Abstract

A five-level quantum system including two low-lying states and three excited states of the ladder type coupled with four laser fields is investigated as it relates to dressed-atom models, and a dressed state is found to be independent of the ionization decaying from the highest level. Under general conditions, half of the initial population of the two low-lying states is trapped in the dressed state, leading to a low probability of ionization. Based on the analytical results, two schemes are proposed for removing population trapping. For a five-level system with hyperfine structures, such as the system for ionizing 235U atoms, population trapping takes place when the laser fields are weak and can be gotten rid of by an increase in laser intensity.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Radmore and P. L. Knight, “Population trapping and dispersion in a three-level system,” J. Phys. B 15, 561–573 (1982).
    [Crossref]
  2. F. T. Hioe and C. E. Carroll, “Coherent population trapping in N-level quantum systems,” Phys. Rev. A 37, 3000–3005 (1988).
    [Crossref] [PubMed]
  3. S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65, 2355–2358 (1990).
    [Crossref] [PubMed]
  4. A. V. Smith, “Numerical study of adiabatic population inversion in multilevel systems,” J. Opt. Soc. Am. B 9, 1543–1551 (1992).
    [Crossref]
  5. T. Nakajima and P. Lambropoulos, “Manipulation of the line shape and final products of autoionization through the phase of the electric fields,” Phys. Rev. Lett. 70, 1081–1084 (1993).
    [Crossref] [PubMed]
  6. B. Liu and X. J. Ning, “Scheme for multistep resonance photoionization of atoms,” Phys. Rev. A 64, 013401 (2001).
    [Crossref]
  7. S. Chelkowski and G. N. Gibson, “Adiabatic climbing of vibrational ladders using Raman transitions with a chirped pump laser,” Phys. Rev. A 52, R3417 (1995).
    [Crossref] [PubMed]
  8. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
    [Crossref]
  9. A. Messian, Quantum Mechanics (North-Holland, Amsterdam, 1980).
  10. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  11. Y. P. Gangrsky, B. K. Kuldjanov, K. P. Marinova, B. N. Markov, and S. G. Zemlyanoi, “Hyperfine anomaly in the f3 ds2 5L60,f3 dsp 7M7 and f3 dsp 7L6 levels in U i,” Z. Phys. D 42, 1–4 (1997).
    [Crossref]
  12. L. Jia, C. Jing, and F. Lin, “Hyperfine structure measurements of 235U high-lying levels using a hollow-cathode lamp,” Chin. Phys. Lett. 8, 172–175 (1991).
    [Crossref]

2001 (1)

B. Liu and X. J. Ning, “Scheme for multistep resonance photoionization of atoms,” Phys. Rev. A 64, 013401 (2001).
[Crossref]

1998 (1)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

1997 (1)

Y. P. Gangrsky, B. K. Kuldjanov, K. P. Marinova, B. N. Markov, and S. G. Zemlyanoi, “Hyperfine anomaly in the f3 ds2 5L60,f3 dsp 7M7 and f3 dsp 7L6 levels in U i,” Z. Phys. D 42, 1–4 (1997).
[Crossref]

1995 (1)

S. Chelkowski and G. N. Gibson, “Adiabatic climbing of vibrational ladders using Raman transitions with a chirped pump laser,” Phys. Rev. A 52, R3417 (1995).
[Crossref] [PubMed]

1993 (1)

T. Nakajima and P. Lambropoulos, “Manipulation of the line shape and final products of autoionization through the phase of the electric fields,” Phys. Rev. Lett. 70, 1081–1084 (1993).
[Crossref] [PubMed]

1992 (1)

1991 (1)

L. Jia, C. Jing, and F. Lin, “Hyperfine structure measurements of 235U high-lying levels using a hollow-cathode lamp,” Chin. Phys. Lett. 8, 172–175 (1991).
[Crossref]

1990 (1)

S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65, 2355–2358 (1990).
[Crossref] [PubMed]

1988 (1)

F. T. Hioe and C. E. Carroll, “Coherent population trapping in N-level quantum systems,” Phys. Rev. A 37, 3000–3005 (1988).
[Crossref] [PubMed]

1982 (1)

P. M. Radmore and P. L. Knight, “Population trapping and dispersion in a three-level system,” J. Phys. B 15, 561–573 (1982).
[Crossref]

Bandrauk, A. D.

S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65, 2355–2358 (1990).
[Crossref] [PubMed]

Bergmann, K.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Carroll, C. E.

F. T. Hioe and C. E. Carroll, “Coherent population trapping in N-level quantum systems,” Phys. Rev. A 37, 3000–3005 (1988).
[Crossref] [PubMed]

Chelkowski, S.

S. Chelkowski and G. N. Gibson, “Adiabatic climbing of vibrational ladders using Raman transitions with a chirped pump laser,” Phys. Rev. A 52, R3417 (1995).
[Crossref] [PubMed]

S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65, 2355–2358 (1990).
[Crossref] [PubMed]

Corkum, P. B.

S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65, 2355–2358 (1990).
[Crossref] [PubMed]

Gangrsky, Y. P.

Y. P. Gangrsky, B. K. Kuldjanov, K. P. Marinova, B. N. Markov, and S. G. Zemlyanoi, “Hyperfine anomaly in the f3 ds2 5L60,f3 dsp 7M7 and f3 dsp 7L6 levels in U i,” Z. Phys. D 42, 1–4 (1997).
[Crossref]

Gibson, G. N.

S. Chelkowski and G. N. Gibson, “Adiabatic climbing of vibrational ladders using Raman transitions with a chirped pump laser,” Phys. Rev. A 52, R3417 (1995).
[Crossref] [PubMed]

Hioe, F. T.

F. T. Hioe and C. E. Carroll, “Coherent population trapping in N-level quantum systems,” Phys. Rev. A 37, 3000–3005 (1988).
[Crossref] [PubMed]

Jia, L.

L. Jia, C. Jing, and F. Lin, “Hyperfine structure measurements of 235U high-lying levels using a hollow-cathode lamp,” Chin. Phys. Lett. 8, 172–175 (1991).
[Crossref]

Jing, C.

L. Jia, C. Jing, and F. Lin, “Hyperfine structure measurements of 235U high-lying levels using a hollow-cathode lamp,” Chin. Phys. Lett. 8, 172–175 (1991).
[Crossref]

Knight, P. L.

P. M. Radmore and P. L. Knight, “Population trapping and dispersion in a three-level system,” J. Phys. B 15, 561–573 (1982).
[Crossref]

Kuldjanov, B. K.

Y. P. Gangrsky, B. K. Kuldjanov, K. P. Marinova, B. N. Markov, and S. G. Zemlyanoi, “Hyperfine anomaly in the f3 ds2 5L60,f3 dsp 7M7 and f3 dsp 7L6 levels in U i,” Z. Phys. D 42, 1–4 (1997).
[Crossref]

Lambropoulos, P.

T. Nakajima and P. Lambropoulos, “Manipulation of the line shape and final products of autoionization through the phase of the electric fields,” Phys. Rev. Lett. 70, 1081–1084 (1993).
[Crossref] [PubMed]

Lin, F.

L. Jia, C. Jing, and F. Lin, “Hyperfine structure measurements of 235U high-lying levels using a hollow-cathode lamp,” Chin. Phys. Lett. 8, 172–175 (1991).
[Crossref]

Liu, B.

B. Liu and X. J. Ning, “Scheme for multistep resonance photoionization of atoms,” Phys. Rev. A 64, 013401 (2001).
[Crossref]

Marinova, K. P.

Y. P. Gangrsky, B. K. Kuldjanov, K. P. Marinova, B. N. Markov, and S. G. Zemlyanoi, “Hyperfine anomaly in the f3 ds2 5L60,f3 dsp 7M7 and f3 dsp 7L6 levels in U i,” Z. Phys. D 42, 1–4 (1997).
[Crossref]

Markov, B. N.

Y. P. Gangrsky, B. K. Kuldjanov, K. P. Marinova, B. N. Markov, and S. G. Zemlyanoi, “Hyperfine anomaly in the f3 ds2 5L60,f3 dsp 7M7 and f3 dsp 7L6 levels in U i,” Z. Phys. D 42, 1–4 (1997).
[Crossref]

Messian, A.

A. Messian, Quantum Mechanics (North-Holland, Amsterdam, 1980).

Nakajima, T.

T. Nakajima and P. Lambropoulos, “Manipulation of the line shape and final products of autoionization through the phase of the electric fields,” Phys. Rev. Lett. 70, 1081–1084 (1993).
[Crossref] [PubMed]

Ning, X. J.

