Abstract

High-performance photorefractive materials based on the layered photoconductive polymers PPT-CZ [rigid backbone of poly(p-phenyleneterephthalate) with pendent carbazole groups] are studied. The composites are composed of PPT-CZ and are doped with the sensitizer C60 and nonlinear optical chromophores. Despite the absence of a plasticizer and the lower concentration of the carbazole photoconductive moieties as compared with poly(N-vinyl carbazole), these materials show high photorefractive sensitivity, i.e., Sn2 of 70±7 cm2/kJ at E0=100 V/μm for PPT-CZ(n=12):diethylaminodicyanostyrene:C60. The low glass transition temperature (<0°C) leads to a high rotational mobility of the chromophores that results in large refractive-index changes. For all the composites that were investigated, the two-wave mixing gain Γ exceeds 100 cm-1 at an applied field of 50 V/μm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications I & II (Springer-Verlag, Berlin, 1988).
  2. G. Montemezzani, C. Medrano, M. Zgonik, and P. Günter, “The photorefractive effect in inorganic and organic materials,” in Nonlinear Optical Effects and Materials, P. Günter, ed. (Springer-Verlag, Berlin, 2000), pp. 301–373.
  3. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
    [CrossRef] [PubMed]
  4. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
    [CrossRef]
  5. W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
    [CrossRef]
  6. W. E. Moerner and S. M. Silence, “Polymer photorefractive materials,” Chem. Rev. (Washington, D.C.) 94, 127–155 (1994).
    [CrossRef]
  7. B. Kippelen, Sandalphon, B. L. Volodin, K. Meerholz, and N. Peyghambarian, “Organic polymers for photorefractive applications,” in Photonic and Optoelectronic Polymers, S. A. Jenekhe and K. J. Wynne, eds., ACS Symp. Ser. 672, 218–235 (1997).
    [CrossRef]
  8. C. R. Carlen and D. J. McGee, “Influence of chromophore solubility on optical absorbtion and two-beam coupling gain in guest-host photorefractive polymer composites,” Opt. Commun. 152, 342–346 (1999).
    [CrossRef]
  9. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
    [CrossRef]
  10. D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
    [CrossRef]
  11. B. Kippelen, K. Meerholz, and N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997), pp. 465–513.
  12. O. P. Kwon, S. H. Lee, G. Montemezzani, and P. Günter, “Layer structured photoconducting polymers: a new class of photorefractive materials,” Adv. Funct. Mater. 13, 434–438 (2003).
    [CrossRef]
  13. M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, and R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
    [CrossRef]
  14. D. Adam, P. Schuhmacher, J. Simmer, L. Haussling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, and D. Haarer, “Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal,” Nature (London) 371, 141–143 (1994).
    [CrossRef]
  15. T. Sasakawa, T. Ikeda, and S. Tazuke, “Improved hole drift mobility in excimer-free polymers containing a dimeric carbazole unit,” Macromolecules 22, 4253–4259 (1989).
    [CrossRef]
  16. E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrenechromophores,” J. Mater. Chem. 9, 2251–2258 (1999).
    [CrossRef]
  17. L. Onsager, “Initial recombination of ions,” Phys. Rev. 54, 554–557 (1938).
    [CrossRef]
  18. K. Sutter and P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7, 7, 8, 8-tetracyanoquinodimethane,” J. Opt. Soc. Am. B 7, 2274–2278 (1990).
    [CrossRef]
  19. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  20. J. S. Schildkraut and Y. Cui, “Zero-order and first-order theory of the formation of space-charge grating in photoconductive polymers,” J. Appl. Phys. 72, 5055–5060 (1992).
    [CrossRef]
  21. P. Günter, “Holography coherent-light amplification and optical-phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
    [CrossRef]
  22. G. Montemezzani and P. Günter, “Inorganic and organic photorefractive materials,” in Notions and Perspectives of Nonlinear Optics, O. Keller, ed. (World Scientific, Singapore, 1996), pp. 370–427.
  23. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
    [CrossRef]
  24. Y. Zhang, T. Wada, and H. Sasabe, “Carbazole photorefractive materials,” J. Mater. Chem. 4, 809–828 (1998).
    [CrossRef]
  25. C. Zhao, C. K. Park, P. N. Prasad, Y. Zhang, S. Ghosal, and R. Burzynski, “Photorefractive polymer with side-chain second-order nonlinear optical and charge-transporting groups,” Chem. Mater. 7, 1237–1242 (1995).
    [CrossRef]
  26. L. Pautmeier, R. Richert, and H. Bässler, “Poole-Frenkel behavior of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation,” Synth. Met. 37, 271–281 (1990).
    [CrossRef]

2003 (1)

O. P. Kwon, S. H. Lee, G. Montemezzani, and P. Günter, “Layer structured photoconducting polymers: a new class of photorefractive materials,” Adv. Funct. Mater. 13, 434–438 (2003).
[CrossRef]

1999 (3)

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, and R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrenechromophores,” J. Mater. Chem. 9, 2251–2258 (1999).
[CrossRef]

C. R. Carlen and D. J. McGee, “Influence of chromophore solubility on optical absorbtion and two-beam coupling gain in guest-host photorefractive polymer composites,” Opt. Commun. 152, 342–346 (1999).
[CrossRef]

1998 (2)

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Y. Zhang, T. Wada, and H. Sasabe, “Carbazole photorefractive materials,” J. Mater. Chem. 4, 809–828 (1998).
[CrossRef]

1997 (3)

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

B. Kippelen, Sandalphon, B. L. Volodin, K. Meerholz, and N. Peyghambarian, “Organic polymers for photorefractive applications,” in Photonic and Optoelectronic Polymers, S. A. Jenekhe and K. J. Wynne, eds., ACS Symp. Ser. 672, 218–235 (1997).
[CrossRef]

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[CrossRef]

1995 (1)

C. Zhao, C. K. Park, P. N. Prasad, Y. Zhang, S. Ghosal, and R. Burzynski, “Photorefractive polymer with side-chain second-order nonlinear optical and charge-transporting groups,” Chem. Mater. 7, 1237–1242 (1995).
[CrossRef]

1994 (4)

W. E. Moerner and S. M. Silence, “Polymer photorefractive materials,” Chem. Rev. (Washington, D.C.) 94, 127–155 (1994).
[CrossRef]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

D. Adam, P. Schuhmacher, J. Simmer, L. Haussling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, and D. Haarer, “Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal,” Nature (London) 371, 141–143 (1994).
[CrossRef]

1992 (1)

J. S. Schildkraut and Y. Cui, “Zero-order and first-order theory of the formation of space-charge grating in photoconductive polymers,” J. Appl. Phys. 72, 5055–5060 (1992).
[CrossRef]

1991 (1)

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

1990 (2)

K. Sutter and P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7, 7, 8, 8-tetracyanoquinodimethane,” J. Opt. Soc. Am. B 7, 2274–2278 (1990).
[CrossRef]

L. Pautmeier, R. Richert, and H. Bässler, “Poole-Frenkel behavior of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation,” Synth. Met. 37, 271–281 (1990).
[CrossRef]

1989 (1)

T. Sasakawa, T. Ikeda, and S. Tazuke, “Improved hole drift mobility in excimer-free polymers containing a dimeric carbazole unit,” Macromolecules 22, 4253–4259 (1989).
[CrossRef]

1982 (1)

P. Günter, “Holography coherent-light amplification and optical-phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1938 (1)

L. Onsager, “Initial recombination of ions,” Phys. Rev. 54, 554–557 (1938).
[CrossRef]

Adam, D.

D. Adam, P. Schuhmacher, J. Simmer, L. Haussling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, and D. Haarer, “Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal,” Nature (London) 371, 141–143 (1994).
[CrossRef]

Anderson, J.

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrenechromophores,” J. Mater. Chem. 9, 2251–2258 (1999).
[CrossRef]

Armstrong, N. R.

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrenechromophores,” J. Mater. Chem. 9, 2251–2258 (1999).
[CrossRef]

Bässler, H.

L. Pautmeier, R. Richert, and H. Bässler, “Poole-Frenkel behavior of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation,” Synth. Met. 37, 271–281 (1990).
[CrossRef]

Bjorklund, G. C.

Burzynski, R.

C. Zhao, C. K. Park, P. N. Prasad, Y. Zhang, S. Ghosal, and R. Burzynski, “Photorefractive polymer with side-chain second-order nonlinear optical and charge-transporting groups,” Chem. Mater. 7, 1237–1242 (1995).
[CrossRef]

Carlen, C. R.

C. R. Carlen and D. J. McGee, “Influence of chromophore solubility on optical absorbtion and two-beam coupling gain in guest-host photorefractive polymer composites,” Opt. Commun. 152, 342–346 (1999).
[CrossRef]

Casperson, J. D.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, and R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Cui, Y.

J. S. Schildkraut and Y. Cui, “Zero-order and first-order theory of the formation of space-charge grating in photoconductive polymers,” J. Appl. Phys. 72, 5055–5060 (1992).
[CrossRef]

DeClue, M.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Diaz-Garcia, M. A.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, and R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Ducharme, S.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Etzbach, K. H.

D. Adam, P. Schuhmacher, J. Simmer, L. Haussling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, and D. Haarer, “Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal,” Nature (London) 371, 141–143 (1994).
[CrossRef]

Ferrio, K. B.

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrenechromophores,” J. Mater. Chem. 9, 2251–2258 (1999).
[CrossRef]

Ghosal, S.

C. Zhao, C. K. Park, P. N. Prasad, Y. Zhang, S. Ghosal, and R. Burzynski, “Photorefractive polymer with side-chain second-order nonlinear optical and charge-transporting groups,” Chem. Mater. 7, 1237–1242 (1995).
[CrossRef]

Glazer, E.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, and R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

Grunnet-Jepsen, A.

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

Günter, P.

O. P. Kwon, S. H. Lee, G. Montemezzani, and P. Günter, “Layer structured photoconducting polymers: a new class of photorefractive materials,” Adv. Funct. Mater. 13, 434–438 (2003).
[CrossRef]

K. Sutter and P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7, 7, 8, 8-tetracyanoquinodimethane,” J. Opt. Soc. Am. B 7, 2274–2278 (1990).
[CrossRef]

P. Günter, “Holography coherent-light amplification and optical-phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

Haarer, D.

D. Adam, P. Schuhmacher, J. Simmer, L. Haussling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, and D. Haarer, “Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal,” Nature (London) 371, 141–143 (1994).
[CrossRef]

Hache, F.

Haussling, L.

D. Adam, P. Schuhmacher, J. Simmer, L. Haussling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, and D. Haarer, “Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal,” Nature (London) 371, 141–143 (1994).
[CrossRef]

Hendrickx, E.

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrenechromophores,” J. Mater. Chem. 9, 2251–2258 (1999).
[CrossRef]

Herlocker, J. A.

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrenechromophores,” J. Mater. Chem. 9, 2251–2258 (1999).
[CrossRef]

Ikeda, T.

T. Sasakawa, T. Ikeda, and S. Tazuke, “Improved hole drift mobility in excimer-free polymers containing a dimeric carbazole unit,” Macromolecules 22, 4253–4259 (1989).
[CrossRef]

Kippelen, B.

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrenechromophores,” J. Mater. Chem. 9, 2251–2258 (1999).
[CrossRef]

B. Kippelen, Sandalphon, B. L. Volodin, K. Meerholz, and N. Peyghambarian, “Organic polymers for photorefractive applications,” in Photonic and Optoelectronic Polymers, S. A. Jenekhe and K. J. Wynne, eds., ACS Symp. Ser. 672, 218–235 (1997).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Kwon, O. P.

O. P. Kwon, S. H. Lee, G. Montemezzani, and P. Günter, “Layer structured photoconducting polymers: a new class of photorefractive materials,” Adv. Funct. Mater. 13, 434–438 (2003).
[CrossRef]

Lee, S. H.

