Abstract

We present measurements of photon time-of-flight distributions for a 9-ps, 532-nm laser pulse traveling through Intralipid suspensions and compare the measurements with the results of Monte Carlo simulations that yield the corresponding temporal point-spread function. We show that to obtain satisfactory agreement of experiments and simulation results, one must assume a quadratic dependence of the scattering coefficient on the Intralipid concentration.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental tehniques,” Phys. Med. Biol. 42, 825–840 (1999).
    [CrossRef]
  2. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single photon-detection,” Appl. Opt. 35, 1956–1976 (1996).
    [CrossRef] [PubMed]
  3. A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
    [CrossRef]
  4. A. Lacaita, S. Cova, M. Ghioni, and F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron Device Lett. 14, 360–362 (1993).
    [CrossRef]
  5. A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
    [CrossRef]
  6. A. Colasanti, G. Guida, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, and F. Villani, “Multiple processor version of a Monte Carlo code for photon transport in turbid media,” Comput. Phys. Commun. 132, 84–93 (2000).
    [CrossRef]
  7. L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  8. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  9. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
    [CrossRef] [PubMed]
  10. S. Jacques, Oregon Medical Laser Center, Providence St. Vincent Hospital, 9205 SW Barnes Road, Portland, Oregon 97225, http://omlc.ogi.edu/spectra/intralipid/index.html.
  11. G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
    [CrossRef]
  12. A. Ishimaru and Y. Kuga, “Attenuation constant of a coherent field in a dense distribution of particles,” J. Opt. Soc. Am. 72, 1317–1320 (1982).
    [CrossRef]
  13. M. S. Patterson, C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue. II. Optical properties of tissues and resulting fluence distribution,” Lasers Med. Sci. 6, 379–390 (1991).
    [CrossRef]
  14. R. West, D. Gibbs, L. Tsang, and A. K. Fung, “Comparison of optical scattering and quasi-crystalline approximation for dense media,” J. Opt. Soc. Am. A 11, 1854–1858 (1994).
    [CrossRef]
  15. G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex sphere suspensions and scattering powders,” Waves Random Media 5, 413–426 (1995).
    [CrossRef]
  16. J. E. Choukeife and J. P. L’Huillier, “Measurements of scattering effects within tissue-like media at two wavelengths of 632, 8 nm and 680 nm,” Lasers Med. Sci. 14, 286–296 (1999).
    [CrossRef]
  17. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023–4030 (2003).
    [CrossRef] [PubMed]
  18. A. Giusto, R. Saija, M. A. Iatı´, P. Denti, F. Borghese, and O. I. Sindoni, “Optical properties of high-density dispersions of particles. Application to Intralipid solutions,” Appl. Opt. 42, 4375–4380 (2003).
    [CrossRef] [PubMed]
  19. V. Twersky, “On propagation in random media of discrete scatterers,” Proc. Symp. Appl. Math. 16, 84–116 (1964).
    [CrossRef]
  20. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 2, Chap. 14.

2003

2000

A. Colasanti, G. Guida, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, and F. Villani, “Multiple processor version of a Monte Carlo code for photon transport in turbid media,” Comput. Phys. Commun. 132, 84–93 (2000).
[CrossRef]

1999

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental tehniques,” Phys. Med. Biol. 42, 825–840 (1999).
[CrossRef]

J. E. Choukeife and J. P. L’Huillier, “Measurements of scattering effects within tissue-like media at two wavelengths of 632, 8 nm and 680 nm,” Lasers Med. Sci. 14, 286–296 (1999).
[CrossRef]

1998

A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
[CrossRef]

1996

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single photon-detection,” Appl. Opt. 35, 1956–1976 (1996).
[CrossRef] [PubMed]

G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
[CrossRef]

1995

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex sphere suspensions and scattering powders,” Waves Random Media 5, 413–426 (1995).
[CrossRef]

1994

1993

A. Lacaita, S. Cova, M. Ghioni, and F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron Device Lett. 14, 360–362 (1993).
[CrossRef]

1992

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

1991

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

M. S. Patterson, C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue. II. Optical properties of tissues and resulting fluence distribution,” Lasers Med. Sci. 6, 379–390 (1991).
[CrossRef]

1989

A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

1982

1964

V. Twersky, “On propagation in random media of discrete scatterers,” Proc. Symp. Appl. Math. 16, 84–116 (1964).
[CrossRef]

1941

L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Arridge, S. R.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental tehniques,” Phys. Med. Biol. 42, 825–840 (1999).
[CrossRef]

Borghese, F.

Choukeife, J. E.

J. E. Choukeife and J. P. L’Huillier, “Measurements of scattering effects within tissue-like media at two wavelengths of 632, 8 nm and 680 nm,” Lasers Med. Sci. 14, 286–296 (1999).
[CrossRef]

Colasanti, A.

A. Colasanti, G. Guida, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, and F. Villani, “Multiple processor version of a Monte Carlo code for photon transport in turbid media,” Comput. Phys. Commun. 132, 84–93 (2000).
[CrossRef]

Cova, S.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single photon-detection,” Appl. Opt. 35, 1956–1976 (1996).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, M. Ghioni, and F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron Device Lett. 14, 360–362 (1993).
[CrossRef]

A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

Cova, S. D.

A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
[CrossRef]

Davis, L. M.

A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
[CrossRef]

Del Bianco, S.

Delpy, D. T.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental tehniques,” Phys. Med. Biol. 42, 825–840 (1999).
[CrossRef]

Denti, P.

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Fricke, J.

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex sphere suspensions and scattering powders,” Waves Random Media 5, 413–426 (1995).
[CrossRef]

Fung, A. K.

Ghioni, M.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single photon-detection,” Appl. Opt. 35, 1956–1976 (1996).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, M. Ghioni, and F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron Device Lett. 14, 360–362 (1993).
[CrossRef]

A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

Ghioni, M. A.

A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
[CrossRef]

Gibbs, D.

Giusto, A.

Göbel, G.

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex sphere suspensions and scattering powders,” Waves Random Media 5, 413–426 (1995).
[CrossRef]

Greenstein, J. L.

L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Guida, G.

A. Colasanti, G. Guida, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, and F. Villani, “Multiple processor version of a Monte Carlo code for photon transport in turbid media,” Comput. Phys. Commun. 132, 84–93 (2000).
[CrossRef]

Hebden, J. C.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental tehniques,” Phys. Med. Biol. 42, 825–840 (1999).
[CrossRef]

Henyey, L. C.

L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Iati´, M. A.

Ishimaru, A.

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Katayama, K.

G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
[CrossRef]

Kinjo, M.

G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
[CrossRef]

Kisslinger, A.

A. Colasanti, G. Guida, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, and F. Villani, “Multiple processor version of a Monte Carlo code for photon transport in turbid media,” Comput. Phys. Commun. 132, 84–93 (2000).
[CrossRef]

Kuga, Y.

Kuhn, J.

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex sphere suspensions and scattering powders,” Waves Random Media 5, 413–426 (1995).
[CrossRef]

L’Huillier, J. P.

J. E. Choukeife and J. P. L’Huillier, “Measurements of scattering effects within tissue-like media at two wavelengths of 632, 8 nm and 680 nm,” Lasers Med. Sci. 14, 286–296 (1999).
[CrossRef]

Lacaita, A.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single photon-detection,” Appl. Opt. 35, 1956–1976 (1996).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, M. Ghioni, and F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron Device Lett. 14, 360–362 (1993).
[CrossRef]

A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

Liuzzi, R.

A. Colasanti, G. Guida, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, and F. Villani, “Multiple processor version of a Monte Carlo code for photon transport in turbid media,” Comput. Phys. Commun. 132, 84–93 (2000).
[CrossRef]

Martelli, F.

Moes, C. J. M.

Nishimura, G.

G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
[CrossRef]

Patterson, M. S.

M. S. Patterson, C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue. II. Optical properties of tissues and resulting fluence distribution,” Lasers Med. Sci. 6, 379–390 (1991).
[CrossRef]

Prahl, S. A.

Quarto, M.

A. Colasanti, G. Guida, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, and F. Villani, “Multiple processor version of a Monte Carlo code for photon transport in turbid media,” Comput. Phys. Commun. 132, 84–93 (2000).
[CrossRef]

Riccio, P.

A. Colasanti, G. Guida, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, and F. Villani, “Multiple processor version of a Monte Carlo code for photon transport in turbid media,” Comput. Phys. Commun. 132, 84–93 (2000).
[CrossRef]

Roberti, G.

A. Colasanti, G. Guida, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, and F. Villani, “Multiple processor version of a Monte Carlo code for photon transport in turbid media,” Comput. Phys. Commun. 132, 84–93 (2000).
[CrossRef]

Saija, R.

Samori, C.

Sindoni, O. I.

Spinelli, A.

A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
[CrossRef]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Tamura, M.

G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
[CrossRef]

Tsang, L.

Twersky, V.

V. Twersky, “On propagation in random media of discrete scatterers,” Proc. Symp. Appl. Math. 16, 84–116 (1964).
[CrossRef]

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

van Marle, J.

van Staveren, H. J.

Villani, F.

A. Colasanti, G. Guida, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, and F. Villani, “Multiple processor version of a Monte Carlo code for photon transport in turbid media,” Comput. Phys. Commun. 132, 84–93 (2000).
[CrossRef]

West, R.

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Wilson, C.

M. S. Patterson, C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue. II. Optical properties of tissues and resulting fluence distribution,” Lasers Med. Sci. 6, 379–390 (1991).
[CrossRef]

Wyman, D. R.

M. S. Patterson, C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue. II. Optical properties of tissues and resulting fluence distribution,” Lasers Med. Sci. 6, 379–390 (1991).
[CrossRef]

Zaccanti, G.

Zappa, F.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single photon-detection,” Appl. Opt. 35, 1956–1976 (1996).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, M. Ghioni, and F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron Device Lett. 14, 360–362 (1993).
[CrossRef]

Appl. Opt.

Astrophys. J.

L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Comput. Phys. Commun.

A. Colasanti, G. Guida, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, and F. Villani, “Multiple processor version of a Monte Carlo code for photon transport in turbid media,” Comput. Phys. Commun. 132, 84–93 (2000).
[CrossRef]

Electron. Lett.

A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

IEEE Electron Device Lett.

A. Lacaita, S. Cova, M. Ghioni, and F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron Device Lett. 14, 360–362 (1993).
[CrossRef]

IEEE J. Quantum Electron.

A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Lasers Med. Sci.

J. E. Choukeife and J. P. L’Huillier, “Measurements of scattering effects within tissue-like media at two wavelengths of 632, 8 nm and 680 nm,” Lasers Med. Sci. 14, 286–296 (1999).
[CrossRef]

M. S. Patterson, C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue. II. Optical properties of tissues and resulting fluence distribution,” Lasers Med. Sci. 6, 379–390 (1991).
[CrossRef]

Lasers Surg. Med.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Opt. Commun.

G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
[CrossRef]

Phys. Med. Biol.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental tehniques,” Phys. Med. Biol. 42, 825–840 (1999).
[CrossRef]

Proc. Symp. Appl. Math.

V. Twersky, “On propagation in random media of discrete scatterers,” Proc. Symp. Appl. Math. 16, 84–116 (1964).
[CrossRef]

Waves Random Media

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex sphere suspensions and scattering powders,” Waves Random Media 5, 413–426 (1995).
[CrossRef]

Other

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 2, Chap. 14.

S. Jacques, Oregon Medical Laser Center, Providence St. Vincent Hospital, 9205 SW Barnes Road, Portland, Oregon 97225, http://omlc.ogi.edu/spectra/intralipid/index.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup: BS, beam splitter; PD, fast photodiode; ND, neutral-density filters; OBJ, microscope objective; TAC, time-to-amplitude converter; MCA, multichannel analyzer; grin, graded-index.

Fig. 2
Fig. 2

TOF distributions measured for photons at 532 nm (9-ps incident pulses) emerging from a 1-cm optical path cell containing Intralipid suspensions at the indicated concentration values. The solid curve at the extreme left is the instrumental response function directly measured with the laser pulse in free air.

Fig. 3
Fig. 3

TOF distributions computed after Monte-Carlo simulations for a 1-cm optical path cell containing Intralipid suspensions at the concentrations indicated.

Fig. 4
Fig. 4

Convolutions of the data in Fig. 3 with the measured laser TOF distribution for the laser photons traveling in air (solid curve in Fig. 2).

Fig. 5
Fig. 5

Filled circles, abscissa of the peak, tcexp, of the log normal fits of the experimental TOF measurements (see the data in Fig. 2 for some of the points) as a function of Intralipid concentration C. Solid curve, polynomial fit.

Fig. 6
Fig. 6

Filled circles, abscissa of the peak, tcMC, of the log normal fits of the Monte Carlo simulations (see the data in Fig. 3 for some of the points) as a function of reduced scattering coefficient μs. Solid curve, linear fit.

Fig. 7
Fig. 7

Filled circles, recalculated reduced scattering coefficient (μs)eff (see text) as a function of Intralipid concentration C. Solid curve, polynomial fit.

Fig. 8
Fig. 8

FWHM values obtained from the log normal fits as a function of the recalculated reduced scattering coefficient (μs)eff. Triangles, experimental values; MC, Monte Carlo simulations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y=y0+A exp-ln2(t/tc)2w2,

Metrics