B. Liu and X. J. Ning, “Scheme for multistep resonance photoionization of atoms,” Phys. Rev. A 64, 013401 (2001).
[Crossref]

Radmore, P. M.

P. M. Radmore and P. L. Knight, “Population trapping and dispersion in a three-level system,” J. Phys. B 15, 561–573 (1982).
[Crossref]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Shore, B. W.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Smith, A. V.

Theuer, H.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Zemlyanoi, S. G.

Y. P. Gangrsky, B. K. Kuldjanov, K. P. Marinova, B. N. Markov, and S. G. Zemlyanoi, “Hyperfine anomaly in the f3 ds2 5L60,f3 dsp 7M7 and f3 dsp 7L6 levels in U i,” Z. Phys. D 42, 1–4 (1997).
[Crossref]

Chin. Phys. Lett. (1)

L. Jia, C. Jing, and F. Lin, “Hyperfine structure measurements of 235U high-lying levels using a hollow-cathode lamp,” Chin. Phys. Lett. 8, 172–175 (1991).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

P. M. Radmore and P. L. Knight, “Population trapping and dispersion in a three-level system,” J. Phys. B 15, 561–573 (1982).
[Crossref]

Phys. Rev. A (3)

F. T. Hioe and C. E. Carroll, “Coherent population trapping in N-level quantum systems,” Phys. Rev. A 37, 3000–3005 (1988).
[Crossref] [PubMed]

B. Liu and X. J. Ning, “Scheme for multistep resonance photoionization of atoms,” Phys. Rev. A 64, 013401 (2001).
[Crossref]

S. Chelkowski and G. N. Gibson, “Adiabatic climbing of vibrational ladders using Raman transitions with a chirped pump laser,” Phys. Rev. A 52, R3417 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65, 2355–2358 (1990).
[Crossref] [PubMed]

T. Nakajima and P. Lambropoulos, “Manipulation of the line shape and final products of autoionization through the phase of the electric fields,” Phys. Rev. Lett. 70, 1081–1084 (1993).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Z. Phys. D (1)

Y. P. Gangrsky, B. K. Kuldjanov, K. P. Marinova, B. N. Markov, and S. G. Zemlyanoi, “Hyperfine anomaly in the f3 ds2 5L60,f3 dsp 7M7 and f3 dsp 7L6 levels in U i,” Z. Phys. D 42, 1–4 (1997).
[Crossref]

Other (2)

A. Messian, Quantum Mechanics (North-Holland, Amsterdam, 1980).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Five-level system without sublevels coupled with four lasers, L1, L2, L3, and L4. The corresponding Rabi frequencies are denoted Ω1, Ω2, Ω3 and Ω4.

Fig. 2
Fig. 2

Probability of a trapped population (dotted curves) and of ionization (solid curves) for atoms initially (a) in the ground state and (b) in the metastable state versus Δ4 with Ωl,4(0)=5×109, Ω2(0)=1×1010, and Ω3(0)=2.5×1011 rad/s.

Fig. 3
Fig. 3

Same as Fig. 2, except that Ω4(0)=2.5×109 rad/s.

Fig. 4
Fig. 4

Five-level system with hyperfine sublevels for 235U atoms coupled with four laser fields.

Fig. 5
Fig. 5

(a) Population evolution in the 11/2 sublevel of state 5L60 (solid curves) and in the 9/2 sublevel of state 5K50 (dotted curves). (b) Population sum of the 11/2 and 9/2 sublevels (dots) and probability of ionization (solid curves) for the 235U atoms initially in the 11/2 sublevel of the ground state.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H=0Ω1/2000Ω1/2Δ1Ω2/20Ω4/20Ω2/2Δ2Ω3/2000Ω3/2Δ3-iγ200Ω4/200Δ4.
|φ1=Ω4(Ω12+Ω42)1/2 |1-Ω1(Ω12+Ω42)1/2 |5.
|Φ(t)=A1|φ1+25Akexp-i t0tωk(θ)dθ|φk,
iC˙=k Hj,kCk,
Pt=|C1()|2+|C5()|2,
Pi=γ-+|C4(t)|2dt.
Ωi(t)=Ωi(0)exp(-t2/τ2)(i=1, 2, 3),
Ω4(t)=Ω4(0)sin(0.2π|t|/τ)(|t|5τ)0(|t|>5τ),

Metrics