Abstract

We have developed a novel sonogram measurement system with an acousto-optic tunable filter and a nonmechanical cross correlator that uses an electronically controlled, wavelength-tunable, femtosecond soliton pulse. The sonogram trace can be measured in the wide-wavelength region of 1.1–2.1 μm without optical alignment. Temporal and wavelength range in the sonogram measurement may be changed by electronic control alone. We have demonstrated the sonogram measurement and pulse reconstruction for the analysis of ultrashort pulse propagation in optical fibers, such as a Raman soliton pulse and a supercontinuum pulse that have complex temporal and spectral distributions.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
    [CrossRef]
  2. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
    [CrossRef]
  3. V. Wong and I. A. Walmsley, “Ultrashort-pulse characterization from dynamic spectrograms by iterative phase retrieval,” J. Opt. Soc. Am. B 14, 944–949 (1997).
    [CrossRef]
  4. D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1589 (1999).
    [CrossRef]
  5. K. Taira and K. Kikuchi, “Optical sampling system at 1.55 μm for the measurement of pulse waveform and phase-employing sonogram characterization,” IEEE Photon. Technol. Lett. 13, 505–507 (2001).
    [CrossRef]
  6. K. Kikuchi, “Optical sampling system at 1.55 μm using two-photon absorption in Si avalanche photodiode,” Electron. Lett. 34, 1354–1355 (1998).
    [CrossRef]
  7. T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
    [CrossRef]
  8. F. M. Mitschke and L. F. Mollenauer, “Discovery of thesoliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef] [PubMed]
  9. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
    [CrossRef]
  10. T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
    [CrossRef]
  11. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++, 2nd ed. (Cambridge University, Cambridge, UK, 1992).
  12. N. Nishizawa and T. Goto, “Widely broadened supercontinuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys., Part 2 40, L365–L367 (2001) (Express Letter).
    [CrossRef]
  13. L. Xu, M. W. Kimmel, P. O’Shea, R. Trebino, J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Measuring the intensity and phase of ultrabroadband continuum,” Ultrafast Phenomena XII, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds. (Springer, Berlin, 2001), pp. 129–131.

2001 (4)

K. Taira and K. Kikuchi, “Optical sampling system at 1.55 μm for the measurement of pulse waveform and phase-employing sonogram characterization,” IEEE Photon. Technol. Lett. 13, 505–507 (2001).
[CrossRef]

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
[CrossRef]

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Widely broadened supercontinuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys., Part 2 40, L365–L367 (2001) (Express Letter).
[CrossRef]

1999 (3)

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[CrossRef]

D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1589 (1999).
[CrossRef]

1998 (1)

K. Kikuchi, “Optical sampling system at 1.55 μm using two-photon absorption in Si avalanche photodiode,” Electron. Lett. 34, 1354–1355 (1998).
[CrossRef]

1997 (2)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

V. Wong and I. A. Walmsley, “Ultrashort-pulse characterization from dynamic spectrograms by iterative phase retrieval,” J. Opt. Soc. Am. B 14, 944–949 (1997).
[CrossRef]

1986 (1)

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Goto, T.

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Widely broadened supercontinuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys., Part 2 40, L365–L367 (2001) (Express Letter).
[CrossRef]

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

Hori, T.

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
[CrossRef]

Iaconis, C.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[CrossRef]

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Kikuchi, K.

K. Taira and K. Kikuchi, “Optical sampling system at 1.55 μm for the measurement of pulse waveform and phase-employing sonogram characterization,” IEEE Photon. Technol. Lett. 13, 505–507 (2001).
[CrossRef]

K. Kikuchi, “Optical sampling system at 1.55 μm using two-photon absorption in Si avalanche photodiode,” Electron. Lett. 34, 1354–1355 (1998).
[CrossRef]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Mitschke, F. M.

Mollenauer, L. F.

Nagai, H.

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

Nishizawa, N.

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Widely broadened supercontinuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys., Part 2 40, L365–L367 (2001) (Express Letter).
[CrossRef]

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

Reid, D. T.

D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1589 (1999).
[CrossRef]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Taira, K.

K. Taira and K. Kikuchi, “Optical sampling system at 1.55 μm for the measurement of pulse waveform and phase-employing sonogram characterization,” IEEE Photon. Technol. Lett. 13, 505–507 (2001).
[CrossRef]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Walmsley, I. A.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[CrossRef]

V. Wong and I. A. Walmsley, “Ultrashort-pulse characterization from dynamic spectrograms by iterative phase retrieval,” J. Opt. Soc. Am. B 14, 944–949 (1997).
[CrossRef]

Wong, V.

Yoshida, M.

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
[CrossRef]

Electron. Lett. (2)

K. Kikuchi, “Optical sampling system at 1.55 μm using two-photon absorption in Si avalanche photodiode,” Electron. Lett. 34, 1354–1355 (1998).
[CrossRef]

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1589 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. Taira and K. Kikuchi, “Optical sampling system at 1.55 μm for the measurement of pulse waveform and phase-employing sonogram characterization,” IEEE Photon. Technol. Lett. 13, 505–507 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys., Part 2 (1)

N. Nishizawa and T. Goto, “Widely broadened supercontinuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys., Part 2 40, L365–L367 (2001) (Express Letter).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Other (2)

L. Xu, M. W. Kimmel, P. O’Shea, R. Trebino, J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Measuring the intensity and phase of ultrabroadband continuum,” Ultrafast Phenomena XII, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds. (Springer, Berlin, 2001), pp. 129–131.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++, 2nd ed. (Cambridge University, Cambridge, UK, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for all-electronically controlled sonogram measurement system: PBS, polarization beam splitter; AOM, acousto-optic modulator; AOTF, acousto-optic tunable filter; PMF, polarization-maintaining fiber; APD, avalanche photodiode.

Fig. 2
Fig. 2

Delay time between the soliton pulse generated in the PMF and the pump pulse (solid curve), and wavelength of the soliton pulse (dashed curve) as a function of the fiber input average power.

Fig. 3
Fig. 3

(a) Temporal intensity and phase of the reference soliton pulse, (b) transfer function of the AOTF used as the bandpass filter.

Fig. 4
Fig. 4

Experimentally measured sonogram trace of a Raman soliton pulse shifted at the wavelength of 1700 nm.

Fig. 5
Fig. 5

(a) Spectrum measured with a monochromator and retrieved spectral phase for the Raman soliton pulse, (b) reconstructed temporal intensity and phase. The reconstructed results from the sonogram (solid curve) and the SHG-FROG technique (dashed curve) are compared.

Fig. 6
Fig. 6

Measured sonogram traces with the 40-m-long PMF as the test fiber. The injected peak power into the fiber is (a) 125 W, (b) 650 W.

Fig. 7
Fig. 7

(a) Measured spectrum and retrieved spectral phase, (b) reconstructed temporal intensity and phase, extracted from the sonogram trace of Fig. 6(a).

Fig. 8
Fig. 8

(a) Measured spectrum and group delay, (b) reconstructed temporal intensity and instantaneous frequency for the soliton and pump pulse corresponding to the sonogram trace shown in Fig. 6(b). The group delay and the instantaneous frequency are calculated from the retrieved spectral and temporal phase, respectively.

Fig. 9
Fig. 9

(a) Experimental, (b) retrieved sonogram traces for the SC pulse when the 2-m-long PM-HN-DSF was used as the test fiber. The input peak power of the pulse is 2.5 kW.

Fig. 10
Fig. 10

(a) Measured spectrum and calculated group delay, (b) reconstructed temporal intensity and instantaneous frequency for the SC pulse.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I f ( t ,   ω c ) = - E ˜ ( ω ) H ˜ ( ω - ω c ) exp ( - i ω t ) d ω 2 ,
S ( τ ,   ω c ) = - I f ( t ,   ω c ) I ref ( t - τ ) d t .
G = 1 N 2 i , j = 1 N | Corr - 1 [ S ( τ i ,   ω cj ) ] - I f ( t i ,   ω cj ) | 2 1 / 2 .
t ˜ ( ω ) = d ϕ ˜ ( ω ) d ω ,
f ( t ) = f 0 - 1 2 π d ϕ ( t ) d t ,

Metrics