Abstract

Transition rates for 321 lines between 345 and 1080 nm from 73 levels of Ho I are presented. They have been measured by combining branching fractions obtained by Fourier transform spectrometry with lifetimes of Den Hartog et al. [J. Opt. Soc. Am. B 6, 2278 (1999)]. The uncertainty of the transition rates is 5%–10%.

© 2003 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Wickliffe, J. E. Lawler, and G. Nave, “Atomic transition probabilities for Dy I and Dy II,” J. Quant. Spectrosc. Radiat. Transf. 66, 363–404 (2000).
  2. E. A. Den Hartog, L. M. Wiese, and J. E. Lawler, “Radiative lifetimes of Ho I and Ho II,” J. Opt. Soc. Am. B 16, 2278–2284 (1999).
  3. W. C. Martin, R. Zalubas, and L. Hagan, “Atomic energy levels—the rare-earth elements,” Natl. Stand. Ref. Data Ser. (Natl. Bur. Stand.) 60, 305 (1978).
  4. J. F. Wyart, P. Camus, and J. Verges, “Etude du spectre de l’holmium atomique,” Physica (Utrecht) 92C, 377–396 (1977).
  5. J. F. Wyart and P. Camus, “Etude du spectre de l’holmium atomique,” Physica (Utrecht) 93C, 227–236 (1978).
  6. W. J. Childs, D. R. Cok, and L. S. Goodman, “New line classifications in Ho I based on high-precision hyperfine-structure measurements of low levels,” J. Opt. Soc. Am. 73, 151–155 (1983).
  7. S. Kröger, J. F. Wyart, and P. Luc, “Theoretical interpretation of hyperfine structures in doubly-excited configurations 4f105d6s6p and 4f105d26s and new energy levels in neutral holmium (Ho I),” Phys. Scr. 55, 579–585 (1997).
  8. W. F. Meggars, C. H. Corliss, and B. F. Scribner, “Tables of spectral-line intensities,” Nat. Bur. Stand. (U.S.) Monogr. 145, 403 (1975).
  9. M. N. Reddy, S. A. Ahmad, and G. N. Rao, “Laser optogalvanic spectroscopy of holmium,” J. Opt. Soc. Am. B 9, 22–26 (1992).
  10. Y. M. Smirnov, “Extended classification of holmium spectral lines using data obtained in crossing beams,” Spectrochim. Acta 49B, 469–474 (1994).
  11. V. N. Gorshkov and V. A. Komarovskii, “Lifetimes of excited levels and oscillator strengths of Ho I and Ho II spectral lines,” Opt. Spectrosc. (USSR) 47, 350–351 (1979).
  12. K. Danzmann, M. Günther, J. Fischer, M. Kock, and M. Kühne, “High current hollow cathode as a radiometric transfer standard source for the extreme vacuum ultraviolet,” Appl. Opt. 27, 4947–4951 (1988).
  13. G. Nave, C. J. Sansonetti, and U. Griesmann, “Progress on the NIST IR-vis-UV Fourier transform spectrometer,” in Fourier Transform Spectroscopy: Methods and Applications, Vol. 3 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 38–40.
  14. U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “FT700 vacuum ultraviolet Fourier transform spectrometer: applications in ultraviolet spectrometry and radiometry,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).
  15. The identification of commercial products in this paper does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the items identified are necessarily the best available for the purpose.
  16. K. Dzierźȩga, U. Volz, G. Nave, and U. Griesmann, “Accurate transition rates for the 5p–5s transitions in Kr I,” Phys. Rev. A 62, 022505(9) (2000).
  17. B. V. Pulliam, M.S. thesis “The decomposition of hyperfine structures in Cs II” (Purdue University, West Lafayette, Ind., 1979).
  18. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge University, Cambridge, England, 1992), p. 655.