O. P. Kwon, S. H. Lee, G. Montemezzani, and P. Günter, “Layer structured photoconducting polymers: a new class of photorefractive materials,” Adv. Funct. Mater. 13, 434–438 (2003).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Mash, E. A.

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrenechromophores,” J. Mater. Chem. 9, 2251–2258 (1999).
[CrossRef]

McGee, D. J.

C. R. Carlen and D. J. McGee, “Influence of chromophore solubility on optical absorbtion and two-beam coupling gain in guest-host photorefractive polymer composites,” Opt. Commun. 152, 342–346 (1999).
[CrossRef]

Meerholz, K.

B. Kippelen, Sandalphon, B. L. Volodin, K. Meerholz, and N. Peyghambarian, “Organic polymers for photorefractive applications,” in Photonic and Optoelectronic Polymers, S. A. Jenekhe and K. J. Wynne, eds., ACS Symp. Ser. 672, 218–235 (1997).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Moerner, W. E.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, and R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
[CrossRef]

W. E. Moerner and S. M. Silence, “Polymer photorefractive materials,” Chem. Rev. (Washington, D.C.) 94, 127–155 (1994).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Montemezzani, G.

O. P. Kwon, S. H. Lee, G. Montemezzani, and P. Günter, “Layer structured photoconducting polymers: a new class of photorefractive materials,” Adv. Funct. Mater. 13, 434–438 (2003).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Onsager, L.

L. Onsager, “Initial recombination of ions,” Phys. Rev. 54, 554–557 (1938).
[CrossRef]

Park, C. K.

C. Zhao, C. K. Park, P. N. Prasad, Y. Zhang, S. Ghosal, and R. Burzynski, “Photorefractive polymer with side-chain second-order nonlinear optical and charge-transporting groups,” Chem. Mater. 7, 1237–1242 (1995).
[CrossRef]

Pautmeier, L.

L. Pautmeier, R. Richert, and H. Bässler, “Poole-Frenkel behavior of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation,” Synth. Met. 37, 271–281 (1990).
[CrossRef]

Persoons, A. P.

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrenechromophores,” J. Mater. Chem. 9, 2251–2258 (1999).
[CrossRef]

Peyghambarian, N.

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrenechromophores,” J. Mater. Chem. 9, 2251–2258 (1999).
[CrossRef]

B. Kippelen, Sandalphon, B. L. Volodin, K. Meerholz, and N. Peyghambarian, “Organic polymers for photorefractive applications,” in Photonic and Optoelectronic Polymers, S. A. Jenekhe and K. J. Wynne, eds., ACS Symp. Ser. 672, 218–235 (1997).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Prasad, P. N.

C. Zhao, C. K. Park, P. N. Prasad, Y. Zhang, S. Ghosal, and R. Burzynski, “Photorefractive polymer with side-chain second-order nonlinear optical and charge-transporting groups,” Chem. Mater. 7, 1237–1242 (1995).
[CrossRef]

Richert, R.

L. Pautmeier, R. Richert, and H. Bässler, “Poole-Frenkel behavior of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation,” Synth. Met. 37, 271–281 (1990).
[CrossRef]

Ringsdorf, H.

D. Adam, P. Schuhmacher, J. Simmer, L. Haussling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, and D. Haarer, “Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal,” Nature (London) 371, 141–143 (1994).
[CrossRef]

Sandalphon,

B. Kippelen, Sandalphon, B. L. Volodin, K. Meerholz, and N. Peyghambarian, “Organic polymers for photorefractive applications,” in Photonic and Optoelectronic Polymers, S. A. Jenekhe and K. J. Wynne, eds., ACS Symp. Ser. 672, 218–235 (1997).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Sasabe, H.

Y. Zhang, T. Wada, and H. Sasabe, “Carbazole photorefractive materials,” J. Mater. Chem. 4, 809–828 (1998).
[CrossRef]

Sasakawa, T.

T. Sasakawa, T. Ikeda, and S. Tazuke, “Improved hole drift mobility in excimer-free polymers containing a dimeric carbazole unit,” Macromolecules 22, 4253–4259 (1989).
[CrossRef]

Schildkraut, J. S.

J. S. Schildkraut and Y. Cui, “Zero-order and first-order theory of the formation of space-charge grating in photoconductive polymers,” J. Appl. Phys. 72, 5055–5060 (1992).
[CrossRef]

Schuhmacher, P.

D. Adam, P. Schuhmacher, J. Simmer, L. Haussling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, and D. Haarer, “Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal,” Nature (London) 371, 141–143 (1994).
[CrossRef]

Scott, J. C.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Siemensmeyer, K.

D. Adam, P. Schuhmacher, J. Simmer, L. Haussling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, and D. Haarer, “Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal,” Nature (London) 371, 141–143 (1994).
[CrossRef]

Silence, S. M.

Simmer, J.

D. Adam, P. Schuhmacher, J. Simmer, L. Haussling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, and D. Haarer, “Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal,” Nature (London) 371, 141–143 (1994).
[CrossRef]

Smith, B.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, and R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Sukhomlinova, L. I.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, and R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

Sutter, K.

Tazuke, S.

T. Sasakawa, T. Ikeda, and S. Tazuke, “Improved hole drift mobility in excimer-free polymers containing a dimeric carbazole unit,” Macromolecules 22, 4253–4259 (1989).
[CrossRef]

Thompson, C. L.

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

Twieg, R. J.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, and R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Volodin, B. L.

B. Kippelen, Sandalphon, B. L. Volodin, K. Meerholz, and N. Peyghambarian, “Organic polymers for photorefractive applications,” in Photonic and Optoelectronic Polymers, S. A. Jenekhe and K. J. Wynne, eds., ACS Symp. Ser. 672, 218–235 (1997).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Wada, T.

Y. Zhang, T. Wada, and H. Sasabe, “Carbazole photorefractive materials,” J. Mater. Chem. 4, 809–828 (1998).
[CrossRef]

Wright, D.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, and R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Zhang, Y.

Y. Zhang, T. Wada, and H. Sasabe, “Carbazole photorefractive materials,” J. Mater. Chem. 4, 809–828 (1998).
[CrossRef]

C. Zhao, C. K. Park, P. N. Prasad, Y. Zhang, S. Ghosal, and R. Burzynski, “Photorefractive polymer with side-chain second-order nonlinear optical and charge-transporting groups,” Chem. Mater. 7, 1237–1242 (1995).
[CrossRef]

Zhang, Y. D.

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrenechromophores,” J. Mater. Chem. 9, 2251–2258 (1999).
[CrossRef]

Zhao, C.

C. Zhao, C. K. Park, P. N. Prasad, Y. Zhang, S. Ghosal, and R. Burzynski, “Photorefractive polymer with side-chain second-order nonlinear optical and charge-transporting groups,” Chem. Mater. 7, 1237–1242 (1995).
[CrossRef]

ACS Symp. Ser. (1)

B. Kippelen, Sandalphon, B. L. Volodin, K. Meerholz, and N. Peyghambarian, “Organic polymers for photorefractive applications,” in Photonic and Optoelectronic Polymers, S. A. Jenekhe and K. J. Wynne, eds., ACS Symp. Ser. 672, 218–235 (1997).
[CrossRef]

Adv. Funct. Mater. (1)

O. P. Kwon, S. H. Lee, G. Montemezzani, and P. Günter, “Layer structured photoconducting polymers: a new class of photorefractive materials,” Adv. Funct. Mater. 13, 434–438 (2003).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

Chem. Mater. (2)

C. Zhao, C. K. Park, P. N. Prasad, Y. Zhang, S. Ghosal, and R. Burzynski, “Photorefractive polymer with side-chain second-order nonlinear optical and charge-transporting groups,” Chem. Mater. 7, 1237–1242 (1995).
[CrossRef]

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, and R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

W. E. Moerner and S. M. Silence, “Polymer photorefractive materials,” Chem. Rev. (Washington, D.C.) 94, 127–155 (1994).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

J. Appl. Phys. (1)

J. S. Schildkraut and Y. Cui, “Zero-order and first-order theory of the formation of space-charge grating in photoconductive polymers,” J. Appl. Phys. 72, 5055–5060 (1992).
[CrossRef]

J. Mater. Chem. (2)

Y. Zhang, T. Wada, and H. Sasabe, “Carbazole photorefractive materials,” J. Mater. Chem. 4, 809–828 (1998).
[CrossRef]

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrenechromophores,” J. Mater. Chem. 9, 2251–2258 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

Macromolecules (1)

T. Sasakawa, T. Ikeda, and S. Tazuke, “Improved hole drift mobility in excimer-free polymers containing a dimeric carbazole unit,” Macromolecules 22, 4253–4259 (1989).
[CrossRef]

Nature (London) (2)

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

D. Adam, P. Schuhmacher, J. Simmer, L. Haussling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, and D. Haarer, “Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal,” Nature (London) 371, 141–143 (1994).
[CrossRef]

Opt. Commun. (1)

C. R. Carlen and D. J. McGee, “Influence of chromophore solubility on optical absorbtion and two-beam coupling gain in guest-host photorefractive polymer composites,” Opt. Commun. 152, 342–346 (1999).
[CrossRef]

Phys. Rep. (1)

P. Günter, “Holography coherent-light amplification and optical-phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

Phys. Rev. (1)

L. Onsager, “Initial recombination of ions,” Phys. Rev. 54, 554–557 (1938).
[CrossRef]

Phys. Rev. Lett. (1)

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Synth. Met. (1)

L. Pautmeier, R. Richert, and H. Bässler, “Poole-Frenkel behavior of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation,” Synth. Met. 37, 271–281 (1990).
[CrossRef]

Other (4)

G. Montemezzani and P. Günter, “Inorganic and organic photorefractive materials,” in Notions and Perspectives of Nonlinear Optics, O. Keller, ed. (World Scientific, Singapore, 1996), pp. 370–427.

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications I & II (Springer-Verlag, Berlin, 1988).

G. Montemezzani, C. Medrano, M. Zgonik, and P. Günter, “The photorefractive effect in inorganic and organic materials,” in Nonlinear Optical Effects and Materials, P. Günter, ed. (Springer-Verlag, Berlin, 2000), pp. 301–373.

B. Kippelen, K. Meerholz, and N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997), pp. 465–513.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic showing the structural formula and the geometric layered arrangement of the photoconducting polymer PPT-CZ(n=10).

Fig. 2
Fig. 2

Measured electric field dependence of the photocurrent densities at λ=633 nm with an intensity of 14.7 mW/cm2.

Fig. 3
Fig. 3

Two-beam coupling coefficient as a function of external electric field for a p-polarized beam at λ=633 nm. The solid curves are guides to the eye.

Fig. 4
Fig. 4

Diffraction efficiency η as a function of external electric field for s-polarized writing beams at λ=633 nm and a p-polarized (filled symbols) or a s-polarized (open symbols) reading beam at λ=780 nm. The solid curves are guides to the eye.

Fig. 5
Fig. 5

(a) Buildup transient of the diffracted signal observed for PPT-CZ(n=12):DDCST:C60 at E0=100 V/μm (recording intensity I=34.1 mW/cm2, wavelength λ=633 nm). (b) Electric field dependence of the response rate τsc-1 at λ=633 nm and I=34.1 mW/cm2.

Tables (1)

Tables Icon

Table 1 Absorption Coefficient α, Dark Conductivity σdark, Photoconductivity σph, Specific Photoconductivity σph/αI, Two-Beam Coupling Gain Coefficient Γ, Grating Formation Time τsc, Photorefractive Sensitivity Sn2, and Maximum Diffraction Efficientcy ηmax for Different PR Polymer Composites Based on PPT-CZ

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Γ=1/d[ln(γ0β0)]-ln[(β0+1-γ0)],
arcsin[η1/2(t)]=A0[1-exp(-t/τsc)],

Metrics