Abstract

We have measured the correlation of the photon emission from single CdSe quantum dots under pulsed excitation. The results demonstrate that the emission from a single CdSe quantum dot can be used to generate single green photons on demand with subnanosecond accuracy.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [CrossRef]
  2. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [CrossRef] [PubMed]
  3. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
    [CrossRef] [PubMed]
  4. V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001).
    [CrossRef]
  5. V. Zwiller, T. Aichele, W. Seifert, J. Persson, and O. Benson, “Generating visible single photons on demand with single InP quantum dots,” Appl. Phys. Lett. 82, 1509–1511 (2003).
    [CrossRef]
  6. K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
    [CrossRef]
  7. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [CrossRef] [PubMed]
  8. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
    [CrossRef]
  9. T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
    [CrossRef] [PubMed]
  10. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature (London) 406, 968–970 (2000).
    [CrossRef]
  11. Ch. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature (London) 419, 450 (2002).
    [CrossRef]
  12. T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, and F. Henneberger, “Photon beats from a single semiconductor quantum dot,” Phys. Rev. Lett. 86, 3172–3175 (2001).
    [CrossRef] [PubMed]
  13. G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417–4420 (1999).
    [CrossRef]
  14. V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944–9947 (2000).
    [CrossRef]
  15. M. Lowisch, M. Rabe, F. Kreller, and F. Henneberger, “Electronic excitations and longitudinal optical phonon modes of self-assembled CdSe quantum dots revealed by microprobe studies,” Appl. Phys. Lett. 74, 2489–2491 (1999).
    [CrossRef]
  16. J. A. Wunderlich and L. G. DeShazer, “Visible optical isolator using ZnSe,” Appl. Opt. 16, 1584–1587 (1977).
    [CrossRef] [PubMed]
  17. M. Rabe, M. Lowisch, and F. Henneberger, “Self-assembled CdSe quantum dots—formation by thermally activated surface reorganization,” J. Cryst. Growth 184/185, 248–253 (1998).
    [CrossRef]
  18. D. Litvinov, A. Rosenauer, D. Gerthsen, P. Kratzert, M. Rabe, and F. Henneberger, “Influence of the growth procedure on the Cd distribution in CdSe/ZnSe heterostructures: Stranski–Krastanov versus two-dimensional islands,” Appl. Phys. Lett. 81, 640–642 (2002).
    [CrossRef]
  19. T. Yao, “Characterization of ZnSe grown by molecular-beam epitaxy,” J. Cryst. Growth 72, 31–40 (1985).
    [CrossRef]
  20. I. A. Akimov, A. Hundt, T. Flissikowski, and F. Henneberger, “Fine structure of the trion triplet state in a single self-assembled semiconductor quantum dot,” Appl. Phys. Lett. 81, 4730–4732 (2002).
    [CrossRef]
  21. J. Puls, I. A. Akimov, and F. Henneberger, “Optical non-linearities related to trions in quantum wells and quantum dots,” Phys. Status Solidi B 234, 304–312 (2002).
    [CrossRef]
  22. S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002).
    [CrossRef]
  23. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
    [CrossRef]
  24. G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903–3906 (2001).
    [CrossRef] [PubMed]

2003 (1)

V. Zwiller, T. Aichele, W. Seifert, J. Persson, and O. Benson, “Generating visible single photons on demand with single InP quantum dots,” Appl. Phys. Lett. 82, 1509–1511 (2003).
[CrossRef]

2002 (7)

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Ch. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature (London) 419, 450 (2002).
[CrossRef]

D. Litvinov, A. Rosenauer, D. Gerthsen, P. Kratzert, M. Rabe, and F. Henneberger, “Influence of the growth procedure on the Cd distribution in CdSe/ZnSe heterostructures: Stranski–Krastanov versus two-dimensional islands,” Appl. Phys. Lett. 81, 640–642 (2002).
[CrossRef]

I. A. Akimov, A. Hundt, T. Flissikowski, and F. Henneberger, “Fine structure of the trion triplet state in a single self-assembled semiconductor quantum dot,” Appl. Phys. Lett. 81, 4730–4732 (2002).
[CrossRef]

J. Puls, I. A. Akimov, and F. Henneberger, “Optical non-linearities related to trions in quantum wells and quantum dots,” Phys. Status Solidi B 234, 304–312 (2002).
[CrossRef]

S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002).
[CrossRef]

2001 (4)

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903–3906 (2001).
[CrossRef] [PubMed]

T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, and F. Henneberger, “Photon beats from a single semiconductor quantum dot,” Phys. Rev. Lett. 86, 3172–3175 (2001).
[CrossRef] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001).
[CrossRef]

2000 (5)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[CrossRef]

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944–9947 (2000).
[CrossRef]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature (London) 406, 968–970 (2000).
[CrossRef]

1999 (2)

M. Lowisch, M. Rabe, F. Kreller, and F. Henneberger, “Electronic excitations and longitudinal optical phonon modes of self-assembled CdSe quantum dots revealed by microprobe studies,” Appl. Phys. Lett. 74, 2489–2491 (1999).
[CrossRef]

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417–4420 (1999).
[CrossRef]

1998 (2)

M. Rabe, M. Lowisch, and F. Henneberger, “Self-assembled CdSe quantum dots—formation by thermally activated surface reorganization,” J. Cryst. Growth 184/185, 248–253 (1998).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

1992 (1)

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[CrossRef] [PubMed]

1985 (1)

T. Yao, “Characterization of ZnSe grown by molecular-beam epitaxy,” J. Cryst. Growth 72, 31–40 (1985).
[CrossRef]

1977 (1)

Aichele, T.

V. Zwiller, T. Aichele, W. Seifert, J. Persson, and O. Benson, “Generating visible single photons on demand with single InP quantum dots,” Appl. Phys. Lett. 82, 1509–1511 (2003).
[CrossRef]

Akimov, I. A.

I. A. Akimov, A. Hundt, T. Flissikowski, and F. Henneberger, “Fine structure of the trion triplet state in a single self-assembled semiconductor quantum dot,” Appl. Phys. Lett. 81, 4730–4732 (2002).
[CrossRef]

J. Puls, I. A. Akimov, and F. Henneberger, “Optical non-linearities related to trions in quantum wells and quantum dots,” Phys. Status Solidi B 234, 304–312 (2002).
[CrossRef]

Amand, T.

S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002).
[CrossRef]

Bacher, G.

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417–4420 (1999).
[CrossRef]

Basché, T.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[CrossRef] [PubMed]

Bastard, G.

S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Benson, O.

V. Zwiller, T. Aichele, W. Seifert, J. Persson, and O. Benson, “Generating visible single photons on demand with single InP quantum dots,” Appl. Phys. Lett. 82, 1509–1511 (2003).
[CrossRef]

Beveratos, A.

Bimberg, D.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944–9947 (2000).
[CrossRef]

Björk, G.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001).
[CrossRef]

Blom, H.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001).
[CrossRef]

Brouri, R.

Buratto, S. K.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature (London) 406, 968–970 (2000).
[CrossRef]

Carson, P. J.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature (London) 406, 968–970 (2000).
[CrossRef]

Cortez, S.

S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002).
[CrossRef]

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

Dale, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

DeShazer, L. G.

Engelhardt, R.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944–9947 (2000).
[CrossRef]

Ferreira, R.

S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002).
[CrossRef]

Flissikowski, T.

I. A. Akimov, A. Hundt, T. Flissikowski, and F. Henneberger, “Fine structure of the trion triplet state in a single self-assembled semiconductor quantum dot,” Appl. Phys. Lett. 81, 4730–4732 (2002).
[CrossRef]

T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, and F. Henneberger, “Photon beats from a single semiconductor quantum dot,” Phys. Rev. Lett. 86, 3172–3175 (2001).
[CrossRef] [PubMed]

Forchel, A.

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417–4420 (1999).
[CrossRef]

Gayral, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

Gérard, J. M.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

Gerthsen, D.

D. Litvinov, A. Rosenauer, D. Gerthsen, P. Kratzert, M. Rabe, and F. Henneberger, “Influence of the growth procedure on the Cd distribution in CdSe/ZnSe heterostructures: Stranski–Krastanov versus two-dimensional islands,” Appl. Phys. Lett. 81, 640–642 (2002).
[CrossRef]

Gippius, N. A.

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417–4420 (1999).
[CrossRef]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Goobar, E.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001).
[CrossRef]

Gorman, P. M.

Ch. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature (London) 419, 450 (2002).
[CrossRef]

Grangier, P.

Grard, J.-M.

S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002).
[CrossRef]

Halder, M.

Ch. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature (London) 419, 450 (2002).
[CrossRef]

Heitz, R.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944–9947 (2000).
[CrossRef]

Henneberger, F.

D. Litvinov, A. Rosenauer, D. Gerthsen, P. Kratzert, M. Rabe, and F. Henneberger, “Influence of the growth procedure on the Cd distribution in CdSe/ZnSe heterostructures: Stranski–Krastanov versus two-dimensional islands,” Appl. Phys. Lett. 81, 640–642 (2002).
[CrossRef]

I. A. Akimov, A. Hundt, T. Flissikowski, and F. Henneberger, “Fine structure of the trion triplet state in a single self-assembled semiconductor quantum dot,” Appl. Phys. Lett. 81, 4730–4732 (2002).
[CrossRef]

J. Puls, I. A. Akimov, and F. Henneberger, “Optical non-linearities related to trions in quantum wells and quantum dots,” Phys. Status Solidi B 234, 304–312 (2002).
[CrossRef]

T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, and F. Henneberger, “Photon beats from a single semiconductor quantum dot,” Phys. Rev. Lett. 86, 3172–3175 (2001).
[CrossRef] [PubMed]

M. Lowisch, M. Rabe, F. Kreller, and F. Henneberger, “Electronic excitations and longitudinal optical phonon modes of self-assembled CdSe quantum dots revealed by microprobe studies,” Appl. Phys. Lett. 74, 2489–2491 (1999).
[CrossRef]

M. Rabe, M. Lowisch, and F. Henneberger, “Self-assembled CdSe quantum dots—formation by thermally activated surface reorganization,” J. Cryst. Growth 184/185, 248–253 (1998).
[CrossRef]

Hommel, D.

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417–4420 (1999).
[CrossRef]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Hundt, A.

I. A. Akimov, A. Hundt, T. Flissikowski, and F. Henneberger, “Fine structure of the trion triplet state in a single self-assembled semiconductor quantum dot,” Appl. Phys. Lett. 81, 4730–4732 (2002).
[CrossRef]

T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, and F. Henneberger, “Photon beats from a single semiconductor quantum dot,” Phys. Rev. Lett. 86, 3172–3175 (2001).
[CrossRef] [PubMed]

Imamoglu, A.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature (London) 406, 968–970 (2000).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Jeppesen, S.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001).
[CrossRef]

Jonsson, P.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001).
[CrossRef]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Kratzert, P.

D. Litvinov, A. Rosenauer, D. Gerthsen, P. Kratzert, M. Rabe, and F. Henneberger, “Influence of the growth procedure on the Cd distribution in CdSe/ZnSe heterostructures: Stranski–Krastanov versus two-dimensional islands,” Appl. Phys. Lett. 81, 640–642 (2002).
[CrossRef]

Krebs, O.

S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002).
[CrossRef]

Kreller, F.

M. Lowisch, M. Rabe, F. Kreller, and F. Henneberger, “Electronic excitations and longitudinal optical phonon modes of self-assembled CdSe quantum dots revealed by microprobe studies,” Appl. Phys. Lett. 74, 2489–2491 (1999).
[CrossRef]

Kulakovskii, V. D.

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417–4420 (1999).
[CrossRef]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

Kurtsiefer, Ch.

Ch. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature (London) 419, 450 (2002).
[CrossRef]

Laurent, S.

S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002).
[CrossRef]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

Leonardi, K.

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417–4420 (1999).
[CrossRef]

Litvinov, D.

D. Litvinov, A. Rosenauer, D. Gerthsen, P. Kratzert, M. Rabe, and F. Henneberger, “Influence of the growth procedure on the Cd distribution in CdSe/ZnSe heterostructures: Stranski–Krastanov versus two-dimensional islands,” Appl. Phys. Lett. 81, 640–642 (2002).
[CrossRef]

Lowisch, M.

T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, and F. Henneberger, “Photon beats from a single semiconductor quantum dot,” Phys. Rev. Lett. 86, 3172–3175 (2001).
[CrossRef] [PubMed]

M. Lowisch, M. Rabe, F. Kreller, and F. Henneberger, “Electronic excitations and longitudinal optical phonon modes of self-assembled CdSe quantum dots revealed by microprobe studies,” Appl. Phys. Lett. 74, 2489–2491 (1999).
[CrossRef]

M. Rabe, M. Lowisch, and F. Henneberger, “Self-assembled CdSe quantum dots—formation by thermally activated surface reorganization,” J. Cryst. Growth 184/185, 248–253 (1998).
[CrossRef]

Marie, X.

S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002).
[CrossRef]

Mason, M. D.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature (London) 406, 968–970 (2000).
[CrossRef]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

Michler, P.

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature (London) 406, 968–970 (2000).
[CrossRef]

Moerner, W. E.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[CrossRef] [PubMed]

Orrit, M.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[CrossRef] [PubMed]

Panev, N.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001).
[CrossRef]

Passow, T.

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

Pelton, M.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903–3906 (2001).
[CrossRef] [PubMed]

Persson, J.

V. Zwiller, T. Aichele, W. Seifert, J. Persson, and O. Benson, “Generating visible single photons on demand with single InP quantum dots,” Appl. Phys. Lett. 82, 1509–1511 (2003).
[CrossRef]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Pistol, M.-E.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001).
[CrossRef]

Pohl, U. W.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944–9947 (2000).
[CrossRef]

Poizat, J.-P.

Puls, J.

J. Puls, I. A. Akimov, and F. Henneberger, “Optical non-linearities related to trions in quantum wells and quantum dots,” Phys. Status Solidi B 234, 304–312 (2002).
[CrossRef]

Rabe, M.

D. Litvinov, A. Rosenauer, D. Gerthsen, P. Kratzert, M. Rabe, and F. Henneberger, “Influence of the growth procedure on the Cd distribution in CdSe/ZnSe heterostructures: Stranski–Krastanov versus two-dimensional islands,” Appl. Phys. Lett. 81, 640–642 (2002).
[CrossRef]

T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, and F. Henneberger, “Photon beats from a single semiconductor quantum dot,” Phys. Rev. Lett. 86, 3172–3175 (2001).
[CrossRef] [PubMed]

M. Lowisch, M. Rabe, F. Kreller, and F. Henneberger, “Electronic excitations and longitudinal optical phonon modes of self-assembled CdSe quantum dots revealed by microprobe studies,” Appl. Phys. Lett. 74, 2489–2491 (1999).
[CrossRef]

M. Rabe, M. Lowisch, and F. Henneberger, “Self-assembled CdSe quantum dots—formation by thermally activated surface reorganization,” J. Cryst. Growth 184/185, 248–253 (1998).
[CrossRef]

Rarity, J. G.

Ch. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature (London) 419, 450 (2002).
[CrossRef]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Rodt, S.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944–9947 (2000).
[CrossRef]

Rosenauer, A.

D. Litvinov, A. Rosenauer, D. Gerthsen, P. Kratzert, M. Rabe, and F. Henneberger, “Influence of the growth procedure on the Cd distribution in CdSe/ZnSe heterostructures: Stranski–Krastanov versus two-dimensional islands,” Appl. Phys. Lett. 81, 640–642 (2002).
[CrossRef]

Samuelson, L.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001).
[CrossRef]

Santori, C.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Sebald, K.

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

Seifert, W.

V. Zwiller, T. Aichele, W. Seifert, J. Persson, and O. Benson, “Generating visible single photons on demand with single InP quantum dots,” Appl. Phys. Lett. 82, 1509–1511 (2003).
[CrossRef]

Senes, M.

S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002).
[CrossRef]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

Seufert, J.

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417–4420 (1999).
[CrossRef]

Solomon, G.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

Solomon, G. S.

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903–3906 (2001).
[CrossRef] [PubMed]

Steingrüber, R.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944–9947 (2000).
[CrossRef]

Stier, O.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944–9947 (2000).
[CrossRef]

Strouse, G. F.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature (London) 406, 968–970 (2000).
[CrossRef]

Talon, H.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[CrossRef] [PubMed]

Tapster, P. R.

Ch. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature (London) 419, 450 (2002).
[CrossRef]

Thierry-Mieg, V.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Tsegaye, T.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001).
[CrossRef]

Türck, V.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944–9947 (2000).
[CrossRef]

Voisin, P.

S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002).
[CrossRef]

Weigand, R.

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417–4420 (1999).
[CrossRef]

Weinfurter, H.

Ch. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature (London) 419, 450 (2002).
[CrossRef]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

Wunderlich, J. A.

Yamamoto, Y.

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903–3906 (2001).
[CrossRef] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

Yao, T.

T. Yao, “Characterization of ZnSe grown by molecular-beam epitaxy,” J. Cryst. Growth 72, 31–40 (1985).
[CrossRef]

Zarda, P.

Ch. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature (London) 419, 450 (2002).
[CrossRef]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Zhang, L. D.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Zwiller, V.

V. Zwiller, T. Aichele, W. Seifert, J. Persson, and O. Benson, “Generating visible single photons on demand with single InP quantum dots,” Appl. Phys. Lett. 82, 1509–1511 (2003).
[CrossRef]

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001).
[CrossRef]

V. Zwiller, T. Aichele, W. Seifert, J. Persson, and O. Benson, “Generating visible single photons on demand with single InP quantum dots,” Appl. Phys. Lett. 82, 1509–1511 (2003).
[CrossRef]

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

D. Litvinov, A. Rosenauer, D. Gerthsen, P. Kratzert, M. Rabe, and F. Henneberger, “Influence of the growth procedure on the Cd distribution in CdSe/ZnSe heterostructures: Stranski–Krastanov versus two-dimensional islands,” Appl. Phys. Lett. 81, 640–642 (2002).
[CrossRef]

I. A. Akimov, A. Hundt, T. Flissikowski, and F. Henneberger, “Fine structure of the trion triplet state in a single self-assembled semiconductor quantum dot,” Appl. Phys. Lett. 81, 4730–4732 (2002).
[CrossRef]

M. Lowisch, M. Rabe, F. Kreller, and F. Henneberger, “Electronic excitations and longitudinal optical phonon modes of self-assembled CdSe quantum dots revealed by microprobe studies,” Appl. Phys. Lett. 74, 2489–2491 (1999).
[CrossRef]

J. Cryst. Growth (2)

T. Yao, “Characterization of ZnSe grown by molecular-beam epitaxy,” J. Cryst. Growth 72, 31–40 (1985).
[CrossRef]

M. Rabe, M. Lowisch, and F. Henneberger, “Self-assembled CdSe quantum dots—formation by thermally activated surface reorganization,” J. Cryst. Growth 184/185, 248–253 (1998).
[CrossRef]

Nature (London) (2)

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature (London) 406, 968–970 (2000).
[CrossRef]

Ch. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature (London) 419, 450 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944–9947 (2000).
[CrossRef]

Phys. Rev. Lett. (8)

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, and F. Henneberger, “Photon beats from a single semiconductor quantum dot,” Phys. Rev. Lett. 86, 3172–3175 (2001).
[CrossRef] [PubMed]

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417–4420 (1999).
[CrossRef]

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903–3906 (2001).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

J. Puls, I. A. Akimov, and F. Henneberger, “Optical non-linearities related to trions in quantum wells and quantum dots,” Phys. Status Solidi B 234, 304–312 (2002).
[CrossRef]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup as described in the text. FM is a flip mirror, and BS is a 50:50 beam splitter. The plot shows a correlation measurement on the femtosecond laser pulses. The width of the peak reveals our time resolution of 800 ps.

Fig. 2
Fig. 2

(a) Spectra taken on a single mesa under pulsed excitation at different excitation powers. Inset: photoluminescence (PL) intensity of the two labeled lines in Fig. 2(b) versus excitation power. The intensity of X- (solid squares) was divided by a factor of 3 for clarity. The solid line in the inset is a linear fit to the data of X-, and the dashed line is a quadratic fit to XX-. (b) Filtering of the X- spectral line. The bottom spectrum was taken without any filter, and the top spectrum was taken through a narrow bandpass filter. The gray spectrum shows the narrow filter transmission under normal incidence. Offsets were added for clarity.

Fig. 3
Fig. 3

Correlation measurements taken at 6 K. The numbers next to the peaks indicate normalized peak area (see the text).

Fig. 4
Fig. 4

Correlation measurements taken at different temperatures. The numbers next to the central peaks indicate the ratio between the area under the central peak and those under the neighboring peaks.

Metrics