2000 (2)

M. E. Wickliffe, J. E. Lawler, and G. Nave, “Atomic transition probabilities for Dy I and Dy II,” J. Quant. Spectrosc. Radiat. Transf. 66, 363–404 (2000).

K. Dzierźȩga, U. Volz, G. Nave, and U. Griesmann, “Accurate transition rates for the 5p–5s transitions in Kr I,” Phys. Rev. A 62, 022505(9) (2000).

1999 (2)

E. A. Den Hartog, L. M. Wiese, and J. E. Lawler, “Radiative lifetimes of Ho I and Ho II,” J. Opt. Soc. Am. B 16, 2278–2284 (1999).

U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “FT700 vacuum ultraviolet Fourier transform spectrometer: applications in ultraviolet spectrometry and radiometry,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).

1997 (1)

S. Kröger, J. F. Wyart, and P. Luc, “Theoretical interpretation of hyperfine structures in doubly-excited configurations 4f105d6s6p and 4f105d26s and new energy levels in neutral holmium (Ho I),” Phys. Scr. 55, 579–585 (1997).

1994 (1)

Y. M. Smirnov, “Extended classification of holmium spectral lines using data obtained in crossing beams,” Spectrochim. Acta 49B, 469–474 (1994).

1992 (1)

1988 (1)

1983 (1)

1979 (1)

V. N. Gorshkov and V. A. Komarovskii, “Lifetimes of excited levels and oscillator strengths of Ho I and Ho II spectral lines,” Opt. Spectrosc. (USSR) 47, 350–351 (1979).

1978 (2)

J. F. Wyart and P. Camus, “Etude du spectre de l’holmium atomique,” Physica (Utrecht) 93C, 227–236 (1978).

W. C. Martin, R. Zalubas, and L. Hagan, “Atomic energy levels—the rare-earth elements,” Natl. Stand. Ref. Data Ser. (Natl. Bur. Stand.) 60, 305 (1978).

1977 (1)

J. F. Wyart, P. Camus, and J. Verges, “Etude du spectre de l’holmium atomique,” Physica (Utrecht) 92C, 377–396 (1977).

1975 (1)

W. F. Meggars, C. H. Corliss, and B. F. Scribner, “Tables of spectral-line intensities,” Nat. Bur. Stand. (U.S.) Monogr. 145, 403 (1975).

Ahmad, S. A.

Bratasz, L.

U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “FT700 vacuum ultraviolet Fourier transform spectrometer: applications in ultraviolet spectrometry and radiometry,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).

Burnett, J. H.

U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “FT700 vacuum ultraviolet Fourier transform spectrometer: applications in ultraviolet spectrometry and radiometry,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).

Camus, P.

J. F. Wyart and P. Camus, “Etude du spectre de l’holmium atomique,” Physica (Utrecht) 93C, 227–236 (1978).

J. F. Wyart, P. Camus, and J. Verges, “Etude du spectre de l’holmium atomique,” Physica (Utrecht) 92C, 377–396 (1977).

Childs, W. J.

Cok, D. R.

Corliss, C. H.

W. F. Meggars, C. H. Corliss, and B. F. Scribner, “Tables of spectral-line intensities,” Nat. Bur. Stand. (U.S.) Monogr. 145, 403 (1975).

Danzmann, K.

Den Hartog, E. A.

Dzierze¸ga, K.

K. Dzierźȩga, U. Volz, G. Nave, and U. Griesmann, “Accurate transition rates for the 5p–5s transitions in Kr I,” Phys. Rev. A 62, 022505(9) (2000).

Fischer, J.

Goodman, L. S.

Gorshkov, V. N.

V. N. Gorshkov and V. A. Komarovskii, “Lifetimes of excited levels and oscillator strengths of Ho I and Ho II spectral lines,” Opt. Spectrosc. (USSR) 47, 350–351 (1979).

Griesmann, U.

