Abstract

We report on a simple method to flatten the optical spectral response of a conventional Gaussian-like transfer function multiplexer and demultiplexer. Advantages and drawbacks of the technique are discussed, and an analytical formula that permits easy optical design is given.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Dragone, T. Strasser, G. A. Bogert, L. W. Stultz, and P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
    [CrossRef]
  2. Y. P. Ho, H. Li, and Y. Chen, “Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-circle design,” IEEE Photon. Technol. Lett. 9, 342–344 (1997).
    [CrossRef]
  3. B. Chassagne, K. Aubry, L. Fulop, and V. Dentan, “Low-loss athermal bulk-optic flat-top passband Mux/DMux,” Electron. Lett. 38, 235–236 (2002).
    [CrossRef]
  4. C. R. Doerr, R. Pafchek, and L. W. Stultz, “Compact and low loss integrated flat-top passband demux,” in Proceedings of the 27th European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 24–25.
  5. P. Martin, B. Laloux, B. Mérigot, and H. Lefèvre, “Optical fiber wavelength multiplexer and demultiplexer,” U.S. patent 6, 084, 695 (4 July, 2000).
  6. P. Martin, B. Laloux, B. Mérigot, and H. Lefèvre, “Optical wave-guide wavelength multiplexer and demultiplexer,” U.S. patent 6, 249, 364 (19 June, 2001).
  7. B. D. Metcalf and J. F. Providakes, “High-capacity wavelength demultiplexer with a large-diameter GRIN rod lens,” Appl. Opt. 21, 794–796 (1982).
    [CrossRef] [PubMed]
  8. C. X. Yu, S. Chandrasekhar, T. Zhou, and D. T. Neilson, “Vestigial sideband filtering at 10 Gbit/s using 12.5 GHz channel-spacing demux,” Electron. Lett. 38, 237–238 (2002).
    [CrossRef]
  9. M. E. Viera Segatto, G. D. Maxwell, R. Kashyap, and J. R. Taylor, “High-speed transmission and dispersion characteristics of an AWG,” Opt. Commun. 195, 151–157 (2001).
    [CrossRef]

2002 (2)

B. Chassagne, K. Aubry, L. Fulop, and V. Dentan, “Low-loss athermal bulk-optic flat-top passband Mux/DMux,” Electron. Lett. 38, 235–236 (2002).
[CrossRef]

C. X. Yu, S. Chandrasekhar, T. Zhou, and D. T. Neilson, “Vestigial sideband filtering at 10 Gbit/s using 12.5 GHz channel-spacing demux,” Electron. Lett. 38, 237–238 (2002).
[CrossRef]

2001 (1)

M. E. Viera Segatto, G. D. Maxwell, R. Kashyap, and J. R. Taylor, “High-speed transmission and dispersion characteristics of an AWG,” Opt. Commun. 195, 151–157 (2001).
[CrossRef]

1997 (2)

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stultz, and P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

Y. P. Ho, H. Li, and Y. Chen, “Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-circle design,” IEEE Photon. Technol. Lett. 9, 342–344 (1997).
[CrossRef]

1982 (1)

Aubry, K.

B. Chassagne, K. Aubry, L. Fulop, and V. Dentan, “Low-loss athermal bulk-optic flat-top passband Mux/DMux,” Electron. Lett. 38, 235–236 (2002).
[CrossRef]

Bogert, G. A.

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stultz, and P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

Chandrasekhar, S.

C. X. Yu, S. Chandrasekhar, T. Zhou, and D. T. Neilson, “Vestigial sideband filtering at 10 Gbit/s using 12.5 GHz channel-spacing demux,” Electron. Lett. 38, 237–238 (2002).
[CrossRef]

Chassagne, B.

B. Chassagne, K. Aubry, L. Fulop, and V. Dentan, “Low-loss athermal bulk-optic flat-top passband Mux/DMux,” Electron. Lett. 38, 235–236 (2002).
[CrossRef]

Chen, Y.

Y. P. Ho, H. Li, and Y. Chen, “Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-circle design,” IEEE Photon. Technol. Lett. 9, 342–344 (1997).
[CrossRef]

Chou, P.

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stultz, and P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

Dentan, V.

B. Chassagne, K. Aubry, L. Fulop, and V. Dentan, “Low-loss athermal bulk-optic flat-top passband Mux/DMux,” Electron. Lett. 38, 235–236 (2002).
[CrossRef]

Dragone, C.

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stultz, and P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

Fulop, L.

B. Chassagne, K. Aubry, L. Fulop, and V. Dentan, “Low-loss athermal bulk-optic flat-top passband Mux/DMux,” Electron. Lett. 38, 235–236 (2002).
[CrossRef]

Ho, Y. P.

Y. P. Ho, H. Li, and Y. Chen, “Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-circle design,” IEEE Photon. Technol. Lett. 9, 342–344 (1997).
[CrossRef]

Kashyap, R.

M. E. Viera Segatto, G. D. Maxwell, R. Kashyap, and J. R. Taylor, “High-speed transmission and dispersion characteristics of an AWG,” Opt. Commun. 195, 151–157 (2001).
[CrossRef]

Li, H.

Y. P. Ho, H. Li, and Y. Chen, “Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-circle design,” IEEE Photon. Technol. Lett. 9, 342–344 (1997).
[CrossRef]

Maxwell, G. D.

M. E. Viera Segatto, G. D. Maxwell, R. Kashyap, and J. R. Taylor, “High-speed transmission and dispersion characteristics of an AWG,” Opt. Commun. 195, 151–157 (2001).
[CrossRef]

Metcalf, B. D.

Neilson, D. T.

C. X. Yu, S. Chandrasekhar, T. Zhou, and D. T. Neilson, “Vestigial sideband filtering at 10 Gbit/s using 12.5 GHz channel-spacing demux,” Electron. Lett. 38, 237–238 (2002).
[CrossRef]

Providakes, J. F.

Strasser, T.

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stultz, and P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

Stultz, L. W.

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stultz, and P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

Taylor, J. R.

M. E. Viera Segatto, G. D. Maxwell, R. Kashyap, and J. R. Taylor, “High-speed transmission and dispersion characteristics of an AWG,” Opt. Commun. 195, 151–157 (2001).
[CrossRef]

Viera Segatto, M. E.

M. E. Viera Segatto, G. D. Maxwell, R. Kashyap, and J. R. Taylor, “High-speed transmission and dispersion characteristics of an AWG,” Opt. Commun. 195, 151–157 (2001).
[CrossRef]

Yu, C. X.

C. X. Yu, S. Chandrasekhar, T. Zhou, and D. T. Neilson, “Vestigial sideband filtering at 10 Gbit/s using 12.5 GHz channel-spacing demux,” Electron. Lett. 38, 237–238 (2002).
[CrossRef]

Zhou, T.

C. X. Yu, S. Chandrasekhar, T. Zhou, and D. T. Neilson, “Vestigial sideband filtering at 10 Gbit/s using 12.5 GHz channel-spacing demux,” Electron. Lett. 38, 237–238 (2002).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (3)

C. X. Yu, S. Chandrasekhar, T. Zhou, and D. T. Neilson, “Vestigial sideband filtering at 10 Gbit/s using 12.5 GHz channel-spacing demux,” Electron. Lett. 38, 237–238 (2002).
[CrossRef]

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stultz, and P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

B. Chassagne, K. Aubry, L. Fulop, and V. Dentan, “Low-loss athermal bulk-optic flat-top passband Mux/DMux,” Electron. Lett. 38, 235–236 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. P. Ho, H. Li, and Y. Chen, “Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-circle design,” IEEE Photon. Technol. Lett. 9, 342–344 (1997).
[CrossRef]

Opt. Commun. (1)

M. E. Viera Segatto, G. D. Maxwell, R. Kashyap, and J. R. Taylor, “High-speed transmission and dispersion characteristics of an AWG,” Opt. Commun. 195, 151–157 (2001).
[CrossRef]

Other (3)

C. R. Doerr, R. Pafchek, and L. W. Stultz, “Compact and low loss integrated flat-top passband demux,” in Proceedings of the 27th European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 24–25.

P. Martin, B. Laloux, B. Mérigot, and H. Lefèvre, “Optical fiber wavelength multiplexer and demultiplexer,” U.S. patent 6, 084, 695 (4 July, 2000).

P. Martin, B. Laloux, B. Mérigot, and H. Lefèvre, “Optical wave-guide wavelength multiplexer and demultiplexer,” U.S. patent 6, 249, 364 (19 June, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

General principle of a free-space MUX/DMUX (see text for details).

Fig. 2
Fig. 2

(a) Positioning in the {Z, X} plane of the parallel plate (thickness e) in the beam-waist plane of the Gaussian field emitted from input collimator. Φ is the phase shift due to the plate in the X, X dimension. (b) X0 is the abscissa of the intersection point between the edges of the semi-infinite plate with the electric field ({Y, X} plane). LY, size of the plate in the Y, Y dimension.

Fig. 3
Fig. 3

Transfer function for one channel (centered at λchannel) versus normalized wavelength, given by Eq. (1). Δλ is the spectral spacing of the component. Adjacent spectral channels are located at abscissa ±1. Curve (1), Φ=0 (modulo 2π) (no plate, Gaussian-like case); curve (2) (dotted), Φ=2.83 (modulo 2π), X0=0.16w0, IL=-5.7 dB; curve (3) (dashed), Φ=2.42 (modulo 2π), X0=0.27w0, IL=-8 dB. Channel bandwidths at -1-dB are 0.5×Δλ and 0.6×Δλ, respectively, for curves (2) and (3). The inset shows a zoom within the 15-dB transmission bandwidth.

Fig. 4
Fig. 4

Transfer function [curve (3)] for one channel (centered at λchannel) versus normalized wavelength given by fast-Fourier-transform numerical code for Φ=2.42 (modulo 2π) and X0=0.27w0 [to be compared with curve (3) of Fig. 3]. The inset represents the amplitude and the phase of the electric field just after diffraction through the plate for the above {Φ, X0} parameters.

Fig. 5
Fig. 5

Transfer function for one channel (centered at λchannel) versus normalized wavelength. Curve (3) (dashed), Φ=2.42 (modulo 2π), X0=0.27w0, Z=0, IL=-8 dB; curve (4), Φ=2.42 (modulo 2π), X0=0.27w0, Z=0.87ZR, IL=-6 dB. ZR is the beam Rayleigh range.

Fig. 6
Fig. 6

Dispersion curve and corresponding spectral transfer function for one channel centered at λchannel=1550 nm and for the typical spectral spacing Δλ=100 GHz. Dotted curve, Φ=2.83 (modulo 2π), X0=0.16w0. Dashed curve, Φ=2.42 (modulo 2π), X0=0.27w0.

Fig. 7
Fig. 7

Bandwidth-narrowing factor as a function of the number of cascaded filters. Curve (1), Φ=0 (modulo 2π) (no plate, Gaussian-like case); curve (2) (dotted), Φ=2.83 (modulo 2π), X0=0.16w0; curve (3) (dashed), Φ=2.42 (modulo 2π), X0=0.27w0.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η(X)=12exp-X22w022+erf-X0w02-Xw02-erfX0w02-Xw02+exp(iΦ)erfX0w02+Xw02+erfX0w02-Xw02,
erf(x)=2π0xe-t2dt.
τ=-λ22πcdΨdλ,
D=dτdλ,

Metrics