Abstract

We have investigated nonlinear absorption of Rhodamine B dye in methanol and water near resonance (532 nm) on the higher-energy (435 nm) and lower-energy (600 nm) sides of the absorption band, using an open-aperture Z-scan technique with nanosecond pulses. We observed reverse saturable absorption (RSA) at 435 nm in both of the solvents, and a transition from saturable absorption (SA) to RSA with an increase in either intensity or concentration at 600 nm in methanol. A transition from RSA to SA with an increase in concentration at 600 nm was observed with water as the solvent. We used theoretical analysis based on rate equations to determine the two-photon and excited-state absorption coefficients from the experimental results.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. P. Schafer, Dye Lasers (Springer-Verlag, Berlin, 1973).
  2. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).
  3. H. S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers (CRC Press, Boca Raton, Fla., 1997).
  4. F. P. Schafer, “Organic dyes in laser technology,” Angew. Chem. Int. Ed. Eng. 9, 9–25 (1970).
    [CrossRef]
  5. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 24, 73–76 (1990).
    [CrossRef]
  6. M. Anandi, “Two-photon pumped unconverted lasing in dye doped polymer waveguides,” Appl. Phys. Lett. 62, 3423–3425 (1993).
    [CrossRef]
  7. G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett. 67, 3703–3705 (1995).
    [CrossRef]
  8. J. E. Ehrilich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Rockel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997).
    [CrossRef]
  9. G. S. He, G. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photon absorption of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
    [CrossRef] [PubMed]
  10. D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
    [CrossRef] [PubMed]
  11. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon excitation,” Opt. Lett. 16, 1780–1782 (1991).
    [CrossRef] [PubMed]
  12. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).
  13. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
    [CrossRef]
  14. A. Krivokapic, H. L. Anderson, G. Bourhill, R. Ives, S. Clark, and K. J. McEwan, “Meso-tetra-alkynyl porphyrins for optical limiting—A survey of Group III and IV metal complexes,” Adv. Mater. 13, 652–656 (2001).
    [CrossRef]
  15. M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219, 235–258 (2001).
    [CrossRef]
  16. L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356, 225–226 (1992).
    [CrossRef]
  17. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
    [CrossRef]
  18. A. Fischer, C. Cremer, and E. H. K. Stelzer, “Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium-sapphire laser,” Appl. Opt. 34, 1989–2003 (1995).
    [CrossRef] [PubMed]
  19. S. V. Rao, N. K. M. N. Srinivas, and D. N. Rao, “Nonlinear absorption and excited state dynamics in Rhodamine B studied using Z-scan and degenerate four wave mixing techniques,” Chem. Phys. Lett. 361, 439–445 (2002).
    [CrossRef]
  20. C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
    [CrossRef]
  21. P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic observation of excited state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
    [CrossRef]
  22. C. Liu, Q. Gong, Y. Chen, H. Chen, and D. Qiang, “Reverse saturable absorption of a novel Rhodamine B cation fulleride salt at 532 nm,” Appl. Phys. A 73, 477–479 (2001).
    [CrossRef]
  23. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  24. D. N. Rao, S. V. Rao, F. J. Aranda, M. Nakashima, and J. A. Akkara, “Ultrafast relaxation times of metalloporphyrins by time-resolved degenerate four-wave mixing with incoherent light,” J. Opt. Soc. Am. B 14, 2710–2715 (1997).
    [CrossRef]
  25. S. V. Rao, L. Giribabu, B. G. Maiya, and D. N. Rao, “A novel observation in the measurement of ultrafast relaxation times using incoherent light,” Curr. Sci. 72, 957–960 (1997).
  26. S. V. Rao and D. N. Rao, “Excited state dynamics of C60 studied using incoherent light,” Chem. Phys. Lett. 283, 227–230 (1997).
    [CrossRef]
  27. S. V. Rao, N. K. M. N. Srinivas, L. Giribabu, B. G. Maiya, D. N. Rao, R. Philip, and G. R. Kumar, “Excited state dynamics in tetratolyl porphyrins studied using degenerate four wave mixing with incoherent light and ps pulses,” Opt. Commun. 192, 123–133 (2001).
    [CrossRef]
  28. S. V. Rao and D. N. Rao, “Excited state dynamics of phthalocyanines studied using degenerate four wave mixing with incoherent light,” J. Porphyr. Phthalocyan. 6, 233–238 (2002).
  29. S. V. Rao, D. N. Rao, J. A. Akkara, B. S. DeCristofano, and D. V. G. L. N. Rao, “Dispersion study of nonlinear absorption in C60 using Z-scan,” Chem. Phys. Lett. 297, 491–498 (1998).
    [CrossRef]
  30. G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
    [CrossRef]
  31. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 207.
  32. M. S. Malcuit, R. W. Boyd, L. W. Hillman, J. Krasinski, and C. R. Stroud, Jr., “Saturation and inverse-saturation absorption line shapes in alexandrite,” J. Opt. Soc. Am. B 1, 73–75 (1984).
    [CrossRef]
  33. M. Samoc, A. Samoc, B. L. Davies, H. Reish, and U. Scherf, “Saturable absorption in poly(indenofluorene): a picket-fence polymer,” Opt. Lett. 23, 1295–1297 (1998).
    [CrossRef]
  34. J. E. Selwyn and J. I. Steidfeld, “Aggregation equilibria of xanthene dyes,” J. Phys. Chem. 76, 762–774 (1972).
    [CrossRef]
  35. S. Sinha, A. Ray, and K. Dasgupta, “Solvent dependent nonlinear refraction in organic dye solution,” J. Appl. Phys. 87, 3222–3226 (2000).
    [CrossRef]
  36. G. B. Talapatra, D. N. Rao, and P. N. Prasad, “Spectral diffusion within the inhomogeneously broadened n-π* singlet–triplet transition of the orientationally disordered solid of 4-bromo-4-chlorobenzophenone,” J. Phys. Chem. 88, 4636–4640 (1984).
    [CrossRef]
  37. N. K. M. N. Srinivas, S. V. Rao, D. V. G. L. N. Rao, B. K. Kimball, M. Nakashima, B. S. Decristofano, and D. N. Rao, “Wavelength dependent studies of nonlinear absorption in zinc meso-tetra(p-methoxyphenyl)tetrabenzoporphyrin (Znmp TBP) using Z-scan technique,” J. Porphyri. Phthalocyn. 5, 549–554 (2001).
  38. O. V. Przhonska, J. H. Lim, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, and Y. L. Slominsky, “Nonlinear light absorption of polymethine dyes in liquid and solid media,” J. Opt. Soc. Am. B 15, 802–809 (1998).
    [CrossRef]
  39. M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B 105, 10, 797–10, 804 (2001).
    [CrossRef]
  40. P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Photophysical properties of laser dyes: picosecond laser flash photolysis studies of Rhodamine 6G, Rhodamine B and Rhodamine 101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
    [CrossRef]
  41. I. L. Arbeloa and K. K. Rohatgi-Mukherjee, “Solvent effect on photophysics of the molecular forms of Rhodamine B. Solvation models and spectroscopic parameters,” Chem. Phys. Lett. 128, 474–479 (1986).
    [CrossRef]
  42. A. L. Smirl, J. B. Clark, E. W. Van Stryland, and B. R. Russell, “Population and rotational kinetics of the Rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982), and references therein.
    [CrossRef]
  43. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625–1631 (1997).
    [CrossRef]
  44. C. Zhan, W. Xu, D. Zhang, D. Li, Z. Lu, Y. Nie, and D. Zhu, “Z-scan investigation of fifth-order optical nonlinearity induced by saturable-absorption from (TBA)2Ni(dmit)2: application for optical limiting,” J. Mater. Chem. 12, 2945–2948 (2002).
    [CrossRef]

2002 (2)

S. V. Rao, N. K. M. N. Srinivas, and D. N. Rao, “Nonlinear absorption and excited state dynamics in Rhodamine B studied using Z-scan and degenerate four wave mixing techniques,” Chem. Phys. Lett. 361, 439–445 (2002).
[CrossRef]

C. Zhan, W. Xu, D. Zhang, D. Li, Z. Lu, Y. Nie, and D. Zhu, “Z-scan investigation of fifth-order optical nonlinearity induced by saturable-absorption from (TBA)2Ni(dmit)2: application for optical limiting,” J. Mater. Chem. 12, 2945–2948 (2002).
[CrossRef]

2001 (5)

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B 105, 10, 797–10, 804 (2001).
[CrossRef]

C. Liu, Q. Gong, Y. Chen, H. Chen, and D. Qiang, “Reverse saturable absorption of a novel Rhodamine B cation fulleride salt at 532 nm,” Appl. Phys. A 73, 477–479 (2001).
[CrossRef]

S. V. Rao, N. K. M. N. Srinivas, L. Giribabu, B. G. Maiya, D. N. Rao, R. Philip, and G. R. Kumar, “Excited state dynamics in tetratolyl porphyrins studied using degenerate four wave mixing with incoherent light and ps pulses,” Opt. Commun. 192, 123–133 (2001).
[CrossRef]

A. Krivokapic, H. L. Anderson, G. Bourhill, R. Ives, S. Clark, and K. J. McEwan, “Meso-tetra-alkynyl porphyrins for optical limiting—A survey of Group III and IV metal complexes,” Adv. Mater. 13, 652–656 (2001).
[CrossRef]

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219, 235–258 (2001).
[CrossRef]

2000 (1)

S. Sinha, A. Ray, and K. Dasgupta, “Solvent dependent nonlinear refraction in organic dye solution,” J. Appl. Phys. 87, 3222–3226 (2000).
[CrossRef]

1999 (2)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
[CrossRef]

1998 (3)

1997 (5)

1996 (1)

1995 (4)

G. S. He, G. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photon absorption of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett. 67, 3703–3705 (1995).
[CrossRef]

A. Fischer, C. Cremer, and E. H. K. Stelzer, “Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium-sapphire laser,” Appl. Opt. 34, 1989–2003 (1995).
[CrossRef] [PubMed]

1994 (1)

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic observation of excited state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
[CrossRef]

1993 (3)

M. Anandi, “Two-photon pumped unconverted lasing in dye doped polymer waveguides,” Appl. Phys. Lett. 62, 3423–3425 (1993).
[CrossRef]

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Photophysical properties of laser dyes: picosecond laser flash photolysis studies of Rhodamine 6G, Rhodamine B and Rhodamine 101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

1992 (1)

L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356, 225–226 (1992).
[CrossRef]

1991 (1)

1990 (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 24, 73–76 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1989 (1)

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

1986 (1)

I. L. Arbeloa and K. K. Rohatgi-Mukherjee, “Solvent effect on photophysics of the molecular forms of Rhodamine B. Solvation models and spectroscopic parameters,” Chem. Phys. Lett. 128, 474–479 (1986).
[CrossRef]

1984 (2)

G. B. Talapatra, D. N. Rao, and P. N. Prasad, “Spectral diffusion within the inhomogeneously broadened n-π* singlet–triplet transition of the orientationally disordered solid of 4-bromo-4-chlorobenzophenone,” J. Phys. Chem. 88, 4636–4640 (1984).
[CrossRef]

M. S. Malcuit, R. W. Boyd, L. W. Hillman, J. Krasinski, and C. R. Stroud, Jr., “Saturation and inverse-saturation absorption line shapes in alexandrite,” J. Opt. Soc. Am. B 1, 73–75 (1984).
[CrossRef]

1982 (1)

A. L. Smirl, J. B. Clark, E. W. Van Stryland, and B. R. Russell, “Population and rotational kinetics of the Rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982), and references therein.
[CrossRef]

1972 (1)

J. E. Selwyn and J. I. Steidfeld, “Aggregation equilibria of xanthene dyes,” J. Phys. Chem. 76, 762–774 (1972).
[CrossRef]

1970 (1)

F. P. Schafer, “Organic dyes in laser technology,” Angew. Chem. Int. Ed. Eng. 9, 9–25 (1970).
[CrossRef]

Akkara, J. A.

S. V. Rao, D. N. Rao, J. A. Akkara, B. S. DeCristofano, and D. V. G. L. N. Rao, “Dispersion study of nonlinear absorption in C60 using Z-scan,” Chem. Phys. Lett. 297, 491–498 (1998).
[CrossRef]

D. N. Rao, S. V. Rao, F. J. Aranda, M. Nakashima, and J. A. Akkara, “Ultrafast relaxation times of metalloporphyrins by time-resolved degenerate four-wave mixing with incoherent light,” J. Opt. Soc. Am. B 14, 2710–2715 (1997).
[CrossRef]

Amouyal, E.

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B 105, 10, 797–10, 804 (2001).
[CrossRef]

Anandi, M.

M. Anandi, “Two-photon pumped unconverted lasing in dye doped polymer waveguides,” Appl. Phys. Lett. 62, 3423–3425 (1993).
[CrossRef]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

Anderson, H. L.

A. Krivokapic, H. L. Anderson, G. Bourhill, R. Ives, S. Clark, and K. J. McEwan, “Meso-tetra-alkynyl porphyrins for optical limiting—A survey of Group III and IV metal complexes,” Adv. Mater. 13, 652–656 (2001).
[CrossRef]

Aranda, F. J.

Arbeloa, I. L.

I. L. Arbeloa and K. K. Rohatgi-Mukherjee, “Solvent effect on photophysics of the molecular forms of Rhodamine B. Solvation models and spectroscopic parameters,” Chem. Phys. Lett. 128, 474–479 (1986).
[CrossRef]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

Barthel, M.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219, 235–258 (2001).
[CrossRef]

Beaumont, P. C.

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Photophysical properties of laser dyes: picosecond laser flash photolysis studies of Rhodamine 6G, Rhodamine B and Rhodamine 101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

Bhatt, J. C.

Bhawalkar, J. D.

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett. 67, 3703–3705 (1995).
[CrossRef]

Bindhu, C. V.

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
[CrossRef]

Boggess, T. F.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Bondar, M. V.

Bourhill, G.

A. Krivokapic, H. L. Anderson, G. Bourhill, R. Ives, S. Clark, and K. J. McEwan, “Meso-tetra-alkynyl porphyrins for optical limiting—A survey of Group III and IV metal complexes,” Adv. Mater. 13, 652–656 (2001).
[CrossRef]

Boyd, R. W.

Chen, H.

C. Liu, Q. Gong, Y. Chen, H. Chen, and D. Qiang, “Reverse saturable absorption of a novel Rhodamine B cation fulleride salt at 532 nm,” Appl. Phys. A 73, 477–479 (2001).
[CrossRef]

Chen, Y.

C. Liu, Q. Gong, Y. Chen, H. Chen, and D. Qiang, “Reverse saturable absorption of a novel Rhodamine B cation fulleride salt at 532 nm,” Appl. Phys. A 73, 477–479 (2001).
[CrossRef]

Clark, J. B.

A. L. Smirl, J. B. Clark, E. W. Van Stryland, and B. R. Russell, “Population and rotational kinetics of the Rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982), and references therein.
[CrossRef]

Clark, S.

A. Krivokapic, H. L. Anderson, G. Bourhill, R. Ives, S. Clark, and K. J. McEwan, “Meso-tetra-alkynyl porphyrins for optical limiting—A survey of Group III and IV metal complexes,” Adv. Mater. 13, 652–656 (2001).
[CrossRef]

Couris, S.

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B 105, 10, 797–10, 804 (2001).
[CrossRef]

Cremer, C.

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

Dasgupta, K.

S. Sinha, A. Ray, and K. Dasgupta, “Solvent dependent nonlinear refraction in organic dye solution,” J. Appl. Phys. 87, 3222–3226 (2000).
[CrossRef]

Davies, B. L.

DeCristofano, B. S.

S. V. Rao, D. N. Rao, J. A. Akkara, B. S. DeCristofano, and D. V. G. L. N. Rao, “Dispersion study of nonlinear absorption in C60 using Z-scan,” Chem. Phys. Lett. 297, 491–498 (1998).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 24, 73–76 (1990).
[CrossRef]

Dillard, A. G.

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

Ehrilich, J. E.

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

Fischer, A.

Fischer, G.

Flom, S. R.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219, 235–258 (2001).
[CrossRef]

Giribabu, L.

S. V. Rao, N. K. M. N. Srinivas, L. Giribabu, B. G. Maiya, D. N. Rao, R. Philip, and G. R. Kumar, “Excited state dynamics in tetratolyl porphyrins studied using degenerate four wave mixing with incoherent light and ps pulses,” Opt. Commun. 192, 123–133 (2001).
[CrossRef]

S. V. Rao, L. Giribabu, B. G. Maiya, and D. N. Rao, “A novel observation in the measurement of ultrafast relaxation times using incoherent light,” Curr. Sci. 72, 957–960 (1997).

Gong, Q.

C. Liu, Q. Gong, Y. Chen, H. Chen, and D. Qiang, “Reverse saturable absorption of a novel Rhodamine B cation fulleride salt at 532 nm,” Appl. Phys. A 73, 477–479 (2001).
[CrossRef]

Gregory, D. A.

Hagan, D. J.

O. V. Przhonska, J. H. Lim, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, and Y. L. Slominsky, “Nonlinear light absorption of polymethine dyes in liquid and solid media,” J. Opt. Soc. Am. B 15, 802–809 (1998).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Hanack, M.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219, 235–258 (2001).
[CrossRef]

Harilal, S. S.

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
[CrossRef]

He, G. S.

G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett. 67, 3703–3705 (1995).
[CrossRef]

G. S. He, G. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photon absorption of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

Hillman, L. W.

Hu, Z. Y.

Ives, R.

A. Krivokapic, H. L. Anderson, G. Bourhill, R. Ives, S. Clark, and K. J. McEwan, “Meso-tetra-alkynyl porphyrins for optical limiting—A survey of Group III and IV metal complexes,” Adv. Mater. 13, 652–656 (2001).
[CrossRef]

Johnson, D. G.

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Photophysical properties of laser dyes: picosecond laser flash photolysis studies of Rhodamine 6G, Rhodamine B and Rhodamine 101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

Konstantaki, M.

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B 105, 10, 797–10, 804 (2001).
[CrossRef]

Kost, A.

L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356, 225–226 (1992).
[CrossRef]

Koudoumas, E.

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B 105, 10, 797–10, 804 (2001).
[CrossRef]

Krasinski, J.

Krivokapic, A.

A. Krivokapic, H. L. Anderson, G. Bourhill, R. Ives, S. Clark, and K. J. McEwan, “Meso-tetra-alkynyl porphyrins for optical limiting—A survey of Group III and IV metal complexes,” Adv. Mater. 13, 652–656 (2001).
[CrossRef]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

Kumar, G. R.

S. V. Rao, N. K. M. N. Srinivas, L. Giribabu, B. G. Maiya, D. N. Rao, R. Philip, and G. R. Kumar, “Excited state dynamics in tetratolyl porphyrins studied using degenerate four wave mixing with incoherent light and ps pulses,” Opt. Commun. 192, 123–133 (2001).
[CrossRef]

Laine, P.

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B 105, 10, 797–10, 804 (2001).
[CrossRef]

Leach, S.

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B 105, 10, 797–10, 804 (2001).
[CrossRef]

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

J. E. Ehrilich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Rockel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997).
[CrossRef]

Li, D.

C. Zhan, W. Xu, D. Zhang, D. Li, Z. Lu, Y. Nie, and D. Zhu, “Z-scan investigation of fifth-order optical nonlinearity induced by saturable-absorption from (TBA)2Ni(dmit)2: application for optical limiting,” J. Mater. Chem. 12, 2945–2948 (2002).
[CrossRef]

Lim, J. H.

Liu, C.

C. Liu, Q. Gong, Y. Chen, H. Chen, and D. Qiang, “Reverse saturable absorption of a novel Rhodamine B cation fulleride salt at 532 nm,” Appl. Phys. A 73, 477–479 (2001).
[CrossRef]

Lu, Z.

C. Zhan, W. Xu, D. Zhang, D. Li, Z. Lu, Y. Nie, and D. Zhu, “Z-scan investigation of fifth-order optical nonlinearity induced by saturable-absorption from (TBA)2Ni(dmit)2: application for optical limiting,” J. Mater. Chem. 12, 2945–2948 (2002).
[CrossRef]

Maiya, B. G.

S. V. Rao, N. K. M. N. Srinivas, L. Giribabu, B. G. Maiya, D. N. Rao, R. Philip, and G. R. Kumar, “Excited state dynamics in tetratolyl porphyrins studied using degenerate four wave mixing with incoherent light and ps pulses,” Opt. Commun. 192, 123–133 (2001).
[CrossRef]

S. V. Rao, L. Giribabu, B. G. Maiya, and D. N. Rao, “A novel observation in the measurement of ultrafast relaxation times using incoherent light,” Curr. Sci. 72, 957–960 (1997).

Malcuit, M. S.

Marder, S. R.

Maughon, D. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

McEwan, K. J.

A. Krivokapic, H. L. Anderson, G. Bourhill, R. Ives, S. Clark, and K. J. McEwan, “Meso-tetra-alkynyl porphyrins for optical limiting—A survey of Group III and IV metal complexes,” Adv. Mater. 13, 652–656 (2001).
[CrossRef]

Nakashima, M.

Nampoori, V. P. N.

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
[CrossRef]

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic observation of excited state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
[CrossRef]

Nie, Y.

C. Zhan, W. Xu, D. Zhang, D. Li, Z. Lu, Y. Nie, and D. Zhu, “Z-scan investigation of fifth-order optical nonlinearity induced by saturable-absorption from (TBA)2Ni(dmit)2: application for optical limiting,” J. Mater. Chem. 12, 2945–2948 (2002).
[CrossRef]

Parsons, B. J.

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Photophysical properties of laser dyes: picosecond laser flash photolysis studies of Rhodamine 6G, Rhodamine B and Rhodamine 101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

J. E. Ehrilich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Rockel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997).
[CrossRef]

Philip, R.

S. V. Rao, N. K. M. N. Srinivas, L. Giribabu, B. G. Maiya, D. N. Rao, R. Philip, and G. R. Kumar, “Excited state dynamics in tetratolyl porphyrins studied using degenerate four wave mixing with incoherent light and ps pulses,” Opt. Commun. 192, 123–133 (2001).
[CrossRef]

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic observation of excited state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
[CrossRef]

Pong, R. G. S.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219, 235–258 (2001).
[CrossRef]

Prasad, P. N.

G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett. 67, 3703–3705 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

G. S. He, G. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photon absorption of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

G. B. Talapatra, D. N. Rao, and P. N. Prasad, “Spectral diffusion within the inhomogeneously broadened n-π* singlet–triplet transition of the orientationally disordered solid of 4-bromo-4-chlorobenzophenone,” J. Phys. Chem. 88, 4636–4640 (1984).
[CrossRef]

Przhonska, O. V.

Qiang, D.

C. Liu, Q. Gong, Y. Chen, H. Chen, and D. Qiang, “Reverse saturable absorption of a novel Rhodamine B cation fulleride salt at 532 nm,” Appl. Phys. A 73, 477–479 (2001).
[CrossRef]

Quin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

Rao, D. N.

S. V. Rao, N. K. M. N. Srinivas, and D. N. Rao, “Nonlinear absorption and excited state dynamics in Rhodamine B studied using Z-scan and degenerate four wave mixing techniques,” Chem. Phys. Lett. 361, 439–445 (2002).
[CrossRef]

S. V. Rao, N. K. M. N. Srinivas, L. Giribabu, B. G. Maiya, D. N. Rao, R. Philip, and G. R. Kumar, “Excited state dynamics in tetratolyl porphyrins studied using degenerate four wave mixing with incoherent light and ps pulses,” Opt. Commun. 192, 123–133 (2001).
[CrossRef]

S. V. Rao, D. N. Rao, J. A. Akkara, B. S. DeCristofano, and D. V. G. L. N. Rao, “Dispersion study of nonlinear absorption in C60 using Z-scan,” Chem. Phys. Lett. 297, 491–498 (1998).
[CrossRef]

S. V. Rao and D. N. Rao, “Excited state dynamics of C60 studied using incoherent light,” Chem. Phys. Lett. 283, 227–230 (1997).
[CrossRef]

S. V. Rao, L. Giribabu, B. G. Maiya, and D. N. Rao, “A novel observation in the measurement of ultrafast relaxation times using incoherent light,” Curr. Sci. 72, 957–960 (1997).

D. N. Rao, S. V. Rao, F. J. Aranda, M. Nakashima, and J. A. Akkara, “Ultrafast relaxation times of metalloporphyrins by time-resolved degenerate four-wave mixing with incoherent light,” J. Opt. Soc. Am. B 14, 2710–2715 (1997).
[CrossRef]

G. B. Talapatra, D. N. Rao, and P. N. Prasad, “Spectral diffusion within the inhomogeneously broadened n-π* singlet–triplet transition of the orientationally disordered solid of 4-bromo-4-chlorobenzophenone,” J. Phys. Chem. 88, 4636–4640 (1984).
[CrossRef]

Rao, D. V. G. L. N.

S. V. Rao, D. N. Rao, J. A. Akkara, B. S. DeCristofano, and D. V. G. L. N. Rao, “Dispersion study of nonlinear absorption in C60 using Z-scan,” Chem. Phys. Lett. 297, 491–498 (1998).
[CrossRef]

Rao, S. V.

S. V. Rao, N. K. M. N. Srinivas, and D. N. Rao, “Nonlinear absorption and excited state dynamics in Rhodamine B studied using Z-scan and degenerate four wave mixing techniques,” Chem. Phys. Lett. 361, 439–445 (2002).
[CrossRef]

S. V. Rao, N. K. M. N. Srinivas, L. Giribabu, B. G. Maiya, D. N. Rao, R. Philip, and G. R. Kumar, “Excited state dynamics in tetratolyl porphyrins studied using degenerate four wave mixing with incoherent light and ps pulses,” Opt. Commun. 192, 123–133 (2001).
[CrossRef]

S. V. Rao, D. N. Rao, J. A. Akkara, B. S. DeCristofano, and D. V. G. L. N. Rao, “Dispersion study of nonlinear absorption in C60 using Z-scan,” Chem. Phys. Lett. 297, 491–498 (1998).
[CrossRef]

S. V. Rao and D. N. Rao, “Excited state dynamics of C60 studied using incoherent light,” Chem. Phys. Lett. 283, 227–230 (1997).
[CrossRef]

S. V. Rao, L. Giribabu, B. G. Maiya, and D. N. Rao, “A novel observation in the measurement of ultrafast relaxation times using incoherent light,” Curr. Sci. 72, 957–960 (1997).

D. N. Rao, S. V. Rao, F. J. Aranda, M. Nakashima, and J. A. Akkara, “Ultrafast relaxation times of metalloporphyrins by time-resolved degenerate four-wave mixing with incoherent light,” J. Opt. Soc. Am. B 14, 2710–2715 (1997).
[CrossRef]

Ray, A.

S. Sinha, A. Ray, and K. Dasgupta, “Solvent dependent nonlinear refraction in organic dye solution,” J. Appl. Phys. 87, 3222–3226 (2000).
[CrossRef]

Reinhardt, B. A.

Reish, H.

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

J. E. Ehrilich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Rockel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997).
[CrossRef]

Rohatgi-Mukherjee, K. K.

I. L. Arbeloa and K. K. Rohatgi-Mukherjee, “Solvent effect on photophysics of the molecular forms of Rhodamine B. Solvation models and spectroscopic parameters,” Chem. Phys. Lett. 128, 474–479 (1986).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

Russell, B. R.

A. L. Smirl, J. B. Clark, E. W. Van Stryland, and B. R. Russell, “Population and rotational kinetics of the Rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982), and references therein.
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Samoc, A.

Samoc, M.

Sathy, P.

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic observation of excited state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
[CrossRef]

Schafer, F. P.

F. P. Schafer, “Organic dyes in laser technology,” Angew. Chem. Int. Ed. Eng. 9, 9–25 (1970).
[CrossRef]

Scherf, U.

Schneider, T.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219, 235–258 (2001).
[CrossRef]

Selwyn, J. E.

J. E. Selwyn and J. I. Steidfeld, “Aggregation equilibria of xanthene dyes,” J. Phys. Chem. 76, 762–774 (1972).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Shirk, J. S.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219, 235–258 (2001).
[CrossRef]

Sinha, S.

S. Sinha, A. Ray, and K. Dasgupta, “Solvent dependent nonlinear refraction in organic dye solution,” J. Appl. Phys. 87, 3222–3226 (2000).
[CrossRef]

Slominsky, Y. L.

Smirl, A. L.

A. L. Smirl, J. B. Clark, E. W. Van Stryland, and B. R. Russell, “Population and rotational kinetics of the Rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982), and references therein.
[CrossRef]

Smith, D. D.

Srinivas, N. K. M. N.

S. V. Rao, N. K. M. N. Srinivas, and D. N. Rao, “Nonlinear absorption and excited state dynamics in Rhodamine B studied using Z-scan and degenerate four wave mixing techniques,” Chem. Phys. Lett. 361, 439–445 (2002).
[CrossRef]

S. V. Rao, N. K. M. N. Srinivas, L. Giribabu, B. G. Maiya, D. N. Rao, R. Philip, and G. R. Kumar, “Excited state dynamics in tetratolyl porphyrins studied using degenerate four wave mixing with incoherent light and ps pulses,” Opt. Commun. 192, 123–133 (2001).
[CrossRef]

Steidfeld, J. I.

J. E. Selwyn and J. I. Steidfeld, “Aggregation equilibria of xanthene dyes,” J. Phys. Chem. 76, 762–774 (1972).
[CrossRef]

Stelzer, E. H. K.

Strickler, H.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 24, 73–76 (1990).
[CrossRef]

Stroud Jr., C. R.

Talapatra, G. B.

G. B. Talapatra, D. N. Rao, and P. N. Prasad, “Spectral diffusion within the inhomogeneously broadened n-π* singlet–triplet transition of the orientationally disordered solid of 4-bromo-4-chlorobenzophenone,” J. Phys. Chem. 88, 4636–4640 (1984).
[CrossRef]

Tutt, L. W.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356, 225–226 (1992).
[CrossRef]

Vallabhan, C. P. G.

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
[CrossRef]

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic observation of excited state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
[CrossRef]

Van Stryland, E. W.

O. V. Przhonska, J. H. Lim, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, and Y. L. Slominsky, “Nonlinear light absorption of polymethine dyes in liquid and solid media,” J. Opt. Soc. Am. B 15, 802–809 (1998).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

A. L. Smirl, J. B. Clark, E. W. Van Stryland, and B. R. Russell, “Population and rotational kinetics of the Rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982), and references therein.
[CrossRef]

Webb, W. W.

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wu, X. L.

Xu, C.

Xu, G.

Xu, W.

C. Zhan, W. Xu, D. Zhang, D. Li, Z. Lu, Y. Nie, and D. Zhu, “Z-scan investigation of fifth-order optical nonlinearity induced by saturable-absorption from (TBA)2Ni(dmit)2: application for optical limiting,” J. Mater. Chem. 12, 2945–2948 (2002).
[CrossRef]

Zhan, C.

C. Zhan, W. Xu, D. Zhang, D. Li, Z. Lu, Y. Nie, and D. Zhu, “Z-scan investigation of fifth-order optical nonlinearity induced by saturable-absorption from (TBA)2Ni(dmit)2: application for optical limiting,” J. Mater. Chem. 12, 2945–2948 (2002).
[CrossRef]

Zhang, D.

C. Zhan, W. Xu, D. Zhang, D. Li, Z. Lu, Y. Nie, and D. Zhu, “Z-scan investigation of fifth-order optical nonlinearity induced by saturable-absorption from (TBA)2Ni(dmit)2: application for optical limiting,” J. Mater. Chem. 12, 2945–2948 (2002).
[CrossRef]

Zhao, C. F.

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett. 67, 3703–3705 (1995).
[CrossRef]

Zhu, D.

C. Zhan, W. Xu, D. Zhang, D. Li, Z. Lu, Y. Nie, and D. Zhu, “Z-scan investigation of fifth-order optical nonlinearity induced by saturable-absorption from (TBA)2Ni(dmit)2: application for optical limiting,” J. Mater. Chem. 12, 2945–2948 (2002).
[CrossRef]

Adv. Mater. (1)

A. Krivokapic, H. L. Anderson, G. Bourhill, R. Ives, S. Clark, and K. J. McEwan, “Meso-tetra-alkynyl porphyrins for optical limiting—A survey of Group III and IV metal complexes,” Adv. Mater. 13, 652–656 (2001).
[CrossRef]

Angew. Chem. Int. Ed. Eng. (1)

F. P. Schafer, “Organic dyes in laser technology,” Angew. Chem. Int. Ed. Eng. 9, 9–25 (1970).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

C. Liu, Q. Gong, Y. Chen, H. Chen, and D. Qiang, “Reverse saturable absorption of a novel Rhodamine B cation fulleride salt at 532 nm,” Appl. Phys. A 73, 477–479 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

M. Anandi, “Two-photon pumped unconverted lasing in dye doped polymer waveguides,” Appl. Phys. Lett. 62, 3423–3425 (1993).
[CrossRef]

G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett. 67, 3703–3705 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

Chem. Phys. Lett. (4)

S. V. Rao, D. N. Rao, J. A. Akkara, B. S. DeCristofano, and D. V. G. L. N. Rao, “Dispersion study of nonlinear absorption in C60 using Z-scan,” Chem. Phys. Lett. 297, 491–498 (1998).
[CrossRef]

I. L. Arbeloa and K. K. Rohatgi-Mukherjee, “Solvent effect on photophysics of the molecular forms of Rhodamine B. Solvation models and spectroscopic parameters,” Chem. Phys. Lett. 128, 474–479 (1986).
[CrossRef]

S. V. Rao, N. K. M. N. Srinivas, and D. N. Rao, “Nonlinear absorption and excited state dynamics in Rhodamine B studied using Z-scan and degenerate four wave mixing techniques,” Chem. Phys. Lett. 361, 439–445 (2002).
[CrossRef]

S. V. Rao and D. N. Rao, “Excited state dynamics of C60 studied using incoherent light,” Chem. Phys. Lett. 283, 227–230 (1997).
[CrossRef]

Coord. Chem. Rev. (1)

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219, 235–258 (2001).
[CrossRef]

Curr. Sci. (1)

S. V. Rao, L. Giribabu, B. G. Maiya, and D. N. Rao, “A novel observation in the measurement of ultrafast relaxation times using incoherent light,” Curr. Sci. 72, 957–960 (1997).

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Appl. Phys. (1)

S. Sinha, A. Ray, and K. Dasgupta, “Solvent dependent nonlinear refraction in organic dye solution,” J. Appl. Phys. 87, 3222–3226 (2000).
[CrossRef]

J. Chem. Phys. (1)

A. L. Smirl, J. B. Clark, E. W. Van Stryland, and B. R. Russell, “Population and rotational kinetics of the Rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982), and references therein.
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Photophysical properties of laser dyes: picosecond laser flash photolysis studies of Rhodamine 6G, Rhodamine B and Rhodamine 101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

J. Mater. Chem. (1)

C. Zhan, W. Xu, D. Zhang, D. Li, Z. Lu, Y. Nie, and D. Zhu, “Z-scan investigation of fifth-order optical nonlinearity induced by saturable-absorption from (TBA)2Ni(dmit)2: application for optical limiting,” J. Mater. Chem. 12, 2945–2948 (2002).
[CrossRef]

J. Opt. Soc. Am. B (5)

J. Phys. Chem. (2)

G. B. Talapatra, D. N. Rao, and P. N. Prasad, “Spectral diffusion within the inhomogeneously broadened n-π* singlet–triplet transition of the orientationally disordered solid of 4-bromo-4-chlorobenzophenone,” J. Phys. Chem. 88, 4636–4640 (1984).
[CrossRef]

J. E. Selwyn and J. I. Steidfeld, “Aggregation equilibria of xanthene dyes,” J. Phys. Chem. 76, 762–774 (1972).
[CrossRef]

J. Phys. Chem. B (1)

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B 105, 10, 797–10, 804 (2001).
[CrossRef]

J. Phys. D (2)

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
[CrossRef]

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Photoacoustic observation of excited state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
[CrossRef]

Nature (1)

L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356, 225–226 (1992).
[CrossRef]

Opt. Commun. (1)

S. V. Rao, N. K. M. N. Srinivas, L. Giribabu, B. G. Maiya, D. N. Rao, R. Philip, and G. R. Kumar, “Excited state dynamics in tetratolyl porphyrins studied using degenerate four wave mixing with incoherent light and ps pulses,” Opt. Commun. 192, 123–133 (2001).
[CrossRef]

Opt. Lett. (4)

Prog. Quantum Electron. (1)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Science (3)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Quin, H. Rockel, M. Rumi, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Science 398, 51–54 (1999).

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 24, 73–76 (1990).
[CrossRef]

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Other (6)

N. K. M. N. Srinivas, S. V. Rao, D. V. G. L. N. Rao, B. K. Kimball, M. Nakashima, B. S. Decristofano, and D. N. Rao, “Wavelength dependent studies of nonlinear absorption in zinc meso-tetra(p-methoxyphenyl)tetrabenzoporphyrin (Znmp TBP) using Z-scan technique,” J. Porphyri. Phthalocyn. 5, 549–554 (2001).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 207.

F. P. Schafer, Dye Lasers (Springer-Verlag, Berlin, 1973).

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).

H. S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers (CRC Press, Boca Raton, Fla., 1997).

S. V. Rao and D. N. Rao, “Excited state dynamics of phthalocyanines studied using degenerate four wave mixing with incoherent light,” J. Porphyr. Phthalocyan. 6, 233–238 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Absorption spectra of Rhodamine B in methanol (solid curve) and water (dashed curve). (b) Energy-level diagram of a typical Rhodamine B molecule: β, TPA coefficient; σ0, ground-state absorption coefficient; σ1, singlet-state absorption coefficient; σ2, triplet-state absorption coefficient; τS1, S1-state lifetime; τSn, Sn state lifetime; τT1, T1 state lifetime; τTn, Tn state lifetime; τvib, vibrational relaxation time; τISC, intersystem crossing time; S0, S1, Sn, singlet states; T1, Tn, triplet states.

Fig. 2
Fig. 2

Open-aperture Z-scan data of Rhodamine B in methanol at 435 nm at six concentrations at an intensity of 9×108 W/cm2.

Fig. 3
Fig. 3

Open-aperture Z-scan data of 5.3×10-3 M Rhodamine B in methanol.

Fig. 4
Fig. 4

Open-aperture Z-scan data of 5.3×10-3 M Rhodamine B in methanol at the intensities shown.

Fig. 5
Fig. 5

Open-aperture Z-scan data of Rhodamine B in methanol.

Fig. 6
Fig. 6

Time-resolved fluorescence measurement of Rhodamine B in methanol at 8×10-5 and 5.3×10-3 M.

Fig. 7
Fig. 7

Open-aperture Z-scan data of Rhodamine B in water at 435 nm at six concentrations at an intensity of 6×108 W/cm2.

Fig. 8
Fig. 8

Open-aperture Z-scan data Rhodamine B in water at nine concentrations at 600 nm at an intensity of 6×108 W/cm2.

Fig. 9
Fig. 9

Open-aperture Z-scan data of 1.6×10-4 M Rhodamine B in water at 600 nm.

Fig. 10
Fig. 10

Open-aperture Z-scan data of Rhodamine B in water at 6.3×10-4 M concentration.

Fig. 11
Fig. 11

Time-resolved fluorescence measurement of Rhodamine B in water at 8×10-5 and 1.0×10-2 M.

Tables (4)

Tables Icon

Table 1 Excited-State Absorption Cross Sections σ and TPA Coefficient β at Several Concentrations of Rhodamine B in Methanol at 435 nm

Tables Icon

Table 2 Excited-State Cross Sections σ1 TPA Coefficient β, and Singlet Lifetime τ at Three Concentrations of Rhodamine B in Methanol at 600 nm a

Tables Icon

Table 3 Excited-State Absorption Cross Sections σ1, TPA Coefficient β, and Singlet Lifetimes τ at Several Concentrations of Rhodamine B in Water at 435 nm at 108W/cm2

Tables Icon

Table 4 Excited-State Absorption Cross Sections σ1 TPA coefficient β, and Singlet Lifetime τ at Several Concentrations of Rhodamine B in Water at 600 nm at 6×108W/cm2

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

dN0dt=-σ0IN0ω-βI22ω+N1τ1+N3τ3,
dN1dt=-σ1IN1ω+σ0IN0ω-N1τ1-N1τISC+N2τ2,
dN2dt=σ1IN1ω+βI22ω-N2τ2,
dN3dt=-σ2IN3ω-N3τ3+N1τISC+N4τ4,
dN4dt=σ2IN3ω-N4τ4,
dIdz=-σ0IN0-σ1IN1-σ2IN3-βI2,
I=I00ω02ω2(z)exp-t2τp2exp-2r2ω2(z),
ω(z)=ω01+zz021/2,z0=πω02λ,
β=N0hν σTPA,
α=α0/1+(I/Is),
α=α0[1+(I/Is)]1/2.
α=α01+(I/Is)1/2.

Metrics