Abstract

An electrodynamic approach is developed to solve the problem of stimulated Raman scattering (SRS) in a transparent dielectric spherical particle. In this approach it is proposed that optical fields for time-dependent amplitudes of coupled waves at Stokes and pump frequencies in a spherical particle be represented as an expansion in terms of eigenfunctions of the stationary scattering problem in which the expansion coefficients determine the temporal behavior of the field and comply with inhomogeneous differential equations. Solutions of these equations for initial phase SRS and under steady-state conditions are analyzed. The SRS threshold is determined, and the threshold for steady-state SRS at a given intensity is found for when there is double resonance between the fields. It is shown that, to excite SRS, one should compensate for the loss of the Stokes wave that is due to absorption and emission through the particle surface. To provide steady-state SRS generation it is necessary to compensate additionally for the energy loss that is due to depletion of pump intensity.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced distortion for increased input coupling of light to droplet-cavity modes

Justin M. Hartings, Xiaoyun Pu, Janice L. Cheung, and Richard K. Chang
J. Opt. Soc. Am. B 14(11) 2842-2849 (1997)

Optically seeded stimulated Raman scattering of aqueous sulfate microdroplets

Louise Pasternack, James W. Fleming, and Jeffrey C. Owrutsky
J. Opt. Soc. Am. B 13(7) 1510-1516 (1996)

Stimulated light scattering in transparent liquid particles: effect of the Descartes ring

Alexander A. Zemlyanov, Yuri E. Geints, and Robert L. Armstrong
Appl. Opt. 39(36) 6888-6896 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (77)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription