Abstract

A theoretical model and experimental results to characterize the time-dependent formation of one-dimensional dark photovoltaic solitons under open-circuit conditions are presented. According to this theory, quasi-steady-state and steady-state solitons can both be obtained. In the quasi-steady-state regime solitons have intensity-independent widths, whereas their formation time is inversely proportional to the intensity, as confirmed by experimental results obtained with LiNbO3 samples. Theory predicts that the response times of steady-state solitons will be given by the dielectric response in the absence of an illuminating field, Td. In the samples used in this research, only a trend toward a steady-state regime was observed, because of the prohibitively high value of Td.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
    [Crossref] [PubMed]
  2. G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
    [Crossref] [PubMed]
  3. M. D. Iturbe-Castillo, P. A. Marquez-Aguilar, J. J. Sánchez-Mondragón, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
    [Crossref]
  4. M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
    [Crossref]
  5. M. Shih, P. Leach, M. Segev, M. H. Garet, G. Salamo, and G. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
    [Crossref] [PubMed]
  6. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
    [Crossref] [PubMed]
  7. Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garret, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett. 21, 629–631 (1996).
    [Crossref] [PubMed]
  8. D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628–1633 (1995).
    [Crossref]
  9. M. Segev, M. Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13, 706–718 (1996).
    [Crossref]
  10. M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright solitons in biased photorefractive crystals,” Opt. Commun. 120, 311–315 (1995).
    [Crossref]
  11. W. Krolikowski, B. Luther-Davies, C. Denz, J. Petter, C. Weilnau, A. Stepken, and M. Belic, “Interaction of two-dimensional spatial incoherent solitons in photorefractive medium,” Appl. Phys. B 68, 975–982 (1999).
    [Crossref]
  12. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied field,” Phys. Rev. A 51, 1520–1531 (1995).
    [Crossref] [PubMed]
  13. A. A. Zozulya and D. Z. Anderson, “Nonstationary self-focusing in photorefractive media,” Opt. Lett. 20, 837–839 (1995).
    [Crossref] [PubMed]
  14. N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866–6875 (1996).
    [Crossref]
  15. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
    [Crossref] [PubMed]
  16. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett. 21, 943–945 (1996).
    [Crossref] [PubMed]
  17. V. Shandarov, D. Kip, M. Wesner, and J. Hukriede, “Observation of dark spatial photovoltaic solitons in planar waveguides in lithium niobate,” J. Opt. A Pure Appl. Opt. 2, 500–503 (2000).
    [Crossref]
  18. M. Chauvet, S. Chauvin, and H. Maillotte, “Transient dark photovoltaic spatial solitons and induced guiding in slab LiNbO3 waveguides,” Opt. Lett. 26, 1344–1346 (2001).
    [Crossref]
  19. W. L. She, K. K. Lee, and W. K. Lee, “Observation of two-dimensional bright photovoltaic spatial solitons,” Phys. Rev. Lett. 83, 3182–3185 (1999).
    [Crossref]
  20. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4469 (1994).
    [Crossref] [PubMed]
  21. M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B 14, 1772–1781 (1997).
    [Crossref]
  22. P. Yeh, “Photorefractive effects,” in Introduction to Photorefractive Nonlinear Optics, J. Goodman, ed., Wiley Series in Pure and Applied Optics (Wiley, New York, 1993), pp. 82–116.
  23. M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B 14, 3091–3101 (1997).
    [Crossref]
  24. H. Kogelnik, “Theory of optical waveguides,” in GuidedWave Optoelectronics, T. Tamir, ed., Vol. 26 of Springer Se-ries in Electronics and Photonics (Springer-Verlag, Berlin, 1988), pp. 7–87.
    [Crossref]
  25. M. Wesner, C. Herden, P. Pankrath, D. Kip, and P. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium waveguides,” Phys. Rev. E 64, 036613 (2001).
    [Crossref]
  26. M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
    [Crossref] [PubMed]
  27. X. J. Chen, D. S. Zhu, B. Li, T. Ling, and Z. K. Wu, “Fast photorefractive response in strongly reduced near-stoichiometric LiNbO3 crystals,” Opt. Lett. 26, 998–1000 (2001).
    [Crossref]
  28. C. Anastassiou, M. F. Shih, M. Mitchell, Z. Chen, and M. Segev, “Optically induced photovoltaic self-defocusing-to-self-focusing transition,” Opt. Lett. 23, 924–926 (1998).
    [Crossref]
  29. A. D. Boardman, Y. Liu, and W. Ilecki, “Polarization control of open-circuit photovoltaic-photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 8, 479–487 (2002).
    [Crossref]

2002 (1)

A. D. Boardman, Y. Liu, and W. Ilecki, “Polarization control of open-circuit photovoltaic-photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 8, 479–487 (2002).
[Crossref]

2001 (3)

2000 (1)

V. Shandarov, D. Kip, M. Wesner, and J. Hukriede, “Observation of dark spatial photovoltaic solitons in planar waveguides in lithium niobate,” J. Opt. A Pure Appl. Opt. 2, 500–503 (2000).
[Crossref]

1999 (2)

W. Krolikowski, B. Luther-Davies, C. Denz, J. Petter, C. Weilnau, A. Stepken, and M. Belic, “Interaction of two-dimensional spatial incoherent solitons in photorefractive medium,” Appl. Phys. B 68, 975–982 (1999).
[Crossref]

W. L. She, K. K. Lee, and W. K. Lee, “Observation of two-dimensional bright photovoltaic spatial solitons,” Phys. Rev. Lett. 83, 3182–3185 (1999).
[Crossref]

1998 (1)

1997 (2)

1996 (5)

1995 (7)

D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628–1633 (1995).
[Crossref]

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[Crossref]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
[Crossref] [PubMed]

M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright solitons in biased photorefractive crystals,” Opt. Commun. 120, 311–315 (1995).
[Crossref]

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied field,” Phys. Rev. A 51, 1520–1531 (1995).
[Crossref] [PubMed]

A. A. Zozulya and D. Z. Anderson, “Nonstationary self-focusing in photorefractive media,” Opt. Lett. 20, 837–839 (1995).
[Crossref] [PubMed]

M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
[Crossref] [PubMed]

1994 (3)

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4469 (1994).
[Crossref] [PubMed]

M. D. Iturbe-Castillo, P. A. Marquez-Aguilar, J. J. Sánchez-Mondragón, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[Crossref] [PubMed]

1993 (1)

G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

1992 (1)

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Anastassiou, C.

Anderson, D. Z.

A. A. Zozulya and D. Z. Anderson, “Nonstationary self-focusing in photorefractive media,” Opt. Lett. 20, 837–839 (1995).
[Crossref] [PubMed]

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied field,” Phys. Rev. A 51, 1520–1531 (1995).
[Crossref] [PubMed]

Bashaw, M. C.

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B 14, 1772–1781 (1997).
[Crossref]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett. 21, 943–945 (1996).
[Crossref] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
[Crossref] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4469 (1994).
[Crossref] [PubMed]

Belic, M.

W. Krolikowski, B. Luther-Davies, C. Denz, J. Petter, C. Weilnau, A. Stepken, and M. Belic, “Interaction of two-dimensional spatial incoherent solitons in photorefractive medium,” Appl. Phys. B 68, 975–982 (1999).
[Crossref]

Boardman, A. D.

A. D. Boardman, Y. Liu, and W. Ilecki, “Polarization control of open-circuit photovoltaic-photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 8, 479–487 (2002).
[Crossref]

Carvalho, M. I.

M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright solitons in biased photorefractive crystals,” Opt. Commun. 120, 311–315 (1995).
[Crossref]

D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628–1633 (1995).
[Crossref]

Chauvet, M.

Chauvin, S.

Chen, X. J.

Chen, Z.

Christodoulides, D. N.

D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628–1633 (1995).
[Crossref]

M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright solitons in biased photorefractive crystals,” Opt. Commun. 120, 311–315 (1995).
[Crossref]

Crosignani, B.

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[Crossref]

M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[Crossref] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4469 (1994).
[Crossref] [PubMed]

G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Denz, C.

W. Krolikowski, B. Luther-Davies, C. Denz, J. Petter, C. Weilnau, A. Stepken, and M. Belic, “Interaction of two-dimensional spatial incoherent solitons in photorefractive medium,” Appl. Phys. B 68, 975–982 (1999).
[Crossref]

Di Porto, P.

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[Crossref]

M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[Crossref] [PubMed]

G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Duree, G.

M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
[Crossref] [PubMed]

G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Feigelson, R. S.

Fejer, M. M.

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B 14, 1772–1781 (1997).
[Crossref]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett. 21, 943–945 (1996).
[Crossref] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
[Crossref] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4469 (1994).
[Crossref] [PubMed]

Fisher, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Fressengeas, N.

N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866–6875 (1996).
[Crossref]

Garet, M. H.

Garret, M. H.

Herden, C.

M. Wesner, C. Herden, P. Pankrath, D. Kip, and P. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium waveguides,” Phys. Rev. E 64, 036613 (2001).
[Crossref]

Hukriede, J.

V. Shandarov, D. Kip, M. Wesner, and J. Hukriede, “Observation of dark spatial photovoltaic solitons in planar waveguides in lithium niobate,” J. Opt. A Pure Appl. Opt. 2, 500–503 (2000).
[Crossref]

Ilecki, W.

A. D. Boardman, Y. Liu, and W. Ilecki, “Polarization control of open-circuit photovoltaic-photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 8, 479–487 (2002).
[Crossref]

Iturbe-Castillo, M. D.

M. D. Iturbe-Castillo, P. A. Marquez-Aguilar, J. J. Sánchez-Mondragón, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

Kip, D.

M. Wesner, C. Herden, P. Pankrath, D. Kip, and P. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium waveguides,” Phys. Rev. E 64, 036613 (2001).
[Crossref]

V. Shandarov, D. Kip, M. Wesner, and J. Hukriede, “Observation of dark spatial photovoltaic solitons in planar waveguides in lithium niobate,” J. Opt. A Pure Appl. Opt. 2, 500–503 (2000).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Theory of optical waveguides,” in GuidedWave Optoelectronics, T. Tamir, ed., Vol. 26 of Springer Se-ries in Electronics and Photonics (Springer-Verlag, Berlin, 1988), pp. 7–87.
[Crossref]

Krolikowski, W.

W. Krolikowski, B. Luther-Davies, C. Denz, J. Petter, C. Weilnau, A. Stepken, and M. Belic, “Interaction of two-dimensional spatial incoherent solitons in photorefractive medium,” Appl. Phys. B 68, 975–982 (1999).
[Crossref]

Kugel, G.

N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866–6875 (1996).
[Crossref]

Leach, P.

Lee, H.

Lee, K. K.

W. L. She, K. K. Lee, and W. K. Lee, “Observation of two-dimensional bright photovoltaic spatial solitons,” Phys. Rev. Lett. 83, 3182–3185 (1999).
[Crossref]

Lee, W. K.

W. L. She, K. K. Lee, and W. K. Lee, “Observation of two-dimensional bright photovoltaic spatial solitons,” Phys. Rev. Lett. 83, 3182–3185 (1999).
[Crossref]

Li, B.

Ling, T.

Liu, Y.

A. D. Boardman, Y. Liu, and W. Ilecki, “Polarization control of open-circuit photovoltaic-photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 8, 479–487 (2002).
[Crossref]

Luther-Davies, B.

W. Krolikowski, B. Luther-Davies, C. Denz, J. Petter, C. Weilnau, A. Stepken, and M. Belic, “Interaction of two-dimensional spatial incoherent solitons in photorefractive medium,” Appl. Phys. B 68, 975–982 (1999).
[Crossref]

Maillotte, H.

Marquez-Aguilar, P. A.

M. D. Iturbe-Castillo, P. A. Marquez-Aguilar, J. J. Sánchez-Mondragón, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

Maufoy, J.

N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866–6875 (1996).
[Crossref]

Mitchell, M.

Moretti, P.

M. Wesner, C. Herden, P. Pankrath, D. Kip, and P. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium waveguides,” Phys. Rev. E 64, 036613 (2001).
[Crossref]

Morin, M.

Neurgaonkar, R. R.

G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Pankrath, P.

M. Wesner, C. Herden, P. Pankrath, D. Kip, and P. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium waveguides,” Phys. Rev. E 64, 036613 (2001).
[Crossref]

Petter, J.

W. Krolikowski, B. Luther-Davies, C. Denz, J. Petter, C. Weilnau, A. Stepken, and M. Belic, “Interaction of two-dimensional spatial incoherent solitons in photorefractive medium,” Appl. Phys. B 68, 975–982 (1999).
[Crossref]

Salamo, G.

M. Shih, P. Leach, M. Segev, M. H. Garet, G. Salamo, and G. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
[Crossref] [PubMed]

M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
[Crossref] [PubMed]

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[Crossref]

G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Sánchez-Mondragón, J. J.

M. D. Iturbe-Castillo, P. A. Marquez-Aguilar, J. J. Sánchez-Mondragón, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

Segev, M.

C. Anastassiou, M. F. Shih, M. Mitchell, Z. Chen, and M. Segev, “Optically induced photovoltaic self-defocusing-to-self-focusing transition,” Opt. Lett. 23, 924–926 (1998).
[Crossref]

M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B 14, 3091–3101 (1997).
[Crossref]

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B 14, 1772–1781 (1997).
[Crossref]

M. Segev, M. Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13, 706–718 (1996).
[Crossref]

M. Shih, P. Leach, M. Segev, M. H. Garet, G. Salamo, and G. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
[Crossref] [PubMed]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garret, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett. 21, 629–631 (1996).
[Crossref] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett. 21, 943–945 (1996).
[Crossref] [PubMed]

M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
[Crossref] [PubMed]

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[Crossref]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
[Crossref] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4469 (1994).
[Crossref] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[Crossref] [PubMed]

G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Shandarov, V.

V. Shandarov, D. Kip, M. Wesner, and J. Hukriede, “Observation of dark spatial photovoltaic solitons in planar waveguides in lithium niobate,” J. Opt. A Pure Appl. Opt. 2, 500–503 (2000).
[Crossref]

Sharp, E.

G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

She, W. L.

W. L. She, K. K. Lee, and W. K. Lee, “Observation of two-dimensional bright photovoltaic spatial solitons,” Phys. Rev. Lett. 83, 3182–3185 (1999).
[Crossref]

Shih, M.

Shih, M. F.

Shultz, J. L.

G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Singh, S. R.

M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright solitons in biased photorefractive crystals,” Opt. Commun. 120, 311–315 (1995).
[Crossref]

Stepanov, S.

M. D. Iturbe-Castillo, P. A. Marquez-Aguilar, J. J. Sánchez-Mondragón, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

Stepken, A.

W. Krolikowski, B. Luther-Davies, C. Denz, J. Petter, C. Weilnau, A. Stepken, and M. Belic, “Interaction of two-dimensional spatial incoherent solitons in photorefractive medium,” Appl. Phys. B 68, 975–982 (1999).
[Crossref]

Taya, M.

Valley, G.

Valley, G. C.

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B 14, 1772–1781 (1997).
[Crossref]

M. Segev, M. Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13, 706–718 (1996).
[Crossref]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett. 21, 943–945 (1996).
[Crossref] [PubMed]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garret, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett. 21, 629–631 (1996).
[Crossref] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
[Crossref] [PubMed]

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[Crossref]

M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[Crossref] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4469 (1994).
[Crossref] [PubMed]

Vysloukh, V.

M. D. Iturbe-Castillo, P. A. Marquez-Aguilar, J. J. Sánchez-Mondragón, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

Weilnau, C.

W. Krolikowski, B. Luther-Davies, C. Denz, J. Petter, C. Weilnau, A. Stepken, and M. Belic, “Interaction of two-dimensional spatial incoherent solitons in photorefractive medium,” Appl. Phys. B 68, 975–982 (1999).
[Crossref]

Wesner, M.

M. Wesner, C. Herden, P. Pankrath, D. Kip, and P. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium waveguides,” Phys. Rev. E 64, 036613 (2001).
[Crossref]

V. Shandarov, D. Kip, M. Wesner, and J. Hukriede, “Observation of dark spatial photovoltaic solitons in planar waveguides in lithium niobate,” J. Opt. A Pure Appl. Opt. 2, 500–503 (2000).
[Crossref]

Wilde, J. P.

Wu, Z. K.

Yariv, A.

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4469 (1994).
[Crossref] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[Crossref] [PubMed]

G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Yeh, P.

P. Yeh, “Photorefractive effects,” in Introduction to Photorefractive Nonlinear Optics, J. Goodman, ed., Wiley Series in Pure and Applied Optics (Wiley, New York, 1993), pp. 82–116.

Zhu, D. S.

Zozulya, A. A.

A. A. Zozulya and D. Z. Anderson, “Nonstationary self-focusing in photorefractive media,” Opt. Lett. 20, 837–839 (1995).
[Crossref] [PubMed]

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied field,” Phys. Rev. A 51, 1520–1531 (1995).
[Crossref] [PubMed]

Appl. Phys. B (1)

W. Krolikowski, B. Luther-Davies, C. Denz, J. Petter, C. Weilnau, A. Stepken, and M. Belic, “Interaction of two-dimensional spatial incoherent solitons in photorefractive medium,” Appl. Phys. B 68, 975–982 (1999).
[Crossref]

Appl. Phys. Lett. (1)

M. D. Iturbe-Castillo, P. A. Marquez-Aguilar, J. J. Sánchez-Mondragón, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

Electron. Lett. (1)

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. D. Boardman, Y. Liu, and W. Ilecki, “Polarization control of open-circuit photovoltaic-photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 8, 479–487 (2002).
[Crossref]

J. Opt. A Pure Appl. Opt. (1)

V. Shandarov, D. Kip, M. Wesner, and J. Hukriede, “Observation of dark spatial photovoltaic solitons in planar waveguides in lithium niobate,” J. Opt. A Pure Appl. Opt. 2, 500–503 (2000).
[Crossref]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright solitons in biased photorefractive crystals,” Opt. Commun. 120, 311–315 (1995).
[Crossref]

Opt. Lett. (8)

Phys. Rev. A (3)

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4469 (1994).
[Crossref] [PubMed]

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied field,” Phys. Rev. A 51, 1520–1531 (1995).
[Crossref] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
[Crossref] [PubMed]

Phys. Rev. E (2)

N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866–6875 (1996).
[Crossref]

M. Wesner, C. Herden, P. Pankrath, D. Kip, and P. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium waveguides,” Phys. Rev. E 64, 036613 (2001).
[Crossref]

Phys. Rev. Lett. (4)

W. L. She, K. K. Lee, and W. K. Lee, “Observation of two-dimensional bright photovoltaic spatial solitons,” Phys. Rev. Lett. 83, 3182–3185 (1999).
[Crossref]

M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Other (2)

P. Yeh, “Photorefractive effects,” in Introduction to Photorefractive Nonlinear Optics, J. Goodman, ed., Wiley Series in Pure and Applied Optics (Wiley, New York, 1993), pp. 82–116.

H. Kogelnik, “Theory of optical waveguides,” in GuidedWave Optoelectronics, T. Tamir, ed., Vol. 26 of Springer Se-ries in Electronics and Photonics (Springer-Verlag, Berlin, 1988), pp. 7–87.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Soliton profile u(X) and corresponding normalized space-charge field for t/Td=0.001 (dotted curves), t/Td=0.015 (solid curves) and t/Td=1 (dashed curves) for intensity-to-dark-irradiance ratio r=100.

Fig. 2
Fig. 2

Soliton intensity FWHM as a function of time for intensity-to-dark-irradiance ratio r=0.2 (dotted curve), r=10 (dashed curve), and r=100 (solid curve).

Fig. 3
Fig. 3

Soliton intensity FWHM as a function of r: steady-state soliton (solid curve) and quasi-steady-state soliton (dashed curve).

Fig. 4
Fig. 4

Theoretical quasi-steady-state dark PV soliton formation time t0 as a function of the inverse of intensity-to-dark-irradiance ratio 1/r. Filled diamonds, numerical calculation; solid curve, linear fit.

Fig. 5
Fig. 5

Optical setup for dark-spatial-PV soliton temporal study: ND, neutral-density filter; P, polarization direction; L1, L2 spherical lenses; L3, cylindrical lens; L4, microscope objective (10×); SM, λ/4 step mirror; QWM, quarter-wave plate; PBS, polarizing beam splitter; S, LiNbO3 sample; CCD, camera.

Fig. 6
Fig. 6

Images at the exit face of a 0.57-mm-long LiNbO3 sample, showing dark-soliton formation and induced waveguide. (a) Natural diffraction of the dark notch, (b) a self-focused dark notch, (c) a beam guided by the induced waveguide, and (d) an unguided beam.

Fig. 7
Fig. 7

Dark-notch intensity FWHM evolution for two sample lengths and various intensities. Squares, 0.57-mm-long sample; Imax=8.6 W/cm2. Circles, 0.57-mm-long sample; Imax=72 mW/cm2. ×s, 7-mm-long sample; Imax=4.9 mW/cm2.

Fig. 8
Fig. 8

Measurement of quasi-steady-state dark PV soliton formation time t0 as a function of I/Imax. Open circles, experiments; solid curve, linear fit.

Fig. 9
Fig. 9

Soliton-induced waveguide mode FWHM as a function of time in the dark: filled circles, experiment; solid curve, theory.  

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

t Nd+=(β+SIem)(Nd-Nd+)-ξnNd+,
x (0rE)=ρ,
Jx+ρt=0,
ρ=e(Nd+-Na-n),
J=eμnE+μkBT nx+βph(Nd-Nd+)Iem.
-0r2Ext=eμ (nE)x+μkBT 2nx2+βph(Nd-Na) Icmx.
n=(β+SIem)(Nd-Na)ξNa.
TdIdEgt+IEg+kBTeIx=K,
TdIdEgt+IEg+kBTeIx=EphId.
Eg=Eph(I-Id)I-kBTe1IIx exp-ITdId t-1+Eph,
E=EphIemIem+Id-kBTe1Iem+IdIemx×exp-Iem+IdTdId t-1.
A(x, z)=rIdu(x)exp(iΓz),
z-i2k2x2A(x, z)=i kn0 ΔnA(x, z),
u(X)=2kd2Γ±r|u(X)|2[1+r|u(X)|2]×-1+exp-1+r|u(X)|2Td tu(X).
Γ=r2kd2(1+r)1-exp-1+rTd t.
u2(X)=(2kd2Γ-1)[u2(X)-1]+1rln1+r|u(X)|21+r-Tdrtexp-tTd [1+r|u(X)|2]-exp-tTd (1+r)-1rEi-tTd [1+r|u(X)|2]-Ei-tTd (1+r),
Ei(θ)=--θ+exp(-y)ydy
Δn=0.5n03reffβphξNaeμS.

Metrics