K. Dzierźȩga, U. Volz, G. Nave, and U. Griesmann, “Accurate transition rates for the 5p–5s transitions in Kr I,” Phys. Rev. A 62, 022505(9) (2000).

U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “FT700 vacuum ultraviolet Fourier transform spectrometer: applications in ultraviolet spectrometry and radiometry,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).

Günther, M.

Hagan, L.

W. C. Martin, R. Zalubas, and L. Hagan, “Atomic energy levels—the rare-earth elements,” Natl. Stand. Ref. Data Ser. (Natl. Bur. Stand.) 60, 305 (1978).

Kling, R.

U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “FT700 vacuum ultraviolet Fourier transform spectrometer: applications in ultraviolet spectrometry and radiometry,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).

Kock, M.

Komarovskii, V. A.

V. N. Gorshkov and V. A. Komarovskii, “Lifetimes of excited levels and oscillator strengths of Ho I and Ho II spectral lines,” Opt. Spectrosc. (USSR) 47, 350–351 (1979).

Kröger, S.

S. Kröger, J. F. Wyart, and P. Luc, “Theoretical interpretation of hyperfine structures in doubly-excited configurations 4f105d6s6p and 4f105d26s and new energy levels in neutral holmium (Ho I),” Phys. Scr. 55, 579–585 (1997).

Kühne, M.

Lawler, J. E.

M. E. Wickliffe, J. E. Lawler, and G. Nave, “Atomic transition probabilities for Dy I and Dy II,” J. Quant. Spectrosc. Radiat. Transf. 66, 363–404 (2000).

E. A. Den Hartog, L. M. Wiese, and J. E. Lawler, “Radiative lifetimes of Ho I and Ho II,” J. Opt. Soc. Am. B 16, 2278–2284 (1999).

Luc, P.

S. Kröger, J. F. Wyart, and P. Luc, “Theoretical interpretation of hyperfine structures in doubly-excited configurations 4f105d6s6p and 4f105d26s and new energy levels in neutral holmium (Ho I),” Phys. Scr. 55, 579–585 (1997).

Martin, W. C.

W. C. Martin, R. Zalubas, and L. Hagan, “Atomic energy levels—the rare-earth elements,” Natl. Stand. Ref. Data Ser. (Natl. Bur. Stand.) 60, 305 (1978).

Meggars, W. F.

W. F. Meggars, C. H. Corliss, and B. F. Scribner, “Tables of spectral-line intensities,” Nat. Bur. Stand. (U.S.) Monogr. 145, 403 (1975).

Nave, G.

M. E. Wickliffe, J. E. Lawler, and G. Nave, “Atomic transition probabilities for Dy I and Dy II,” J. Quant. Spectrosc. Radiat. Transf. 66, 363–404 (2000).

K. Dzierźȩga, U. Volz, G. Nave, and U. Griesmann, “Accurate transition rates for the 5p–5s transitions in Kr I,” Phys. Rev. A 62, 022505(9) (2000).

Rao, G. N.

Reddy, M. N.

Scribner, B. F.

W. F. Meggars, C. H. Corliss, and B. F. Scribner, “Tables of spectral-line intensities,” Nat. Bur. Stand. (U.S.) Monogr. 145, 403 (1975).

Smirnov, Y. M.

Y. M. Smirnov, “Extended classification of holmium spectral lines using data obtained in crossing beams,” Spectrochim. Acta 49B, 469–474 (1994).

Verges, J.

J. F. Wyart, P. Camus, and J. Verges, “Etude du spectre de l’holmium atomique,” Physica (Utrecht) 92C, 377–396 (1977).

Volz, U.

K. Dzierźȩga, U. Volz, G. Nave, and U. Griesmann, “Accurate transition rates for the 5p–5s transitions in Kr I,” Phys. Rev. A 62, 022505(9) (2000).

Wickliffe, M. E.

M. E. Wickliffe, J. E. Lawler, and G. Nave, “Atomic transition probabilities for Dy I and Dy II,” J. Quant. Spectrosc. Radiat. Transf. 66, 363–404 (2000).

Wiese, L. M.

Wyart, J. F.

S. Kröger, J. F. Wyart, and P. Luc, “Theoretical interpretation of hyperfine structures in doubly-excited configurations 4f105d6s6p and 4f105d26s and new energy levels in neutral holmium (Ho I),” Phys. Scr. 55, 579–585 (1997).

J. F. Wyart and P. Camus, “Etude du spectre de l’holmium atomique,” Physica (Utrecht) 93C, 227–236 (1978).

J. F. Wyart, P. Camus, and J. Verges, “Etude du spectre de l’holmium atomique,” Physica (Utrecht) 92C, 377–396 (1977).

Zalubas, R.

W. C. Martin, R. Zalubas, and L. Hagan, “Atomic energy levels—the rare-earth elements,” Natl. Stand. Ref. Data Ser. (Natl. Bur. Stand.) 60, 305 (1978).

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Quant. Spectrosc. Radiat. Transf. (1)

M. E. Wickliffe, J. E. Lawler, and G. Nave, “Atomic transition probabilities for Dy I and Dy II,” J. Quant. Spectrosc. Radiat. Transf. 66, 363–404 (2000).

Nat. Bur. Stand. (U.S.) Monogr. (1)

W. F. Meggars, C. H. Corliss, and B. F. Scribner, “Tables of spectral-line intensities,” Nat. Bur. Stand. (U.S.) Monogr. 145, 403 (1975).

Natl. Stand. Ref. Data Ser. (Natl. Bur. Stand.) (1)

W. C. Martin, R. Zalubas, and L. Hagan, “Atomic energy levels—the rare-earth elements,” Natl. Stand. Ref. Data Ser. (Natl. Bur. Stand.) 60, 305 (1978).

Opt. Spectrosc. (USSR) (1)

V. N. Gorshkov and V. A. Komarovskii, “Lifetimes of excited levels and oscillator strengths of Ho I and Ho II spectral lines,” Opt. Spectrosc. (USSR) 47, 350–351 (1979).

Phys. Rev. A (1)

K. Dzierźȩga, U. Volz, G. Nave, and U. Griesmann, “Accurate transition rates for the 5p–5s transitions in Kr I,” Phys. Rev. A 62, 022505(9) (2000).

Phys. Scr. (1)

S. Kröger, J. F. Wyart, and P. Luc, “Theoretical interpretation of hyperfine structures in doubly-excited configurations 4f105d6s6p and 4f105d26s and new energy levels in neutral holmium (Ho I),” Phys. Scr. 55, 579–585 (1997).

Physica (Utrecht) (2)

J. F. Wyart, P. Camus, and J. Verges, “Etude du spectre de l’holmium atomique,” Physica (Utrecht) 92C, 377–396 (1977).

J. F. Wyart and P. Camus, “Etude du spectre de l’holmium atomique,” Physica (Utrecht) 93C, 227–236 (1978).

Proc. SPIE (1)

U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “FT700 vacuum ultraviolet Fourier transform spectrometer: applications in ultraviolet spectrometry and radiometry,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).

Spectrochim. Acta (1)

Y. M. Smirnov, “Extended classification of holmium spectral lines using data obtained in crossing beams,” Spectrochim. Acta 49B, 469–474 (1994).

Other (4)

B. V. Pulliam, M.S. thesis “The decomposition of hyperfine structures in Cs II” (Purdue University, West Lafayette, Ind., 1979).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge University, Cambridge, England, 1992), p. 655.

The identification of commercial products in this paper does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the items identified are necessarily the best available for the purpose.

G. Nave, C. J. Sansonetti, and U. Griesmann, “Progress on the NIST IR-vis-UV Fourier transform spectrometer,” in Fourier Transform Spectroscopy: Methods and Applications, Vol. 3 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 38–40.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics