scattering,” Phys. Status Solidi B 168, 445–454 (1991).
[Crossref]

1989 (1)

D. Rytz, B. A. Wechsler, R. N. Schwarz, C. C. Nelson, C. D. Brandle, A. J. Valentino, and G. W. Berkstresser, “Temperature dependence of photorefractive properties of strontium-barium niobate (Sr0.6Ba0.4Nb2O6),” J. Appl. Phys. 66, 1920–1924 (1989).
[Crossref]

1985 (1)

1982 (1)

1980 (1)

V. V. Voronov, I. R. Dorosh, Yu. S. Kuz’minov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[Crossref]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

1968 (1)

P. B. Jamieson, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric tungsten bronze-type crystal structures. I. barium strontium niobate Ba0.27Sr0.75Nb2O5.78,” J. Chem. Phys. 48, 5048–5057 (1968).
[Crossref]

Abrahams, S. C.

P. B. Jamieson, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric tungsten bronze-type crystal structures. I. barium strontium niobate Ba0.27Sr0.75Nb2O5.78,” J. Chem. Phys. 48, 5048–5057 (1968).
[Crossref]

Aulkemeyer, S.

D. Kip, S. Aulkemeyer, K. Buse, F. Mersch, R. Pankrath, and E. Krätzig, “Refractive indices of Sr0.61Ba0.39Nb2O6,” Phys. Status Solidi A 154, K5–K7 (1996).
[Crossref]

Berkstresser, G. W.

D. Rytz, B. A. Wechsler, R. N. Schwarz, C. C. Nelson, C. D. Brandle, A. J. Valentino, and G. W. Berkstresser, “Temperature dependence of photorefractive properties of strontium-barium niobate (Sr0.6Ba0.4Nb2O6),” J. Appl. Phys. 66, 1920–1924 (1989).
[Crossref]

Bernstein, J. L.

P. B. Jamieson, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric tungsten bronze-type crystal structures. I. barium strontium niobate Ba0.27Sr0.75Nb2O5.78,” J. Chem. Phys. 48, 5048–5057 (1968).
[Crossref]

Blinc, R.

W. Kleemann, J. Dec, P. Lehnen, R. Blinc, B. Zalar, and R. Pankrath, “Uniaxial relaxor ferroelectrics: the random-field Ising model materialized at last,” Europhys. Lett. 57, 14–19 (2002).
[Crossref]

Bobnar, V.

J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc, and R. Pankrath, “Random field Ising type transition of pure and doped SBN from the relaxor into the ferroelectric state,” Europhys. Lett. 55, 781–787 (2001).
[Crossref]

Bohatý, L.

U. B. Dörfler, R. Piechatzek, Th. Woike, M. K. Imlau, V. Wirth, L. Bohatý, T. Volk, R. Pankrath, and M. Wöhlecke, “A holographic method for the determination of all linear electrooptic coefficients applied to Ce-doped strontium-barium-niobate,” Appl. Phys. B 68, 843–848 (1999).
[Crossref]

Brandle, C. D.

D. Rytz, B. A. Wechsler, R. N. Schwarz, C. C. Nelson, C. D. Brandle, A. J. Valentino, and G. W. Berkstresser, “Temperature dependence of photorefractive properties of strontium-barium niobate (Sr0.6Ba0.4Nb2O6),” J. Appl. Phys. 66, 1920–1924 (1989).
[Crossref]

Buse, K.

D. Kip, S. Aulkemeyer, K. Buse, F. Mersch, R. Pankrath, and E. Krätzig, “Refractive indices of Sr0.61Ba0.39Nb2O6,” Phys. Status Solidi A 154, K5–K7 (1996).
[Crossref]

Dec, J.

W. Kleemann, J. Dec, P. Lehnen, R. Blinc, B. Zalar, and R. Pankrath, “Uniaxial relaxor ferroelectrics: the random-field Ising model materialized at last,” Europhys. Lett. 57, 14–19 (2002).
[Crossref]

J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc, and R. Pankrath, “Random field Ising type transition of pure and doped SBN from the relaxor into the ferroelectric state,” Europhys. Lett. 55, 781–787 (2001).
[Crossref]

J. Dec, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: I. Susceptibility of clusters and domains,” Eur. Phys. J. B 14, 627–632 (2000).
[Crossref]

Dörfler, U.

