Abstract

We numerically study supercontinuum generation in photonic crystal fibers pumped with low-power 30-ps pulses close to the zero dispersion wavelength. We show how the efficiency is significantly improved by designing the dispersion to allow widely separated spectral lines generated by degenerate four-wave mixing directly from the pump to broaden and merge, resulting in a 800-nm-wide supercontinuum. Full-vectorial plane-wave calculations show that a cobweb photonic-crystal-fiber structure can realize the dispersion profiles under consideration. The predicted efficient supercontinuum generation is more robust and survives fiber imperfections modeled as random fluctuations of the dispersion coefficients along the fiber.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping

Michael H. Frosz, Thorkild Sørensen, and Ole Bang
J. Opt. Soc. Am. B 23(8) 1692-1699 (2006)

Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers

Stéphane Coen, Alvin Hing Lun Chau, Rainer Leonhardt, John D. Harvey, Jonathan C. Knight, William J. Wadsworth, and Philip St. J. Russell
J. Opt. Soc. Am. B 19(4) 753-764 (2002)

Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation

Vincent Tombelaine, Alexis Labruyère, Jens Kobelke, Kay Schuster, Volker Reichel, Philippe Leproux, Vincent Couderc, Raphaël Jamier, and Hartmut Bartelt
Opt. Express 17(18) 15392-15401 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription