Abstract

Surface roughness that is associated with thin-film deposition has a direct effect on the optical, electrical, and mechanical quality of solid-thin-film devices. The effect of using alternating bias during rf-magnetron sputtering of SiO2 on Si substrate was investigated, and it was proven experimentally that modulating the plasma flow by means of alternating bias produces more even deposition of the sputtered material. This effect was verified by analyzing the envelope of the reflection fringes that were recorded during the thin-film deposition process, and by observing the power reduction in the arc-shaped scattering that is associated with mode excitation of a rough-surface waveguide.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ng, J. F. Adeyeye, J. P. Wang, and T. C. Vhong, “Factors affecting surface roughness and coercivity of Ni80Fe20 thin film,” J. Appl. Phys. 91, 7206–7208 (2002).
    [CrossRef]
  2. M. Born and E. Wolf, Principles Of Optics, 7th ed. (Cambridge University, Cambridge, UK, 1999).
  3. L. Ward, The Optical Constants OF Bulk Material And Films, 2nd ed. (IOP Publishing, Bristol, U.K., 1994).
  4. O. Auciello and A. R. Krauss, In Situ Real-Time Characterization Of Thin Films (Wiley, New York, 2001).
  5. C. K. Carniglia, “Scalar scattering theory for multiplayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
    [CrossRef]
  6. J. M. Bennett and L. Mattsson, Introduction To Surface Roughness And Scattering 2nd ed. (Optical Society of America, Washington, D.C., 1999).
  7. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 393 (1902).
    [CrossRef]
  8. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
    [CrossRef]
  9. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure II: Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1141–1154 (1983).
    [CrossRef]

2002 (1)

V. Ng, J. F. Adeyeye, J. P. Wang, and T. C. Vhong, “Factors affecting surface roughness and coercivity of Ni80Fe20 thin film,” J. Appl. Phys. 91, 7206–7208 (2002).
[CrossRef]

1983 (2)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure II: Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

1979 (1)

C. K. Carniglia, “Scalar scattering theory for multiplayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
[CrossRef]

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 393 (1902).
[CrossRef]

Adeyeye, J. F.

V. Ng, J. F. Adeyeye, J. P. Wang, and T. C. Vhong, “Factors affecting surface roughness and coercivity of Ni80Fe20 thin film,” J. Appl. Phys. 91, 7206–7208 (2002).
[CrossRef]

Carniglia, C. K.

C. K. Carniglia, “Scalar scattering theory for multiplayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
[CrossRef]

Ng, V.

V. Ng, J. F. Adeyeye, J. P. Wang, and T. C. Vhong, “Factors affecting surface roughness and coercivity of Ni80Fe20 thin film,” J. Appl. Phys. 91, 7206–7208 (2002).
[CrossRef]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure II: Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

Sipe, J. E.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure II: Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure II: Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

Vhong, T. C.

V. Ng, J. F. Adeyeye, J. P. Wang, and T. C. Vhong, “Factors affecting surface roughness and coercivity of Ni80Fe20 thin film,” J. Appl. Phys. 91, 7206–7208 (2002).
[CrossRef]

Wang, J. P.

V. Ng, J. F. Adeyeye, J. P. Wang, and T. C. Vhong, “Factors affecting surface roughness and coercivity of Ni80Fe20 thin film,” J. Appl. Phys. 91, 7206–7208 (2002).
[CrossRef]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 393 (1902).
[CrossRef]

Young, J. F.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure II: Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

J. Appl. Phys. (1)

V. Ng, J. F. Adeyeye, J. P. Wang, and T. C. Vhong, “Factors affecting surface roughness and coercivity of Ni80Fe20 thin film,” J. Appl. Phys. 91, 7206–7208 (2002).
[CrossRef]

Opt. Eng. (1)

C. K. Carniglia, “Scalar scattering theory for multiplayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
[CrossRef]

Philos. Mag. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 393 (1902).
[CrossRef]

Phys. Rev. B (2)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure II: Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

Other (4)

J. M. Bennett and L. Mattsson, Introduction To Surface Roughness And Scattering 2nd ed. (Optical Society of America, Washington, D.C., 1999).

M. Born and E. Wolf, Principles Of Optics, 7th ed. (Cambridge University, Cambridge, UK, 1999).

L. Ward, The Optical Constants OF Bulk Material And Films, 2nd ed. (IOP Publishing, Bristol, U.K., 1994).

O. Auciello and A. R. Krauss, In Situ Real-Time Characterization Of Thin Films (Wiley, New York, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Rough-surface thin film on bulk substrate.

Fig. 2
Fig. 2

In situ, real-time optical monitoring setup.

Fig. 3
Fig. 3

Reflection interference fringes: (a) Whole; (b) zoom in on interference fringes maxima; (c) zoom in on interference fringes minima.

Fig. 4
Fig. 4

Fitting the first section where no bias was used.

Fig. 5
Fig. 5

(a) Surface roughness RMS value evolution; (b) extinction coefficient evolution.

Fig. 6
Fig. 6

Arc-shaped scattered power that is associated with waveguide mode excitation: (a) Waveguide was deposited without bias; (b) waveguide was deposited with alternating bias.

Tables (1)

Tables Icon

Table 1 Summary of Results

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R=|r01|2+|r12|2+2r01r12cos 2β1+|r01|2|r12|2+2r01r12cos 2β,
β=2πLλ (N12-sin2 θ)1/2,
N=n+jk,
κ=αλ4π;
L=pλ4π,
p=1,2,3 ,
Rmax=|r01|2+|r12|2+2r01r121+|r01|2|r12|2+2r01r12,
Rmin=|r01|2+|r12|2-2r01r121+|r01|2|r12|2-2r01r12.
Rmax=r01exp(-2k2δ2)+r12(1-r012)×exp[-2k2(1-n)2δ2-2kLκ],
Rmin=r01exp(-2k2δ2)-r12(1-r012)×exp[-2k2(1-n)2δ2-2kLκ],
δ=1k12ln2r01Rmin+Rmax,
κ=12kLln2r12(1-r012)Rmin-Rmax-(1-n)2ln2r01Rmin+Rmax.
n*=m λΛ±sin θ,

Metrics