T. Volk, Th. Woike, U. Dörfler, R. Pankrath, L. Ivleva, and M. Wöhlecke, “Ferroelectric phenomena and holographic properties of strontium-barium-niobate crystals doped with rare-earth elements,” Ferroelectrics 203, 457–470 (1997).
[Crossref]

Dörfler, U. B.

U. B. Dörfler, R. Piechatzek, Th. Woike, M. K. Imlau, V. Wirth, L. Bohatý, T. Volk, R. Pankrath, and M. Wöhlecke, “A holographic method for the determination of all linear electrooptic coefficients applied to Ce-doped strontium-barium-niobate,” Appl. Phys. B 68, 843–848 (1999).
[Crossref]

Dorosh, I. R.

V. V. Voronov, I. R. Dorosh, Yu. S. Kuz’minov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[Crossref]

Feinberg, J.

Glinchuk, M. D.

V. Westphal, W. Kleemann, and M. D. Glinchuk, “Diffuse phase transition and random-field-induced domain states of the ‘relaxor’ ferroelectric PbMg1/3Nb2/3O3,” Phys. Rev. Lett. 68, 847–850 (1992).
[Crossref] [PubMed]

Goulkov, M.

B. Sturman, S. Odoulov, and M. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[Crossref]

Imlau, M. K.

U. B. Dörfler, R. Piechatzek, Th. Woike, M. K. Imlau, V. Wirth, L. Bohatý, T. Volk, R. Pankrath, and M. Wöhlecke, “A holographic method for the determination of all linear electrooptic coefficients applied to Ce-doped strontium-barium-niobate,” Appl. Phys. B 68, 843–848 (1999).
[Crossref]

Ivleva, L.

T. Volk, Th. Woike, U. Dörfler, R. Pankrath, L. Ivleva, and M. Wöhlecke, “Ferroelectric phenomena and holographic properties of strontium-barium-niobate crystals doped with rare-earth elements,” Ferroelectrics 203, 457–470 (1997).
[Crossref]

Jamieson, P. B.

P. B. Jamieson, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric tungsten bronze-type crystal structures. I. barium strontium niobate Ba0.27Sr0.75Nb2O5.78,” J. Chem. Phys. 48, 5048–5057 (1968).
[Crossref]

Kip, D.

D. Kip, S. Aulkemeyer, K. Buse, F. Mersch, R. Pankrath, and E. Krätzig, “Refractive indices of Sr0.61Ba0.39Nb2O6,” Phys. Status Solidi A 154, K5–K7 (1996).
[Crossref]

Kleemann, W.

W. Kleemann, J. Dec, P. Lehnen, R. Blinc, B. Zalar, and R. Pankrath, “Uniaxial relaxor ferroelectrics: the random-field Ising model materialized at last,” Europhys. Lett. 57, 14–19 (2002).
[Crossref]

J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc, and R. Pankrath, “Random field Ising type transition of pure and doped SBN from the relaxor into the ferroelectric state,” Europhys. Lett. 55, 781–787 (2001).
[Crossref]

P. Lehnen, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: II. Linear birefringence studies of spontaneous and precursor polarization,” Eur. Phys. J. B 14, 633–637 (2000).

J. Dec, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: I. Susceptibility of clusters and domains,” Eur. Phys. J. B 14, 627–632 (2000).
[Crossref]

W. Kleemann, “Random-field induced antiferromagnetic, ferroelectric and structural domain states,” Int. J. Mod. Phys. B 7, 2469–2507 (1993).
[Crossref]

V. Westphal, W. Kleemann, and M. D. Glinchuk, “Diffuse phase transition and random-field-induced domain states of the ‘relaxor’ ferroelectric PbMg1/3Nb2/3O3,” Phys. Rev. Lett. 68, 847–850 (1992).
[Crossref] [PubMed]

Krätzig, E.

D. Kip, S. Aulkemeyer, K. Buse, F. Mersch, R. Pankrath, and E. Krätzig, “Refractive indices of Sr0.61Ba0.39Nb2O6,” Phys. Status Solidi A 154, K5–K7 (1996).
[Crossref]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

Kutnjak, Z.

J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc, and R. Pankrath, “Random field Ising type transition of pure and doped SBN from the relaxor into the ferroelectric state,” Europhys. Lett. 55, 781–787 (2001).
[Crossref]

Kuz’minov, Yu. S.

V. V. Voronov, I. R. Dorosh, Yu. S. Kuz’minov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[Crossref]

Lehnen, P.

W. Kleemann, J. Dec, P. Lehnen, R. Blinc, B. Zalar, and R. Pankrath, “Uniaxial relaxor ferroelectrics: the random-field Ising model materialized at last,” Europhys. Lett. 57, 14–19 (2002).
[Crossref]

P. Lehnen, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: II. Linear birefringence studies of spontaneous and precursor polarization,” Eur. Phys. J. B 14, 633–637 (2000).

Levstik, A.

J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc, and R. Pankrath, “Random field Ising type transition of pure and doped SBN from the relaxor into the ferroelectric state,” Europhys. Lett. 55, 781–787 (2001).
[Crossref]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

Mersch, F.

D. Kip, S. Aulkemeyer, K. Buse, F. Mersch, R. Pankrath, and E. Krätzig, “Refractive indices of Sr0.61Ba0.39Nb2O6,” Phys. Status Solidi A 154, K5–K7 (1996).
[Crossref]

Nelson, C. C.

D. Rytz, B. A. Wechsler, R. N. Schwarz, C. C. Nelson, C. D. Brandle, A. J. Valentino, and G. W. Berkstresser, “Temperature dependence of photorefractive properties of strontium-barium niobate (Sr0.6Ba0.4Nb2O6),” J. Appl. Phys. 66, 1920–1924 (1989).
[Crossref]

Odoulov, S.

B. Sturman, S. Odoulov, and M. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[Crossref]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

Pankrath, R.

W. Kleemann, J. Dec, P. Lehnen, R. Blinc, B. Zalar, and R. Pankrath, “Uniaxial relaxor ferroelectrics: the random-field Ising model materialized at last,” Europhys. Lett. 57, 14–19 (2002).
[Crossref]

J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc, and R. Pankrath, “Random field Ising type transition of pure and doped SBN from the relaxor into the ferroelectric state,” Europhys. Lett. 55, 781–787 (2001).
[Crossref]

P. Lehnen, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: II. Linear birefringence studies of spontaneous and precursor polarization,” Eur. Phys. J. B 14, 633–637 (2000).

J. Dec, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: I. Susceptibility of clusters and domains,” Eur. Phys. J. B 14, 627–632 (2000).
[Crossref]

U. B. Dörfler, R. Piechatzek, Th. Woike, M. K. Imlau, V. Wirth, L. Bohatý, T. Volk, R. Pankrath, and M. Wöhlecke, “A holographic method for the determination of all linear electrooptic coefficients applied to Ce-doped strontium-barium-niobate,” Appl. Phys. B 68, 843–848 (1999).
[Crossref]

T. Volk, Th. Woike, U. Dörfler, R. Pankrath, L. Ivleva, and M. Wöhlecke, “Ferroelectric phenomena and holographic properties of strontium-barium-niobate crystals doped with rare-earth elements,” Ferroelectrics 203, 457–470 (1997).
[Crossref]

D. Kip, S. Aulkemeyer, K. Buse, F. Mersch, R. Pankrath, and E. Krätzig, “Refractive indices of Sr0.61Ba0.39Nb2O6,” Phys. Status Solidi A 154, K5–K7 (1996).
[Crossref]

Piechatzek, R.

U. B. Dörfler, R. Piechatzek, Th. Woike, M. K. Imlau, V. Wirth, L. Bohatý, T. Volk, R. Pankrath, and M. Wöhlecke, “A holographic method for the determination of all linear electrooptic coefficients applied to Ce-doped strontium-barium-niobate,” Appl. Phys. B 68, 843–848 (1999).
[Crossref]

Pirc, R.

J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc, and R. Pankrath, “Random field Ising type transition of pure and doped SBN from the relaxor into the ferroelectric state,” Europhys. Lett. 55, 781–787 (2001).
[Crossref]

Rupp, R. A.

R. A. Rupp, J. Seglins, and U. van Olfen, “Phase transition of SBN:Ce studied by anisotropic holographic scattering,” Phys. Status Solidi B 168, 445–454 (1991).
[Crossref]

Rytz, D.

D. Rytz, B. A. Wechsler, R. N. Schwarz, C. C. Nelson, C. D. Brandle, A. J. Valentino, and G. W. Berkstresser, “Temperature dependence of photorefractive properties of strontium-barium niobate (Sr0.6Ba0.4Nb2O6),” J. Appl. Phys. 66, 1920–1924 (1989).
[Crossref]

Schwarz, R. N.

D. Rytz, B. A. Wechsler, R. N. Schwarz, C. C. Nelson, C. D. Brandle, A. J. Valentino, and G. W. Berkstresser, “Temperature dependence of photorefractive properties of strontium-barium niobate (Sr0.6Ba0.4Nb2O6),” J. Appl. Phys. 66, 1920–1924 (1989).
[Crossref]

Seglins, J.

R. A. Rupp, J. Seglins, and U. van Olfen, “Phase transition of SBN:Ce studied by anisotropic holographic scattering,” Phys. Status Solidi B 168, 445–454 (1991).
[Crossref]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

Sturman, B.

B. Sturman, S. Odoulov, and M. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[Crossref]

Tkachenko, N. V.

V. V. Voronov, I. R. Dorosh, Yu. S. Kuz’minov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[Crossref]

Valentino, A. J.

D. Rytz, B. A. Wechsler, R. N. Schwarz, C. C. Nelson, C. D. Brandle, A. J. Valentino, and G. W. Berkstresser, “Temperature dependence of photorefractive properties of strontium-barium niobate (Sr0.6Ba0.4Nb2O6),” J. Appl. Phys. 66, 1920–1924 (1989).
[Crossref]

van Olfen, U.

R. A. Rupp, J. Seglins, and U. van Olfen, “Phase transition of SBN:Ce studied by anisotropic holographic scattering,” Phys. Status Solidi B 168, 445–454 (1991).
[Crossref]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

Volk, T.

U. B. Dörfler, R. Piechatzek, Th. Woike, M. K. Imlau, V. Wirth, L. Bohatý, T. Volk, R. Pankrath, and M. Wöhlecke, “A holographic method for the determination of all linear electrooptic coefficients applied to Ce-doped strontium-barium-niobate,” Appl. Phys. B 68, 843–848 (1999).
[Crossref]

T. Volk, Th. Woike, U. Dörfler, R. Pankrath, L. Ivleva, and M. Wöhlecke, “Ferroelectric phenomena and holographic properties of strontium-barium-niobate crystals doped with rare-earth elements,” Ferroelectrics 203, 457–470 (1997).
[Crossref]

Voronov, V. V.

V. V. Voronov, I. R. Dorosh, Yu. S. Kuz’minov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[Crossref]

Wechsler, B. A.

D. Rytz, B. A. Wechsler, R. N. Schwarz, C. C. Nelson, C. D. Brandle, A. J. Valentino, and G. W. Berkstresser, “Temperature dependence of photorefractive properties of strontium-barium niobate (Sr0.6Ba0.4Nb2O6),” J. Appl. Phys. 66, 1920–1924 (1989).
[Crossref]

Westphal, V.

V. Westphal, W. Kleemann, and M. D. Glinchuk, “Diffuse phase transition and random-field-induced domain states of the ‘relaxor’ ferroelectric PbMg1/3Nb2/3O3,” Phys. Rev. Lett. 68, 847–850 (1992).
[Crossref] [PubMed]

Wirth, V.

U. B. Dörfler, R. Piechatzek, Th. Woike, M. K. Imlau, V. Wirth, L. Bohatý, T. Volk, R. Pankrath, and M. Wöhlecke, “A holographic method for the determination of all linear electrooptic coefficients applied to Ce-doped strontium-barium-niobate,” Appl. Phys. B 68, 843–848 (1999).
[Crossref]

Wöhlecke, M.

U. B. Dörfler, R. Piechatzek, Th. Woike, M. K. Imlau, V. Wirth, L. Bohatý, T. Volk, R. Pankrath, and M. Wöhlecke, “A holographic method for the determination of all linear electrooptic coefficients applied to Ce-doped strontium-barium-niobate,” Appl. Phys. B 68, 843–848 (1999).
[Crossref]

T. Volk, Th. Woike, U. Dörfler, R. Pankrath, L. Ivleva, and M. Wöhlecke, “Ferroelectric phenomena and holographic properties of strontium-barium-niobate crystals doped with rare-earth elements,” Ferroelectrics 203, 457–470 (1997).
[Crossref]

Woike, Th.

J. Dec, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: I. Susceptibility of clusters and domains,” Eur. Phys. J. B 14, 627–632 (2000).
[Crossref]

P. Lehnen, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: II. Linear birefringence studies of spontaneous and precursor polarization,” Eur. Phys. J. B 14, 633–637 (2000).

U. B. Dörfler, R. Piechatzek, Th. Woike, M. K. Imlau, V. Wirth, L. Bohatý, T. Volk, R. Pankrath, and M. Wöhlecke, “A holographic method for the determination of all linear electrooptic coefficients applied to Ce-doped strontium-barium-niobate,” Appl. Phys. B 68, 843–848 (1999).
[Crossref]

T. Volk, Th. Woike, U. Dörfler, R. Pankrath, L. Ivleva, and M. Wöhlecke, “Ferroelectric phenomena and holographic properties of strontium-barium-niobate crystals doped with rare-earth elements,” Ferroelectrics 203, 457–470 (1997).
[Crossref]

Yeh, P.

P. Yeh, “Theory of unidirectional photorefractive ring oscillators,” J. Opt. Soc. Am. B 2, 1924–1928 (1985).
[Crossref]

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

Zalar, B.

W. Kleemann, J. Dec, P. Lehnen, R. Blinc, B. Zalar, and R. Pankrath, “Uniaxial relaxor ferroelectrics: the random-field Ising model materialized at last,” Europhys. Lett. 57, 14–19 (2002).
[Crossref]

Appl. Phys. B (1)

U. B. Dörfler, R. Piechatzek, Th. Woike, M. K. Imlau, V. Wirth, L. Bohatý, T. Volk, R. Pankrath, and M. Wöhlecke, “A holographic method for the determination of all linear electrooptic coefficients applied to Ce-doped strontium-barium-niobate,” Appl. Phys. B 68, 843–848 (1999).
[Crossref]

Eur. Phys. J. B (2)

J. Dec, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: I. Susceptibility of clusters and domains,” Eur. Phys. J. B 14, 627–632 (2000).
[Crossref]

P. Lehnen, W. Kleemann, Th. Woike, and R. Pankrath, “Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: II. Linear birefringence studies of spontaneous and precursor polarization,” Eur. Phys. J. B 14, 633–637 (2000).

Europhys. Lett. (2)

J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc, and R. Pankrath, “Random field Ising type transition of pure and doped SBN from the relaxor into the ferroelectric state,” Europhys. Lett. 55, 781–787 (2001).
[Crossref]

W. Kleemann, J. Dec, P. Lehnen, R. Blinc, B. Zalar, and R. Pankrath, “Uniaxial relaxor ferroelectrics: the random-field Ising model materialized at last,” Europhys. Lett. 57, 14–19 (2002).
[Crossref]

Ferroelectrics (2)

T. Volk, Th. Woike, U. Dörfler, R. Pankrath, L. Ivleva, and M. Wöhlecke, “Ferroelectric phenomena and holographic properties of strontium-barium-niobate crystals doped with rare-earth elements,” Ferroelectrics 203, 457–470 (1997).
[Crossref]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

Int. J. Mod. Phys. B (1)

W. Kleemann, “Random-field induced antiferromagnetic, ferroelectric and structural domain states,” Int. J. Mod. Phys. B 7, 2469–2507 (1993).
[Crossref]

J. Appl. Phys. (1)

D. Rytz, B. A. Wechsler, R. N. Schwarz, C. C. Nelson, C. D. Brandle, A. J. Valentino, and G. W. Berkstresser, “Temperature dependence of photorefractive properties of strontium-barium niobate (Sr0.6Ba0.4Nb2O6),” J. Appl. Phys. 66, 1920–1924 (1989).
[Crossref]

J. Chem. Phys. (1)

P. B. Jamieson, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric tungsten bronze-type crystal structures. I. barium strontium niobate Ba0.27Sr0.75Nb2O5.78,” J. Chem. Phys. 48, 5048–5057 (1968).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Phys. Rep. (1)

B. Sturman, S. Odoulov, and M. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[Crossref]

Phys. Rev. Lett. (1)

V. Westphal, W. Kleemann, and M. D. Glinchuk, “Diffuse phase transition and random-field-induced domain states of the ‘relaxor’ ferroelectric PbMg1/3Nb2/3O3,” Phys. Rev. Lett. 68, 847–850 (1992).
[Crossref] [PubMed]

Phys. Status Solidi A (1)

D. Kip, S. Aulkemeyer, K. Buse, F. Mersch, R. Pankrath, and E. Krätzig, “Refractive indices of Sr0.61Ba0.39Nb2O6,” Phys. Status Solidi A 154, K5–K7 (1996).
[Crossref]

Phys. Status Solidi B (1)

R. A. Rupp, J. Seglins, and U. van Olfen, “Phase transition of SBN:Ce studied by anisotropic holographic scattering,” Phys. Status Solidi B 168, 445–454 (1991).
[Crossref]

Sov. J. Quantum Electron. (1)

V. V. Voronov, I. R. Dorosh, Yu. S. Kuz’minov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[Crossref]

Other (1)

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental setup for measuring the angular distribution of scattered light at different temperatures: L, He–Ne laser; λ/2, half-wave retarder plate; P, Glan–Thompson prism; BS, beam splitter; PD1, PD2, photodetectors. The SBN61:Ce (0.66-mol. %) sample was placed on a stack of thermoelectric elements to regulate the temperature. (b) Typical scattering pattern of SBN61:Ce (0.66 mol. %). The bright spot marks the transmitted laser beam.

Fig. 2
Fig. 2

a, Typical angular distribution of the scattered light in SBN at T=28 °C in the plane spanned by the c axis and the laser beam. The central peak is the transmitted laser beam. The two crosshatched areas to the left and to the right of the peak are taken to derive the integral intensities in the -c and +c directions of the scattering profile, respectively. The intensities I+θs and I-θs correspond to two symmetric scattering angles, where ±θs is defined by the maximum of the intensity of the scattering pattern. b, Beam profile without a sample, representing the noise of the system.

Fig. 3
Fig. 3

Angular distribution of the scattered light in SBN in the ferroelectric state (T=50 °C), the relaxor state (T=58 °C), and the paraelectric state (T=90 °C).

Fig. 4
Fig. 4

(a) Temperature dependence of the transmitted pump intensity. (b) Temperature dependence of the total scattered intensity IΣ=I-+I+. Both curves have been normalized to their maximum values.

Fig. 5
Fig. 5

Dependence of the asymmetry coefficient mas=I-/I+ on the temperature.

Fig. 6
Fig. 6

Temperature dependence of the angular position of the maximum of the scattered intensity. Filled and open squares represent the experimental and theoretical values (Neff=1.1×107 cm-3), respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Esc=mkBTe×Kg(1+(Kg/Kd)2)×e^pe^s,
Kd=e2Neff(330kBT)1/2,
Δn=-12 neff3 reff Esc.
reffr33=2033 g33 P3,
Γ±c=±4πΔnλm cos θs=2πne3r33λmEsccos θs,

Metrics