Abstract

A phase and amplitude irregularity introduced into the spectrum of a short laser pulse by propagation through a weak narrow-line absorber results in strong suppression of continuum two-photon absorption at the peak frequency of the narrow-line absorber.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinar Fiber Optics (Academic, New York, 1995).
  2. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1, 67–72 (1984).
    [CrossRef]
  3. M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
    [CrossRef] [PubMed]
  4. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
    [CrossRef]
  5. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
    [CrossRef]
  6. D. C. Hutchings and B. S. Wherrett, “Theory of anisotropy of two-photon absorption in zinc-blende semiconductors,” Phys. Rev. B 49, 2418–2426 (1994).
    [CrossRef]
  7. D. C. Hutchings and B. S. Wherrett, “Theory of the dispersion of ultrafast nonlinear refraction in zinc-blende semiconductors below the band edge,” Phys. Rev. B 50, 4622–4630 (1994).
    [CrossRef]
  8. C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. Van Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B 50, 18073–18082 (1994).
    [CrossRef]
  9. D. C. Hutchings and B. S. Wherrett, “Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors,” Phys. Rev. B 52, 8150–8159 (1995).
    [CrossRef]
  10. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
    [CrossRef]
  11. J.-F. Lami, S. Petit, and C. Hirlimann, “Self-steepening and self-compression of ultrashort optical pulses in a defocusing CdS crystal,” Phys. Rev. Lett. 82, 1032–1035 (1999).
    [CrossRef]
  12. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
    [CrossRef] [PubMed]
  13. J. Paye, M. Ramaswamy, J. G. Fujimoto, and E. P. Ippen, “Measurement of the amplitude and phase of ultrashort light pulses from spectrally resolved autocorrelation,” Opt. Lett. 18, 1946–1948 (1993).
    [CrossRef] [PubMed]
  14. S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412–413 (1992).
    [CrossRef] [PubMed]
  15. P. Brumer and M. Shapiro, “Laser control of chemical reactions,” Sci. Am. 272 (3), 56–63 (1995).
    [CrossRef]
  16. A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75, 2598–2601 (1995).
    [CrossRef] [PubMed]
  17. M. U. Wehner, M. H. Ulm, D. S. Chemla, and M. Wegener, “Coherent control of electron-LO-phonon scattering in bulk GaAs,” Phys. Rev. Lett. 80, 1992–1995 (1998).
    [CrossRef]
  18. M. Wegener and D. S. Chemla, “Coherent control of electron–phonon quantum kinetics: exploring the weak and the strong coupling regime,” Chem. Phys. 251, 269–282 (2000).
    [CrossRef]
  19. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature (London) 396, 239–242 (1998).
    [CrossRef]
  20. D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
    [CrossRef]
  21. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
    [CrossRef]
  22. W. L. Wolfe and G. J. Zissis, eds., The Infrared Handbook (Office of Naval Research, Washington, D.C., 1978).
  23. M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
    [CrossRef]
  24. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1987).
  25. M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, “Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides,” Appl. Phys. Lett. 64, 2922–2924 (1994).
    [CrossRef]

2000

M. Wegener and D. S. Chemla, “Coherent control of electron–phonon quantum kinetics: exploring the weak and the strong coupling regime,” Chem. Phys. 251, 269–282 (2000).
[CrossRef]

1999

J.-F. Lami, S. Petit, and C. Hirlimann, “Self-steepening and self-compression of ultrashort optical pulses in a defocusing CdS crystal,” Phys. Rev. Lett. 82, 1032–1035 (1999).
[CrossRef]

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[CrossRef]

1998

M. U. Wehner, M. H. Ulm, D. S. Chemla, and M. Wegener, “Coherent control of electron-LO-phonon scattering in bulk GaAs,” Phys. Rev. Lett. 80, 1992–1995 (1998).
[CrossRef]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature (London) 396, 239–242 (1998).
[CrossRef]

1997

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

1995

D. C. Hutchings and B. S. Wherrett, “Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors,” Phys. Rev. B 52, 8150–8159 (1995).
[CrossRef]

P. Brumer and M. Shapiro, “Laser control of chemical reactions,” Sci. Am. 272 (3), 56–63 (1995).
[CrossRef]

A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75, 2598–2601 (1995).
[CrossRef] [PubMed]

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

1994

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, “Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides,” Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

D. C. Hutchings and B. S. Wherrett, “Theory of anisotropy of two-photon absorption in zinc-blende semiconductors,” Phys. Rev. B 49, 2418–2426 (1994).
[CrossRef]

D. C. Hutchings and B. S. Wherrett, “Theory of the dispersion of ultrafast nonlinear refraction in zinc-blende semiconductors below the band edge,” Phys. Rev. B 50, 4622–4630 (1994).
[CrossRef]

C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. Van Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B 50, 18073–18082 (1994).
[CrossRef]

1993

1992

S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412–413 (1992).
[CrossRef] [PubMed]

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[CrossRef]

1991

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

1990

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[CrossRef] [PubMed]

1984

Aitchison, J. S.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Asobe, M.

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, “Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides,” Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

Aversa, C.

C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. Van Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B 50, 18073–18082 (1994).
[CrossRef]

Baumberg, J. J.

A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75, 2598–2601 (1995).
[CrossRef] [PubMed]

Brumer, P.

P. Brumer and M. Shapiro, “Laser control of chemical reactions,” Sci. Am. 272 (3), 56–63 (1995).
[CrossRef]

Chemla, D. S.

M. Wegener and D. S. Chemla, “Coherent control of electron–phonon quantum kinetics: exploring the weak and the strong coupling regime,” Chem. Phys. 251, 269–282 (2000).
[CrossRef]

M. U. Wehner, M. H. Ulm, D. S. Chemla, and M. Wegener, “Coherent control of electron-LO-phonon scattering in bulk GaAs,” Phys. Rev. Lett. 80, 1992–1995 (1998).
[CrossRef]

Fujimoto, J. G.

Hagan, D. J.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[CrossRef] [PubMed]

Heberle, A. P.

A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75, 2598–2601 (1995).
[CrossRef] [PubMed]

Hirlimann, C.

J.-F. Lami, S. Petit, and C. Hirlimann, “Self-steepening and self-compression of ultrashort optical pulses in a defocusing CdS crystal,” Phys. Rev. Lett. 82, 1032–1035 (1999).
[CrossRef]

Hobson, W. S.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[CrossRef]

Hutchings, D. C.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

D. C. Hutchings and B. S. Wherrett, “Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors,” Phys. Rev. B 52, 8150–8159 (1995).
[CrossRef]

D. C. Hutchings and B. S. Wherrett, “Theory of the dispersion of ultrafast nonlinear refraction in zinc-blende semiconductors below the band edge,” Phys. Rev. B 50, 4622–4630 (1994).
[CrossRef]

D. C. Hutchings and B. S. Wherrett, “Theory of anisotropy of two-photon absorption in zinc-blende semiconductors,” Phys. Rev. B 49, 2418–2426 (1994).
[CrossRef]

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Ippen, E. P.

Islam, M. N.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[CrossRef]

Kaino, T.

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, “Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides,” Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

Kanamori, T.

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, “Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides,” Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

Kane, D. J.

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Köhler, K.

A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75, 2598–2601 (1995).
[CrossRef] [PubMed]

Kurihara, T.

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, “Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides,” Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

Lami, J.-F.

J.-F. Lami, S. Petit, and C. Hirlimann, “Self-steepening and self-compression of ultrashort optical pulses in a defocusing CdS crystal,” Phys. Rev. Lett. 82, 1032–1035 (1999).
[CrossRef]

Levi, A. F. J.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[CrossRef]

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[CrossRef]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature (London) 396, 239–242 (1998).
[CrossRef]

Naganuma, K.

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, “Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides,” Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

Paye, J.

Petit, S.

J.-F. Lami, S. Petit, and C. Hirlimann, “Self-steepening and self-compression of ultrashort optical pulses in a defocusing CdS crystal,” Phys. Rev. Lett. 82, 1032–1035 (1999).
[CrossRef]

Ramaswamy, M.

Rice, S. A.

S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412–413 (1992).
[CrossRef] [PubMed]

Shapiro, M.

P. Brumer and M. Shapiro, “Laser control of chemical reactions,” Sci. Am. 272 (3), 56–63 (1995).
[CrossRef]

Sheik-Bahae, M.

C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. Van Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B 50, 18073–18082 (1994).
[CrossRef]

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[CrossRef] [PubMed]

Silberberg, Y.

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[CrossRef]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature (London) 396, 239–242 (1998).
[CrossRef]

Sipe, J. E.

C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. Van Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B 50, 18073–18082 (1994).
[CrossRef]

Slusher, R. E.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[CrossRef]

Soccolich, C. E.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[CrossRef]

Stegeman, G. I.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Tomaru, S.

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, “Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides,” Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

Trebino, R.

Ulm, M. H.

M. U. Wehner, M. H. Ulm, D. S. Chemla, and M. Wegener, “Coherent control of electron-LO-phonon scattering in bulk GaAs,” Phys. Rev. Lett. 80, 1992–1995 (1998).
[CrossRef]

Van Stryland, E. W.

C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. Van Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B 50, 18073–18082 (1994).
[CrossRef]

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[CrossRef] [PubMed]

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Wegener, M.

M. Wegener and D. S. Chemla, “Coherent control of electron–phonon quantum kinetics: exploring the weak and the strong coupling regime,” Chem. Phys. 251, 269–282 (2000).
[CrossRef]

M. U. Wehner, M. H. Ulm, D. S. Chemla, and M. Wegener, “Coherent control of electron-LO-phonon scattering in bulk GaAs,” Phys. Rev. Lett. 80, 1992–1995 (1998).
[CrossRef]

Wehner, M. U.

M. U. Wehner, M. H. Ulm, D. S. Chemla, and M. Wegener, “Coherent control of electron-LO-phonon scattering in bulk GaAs,” Phys. Rev. Lett. 80, 1992–1995 (1998).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

Wherrett, B. S.

D. C. Hutchings and B. S. Wherrett, “Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors,” Phys. Rev. B 52, 8150–8159 (1995).
[CrossRef]

D. C. Hutchings and B. S. Wherrett, “Theory of the dispersion of ultrafast nonlinear refraction in zinc-blende semiconductors below the band edge,” Phys. Rev. B 50, 4622–4630 (1994).
[CrossRef]

D. C. Hutchings and B. S. Wherrett, “Theory of anisotropy of two-photon absorption in zinc-blende semiconductors,” Phys. Rev. B 49, 2418–2426 (1994).
[CrossRef]

B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1, 67–72 (1984).
[CrossRef]

Young, M. G.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[CrossRef]

Appl. Phys. Lett.

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, “Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides,” Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

Chem. Phys.

M. Wegener and D. S. Chemla, “Coherent control of electron–phonon quantum kinetics: exploring the weak and the strong coupling regime,” Chem. Phys. 251, 269–282 (2000).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

J. Appl. Phys.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys. 71, 1927–1935 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Nature (London)

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature (London) 396, 239–242 (1998).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Phys. Rev. A

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[CrossRef]

Phys. Rev. B

D. C. Hutchings and B. S. Wherrett, “Theory of anisotropy of two-photon absorption in zinc-blende semiconductors,” Phys. Rev. B 49, 2418–2426 (1994).
[CrossRef]

D. C. Hutchings and B. S. Wherrett, “Theory of the dispersion of ultrafast nonlinear refraction in zinc-blende semiconductors below the band edge,” Phys. Rev. B 50, 4622–4630 (1994).
[CrossRef]

C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. Van Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B 50, 18073–18082 (1994).
[CrossRef]

D. C. Hutchings and B. S. Wherrett, “Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors,” Phys. Rev. B 52, 8150–8159 (1995).
[CrossRef]

Phys. Rev. Lett.

J.-F. Lami, S. Petit, and C. Hirlimann, “Self-steepening and self-compression of ultrashort optical pulses in a defocusing CdS crystal,” Phys. Rev. Lett. 82, 1032–1035 (1999).
[CrossRef]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[CrossRef] [PubMed]

A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75, 2598–2601 (1995).
[CrossRef] [PubMed]

M. U. Wehner, M. H. Ulm, D. S. Chemla, and M. Wegener, “Coherent control of electron-LO-phonon scattering in bulk GaAs,” Phys. Rev. Lett. 80, 1992–1995 (1998).
[CrossRef]

Prog. Quantum Electron.

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

Sci. Am.

P. Brumer and M. Shapiro, “Laser control of chemical reactions,” Sci. Am. 272 (3), 56–63 (1995).
[CrossRef]

Science

S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412–413 (1992).
[CrossRef] [PubMed]

Other

W. L. Wolfe and G. J. Zissis, eds., The Infrared Handbook (Office of Naval Research, Washington, D.C., 1978).

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1987).

G. P. Agrawal, Nonlinar Fiber Optics (Academic, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Incident and transmitted spectra for InP, with the laser tuned to 1400 nm (300-g/mm grating): (a) incident spectrum, (b) transmitted spectrum at low input intensity (0.02-μJ pulse energy); (c) transmitted spectrum at high input intensity (2-μJ pulse energy).

Fig. 2
Fig. 2

Incident and transmitted spectra for InP, with the laser tuned to 1400 nm (1200-g/mm grating): (a) incident spectrum, (b) transmitted spectrum at low input intensity (0.02-μJ pulse energy), (c) transmitted spectrum at high input intensity (2-μJ pulse energy).

Fig. 3
Fig. 3

Spectra for GaAs at high power (2-μJ pulse energy) with the laser tuned to 1400 nm (300-g/mm grating). Top, incident and transmitted spectra; bottom, normalized transmission. NDx refers to the neutral-density filter used in each measurement.

Fig. 4
Fig. 4

Incident and transmitted spectra for GaAs at high power (2-μJ pulse energy), with the laser tuned to 1220 nm (300-g/mm grating). Inset, normalized transmission. NDx refers to the neutral-density filter used in each measurement.

Fig. 5
Fig. 5

Incident and transmitted spectra for glass at high power (2-μJ pulse energy) with the laser tuned to 1220 nm (300-g/mm grating). Inset, normalized transmission.

Fig. 6
Fig. 6

Complex spectral transfer function of a Lorentzian absorption line. (a) Amplitude of the transfer function superimposed upon the input spectrum, (b) phase of the transfer function (the parameters are given in the text).

Fig. 7
Fig. 7

Modified temporal shape of an input Gaussian pulse after it propagates through a linear absorber characterized by the transfer function shown in Fig. 6. (a) Amplitude of the modified pulse, (b) the pulse’s time dependent phase. The absolute square of the complex envelope function is depicted in (c) on a logarithmic scale. Note the weak exponential tail trailing behind the pulse.

Fig. 8
Fig. 8

Calculated transmitted power spectra for a pure Kerr medium (α=0). The dashed curve is the power spectrum at the input of the nonlinear medium.

Fig. 9
Fig. 9

Calculated spectra for a medium characterized by a purely dissipative nonlinearity (γ=0). (a) Transmitted power spectra, (b) the corresponding normalized transmission curves. The dashed curve in (a) is the power spectrum at the input of the nonlinear medium. The curves in (a) are displaced vertically in steps of 7 a.u. to improve clarity.

Fig. 10
Fig. 10

Calculated transmitted power spectra for a medium with both nonlinear absorption and a nonlinear refractive index. The dashed curve is the power spectrum at the input of the nonlinear medium.

Fig. 11
Fig. 11

Calculated spectra for the experimental parameters of Fig. 4. Inset, the normalized transmission.

Fig. 12
Fig. 12

Calculated spectra for the experimental parameters of Fig. 5. Inset, normalized transmission.

Metrics