Abstract

Alpha particles accelerated towards a flat Al sample accumulate and precipitate in the form of dense He bubbles. Under fast-electron bombardment, these bubbles have been observed to generate He excimer molecules which decay by emitting vacuum-ultraviolet (VUV) fluorescent radiation. The calculation of the VUV dielectric function and reflectance shows that a thin planar film made of such He–Al composite and driven out of equilibrium can generate amplifying reflection. This phenomenon occurs at specific isolated frequencies and incidence angles when the excimer concentration in the pressurized fluid of the bubbles becomes sufficient. By use of analytical and numerical multiple-scattering simulations, the expected gain of this VUV amplifying mirror is studied, and the possible improvement brought about by shaping the film into a periodic array of adequately adjusted microresonators is demonstrated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription