Abstract

A theoretical explanation of nonvolatile holographic recording in LiNbO3:Fe:Mn crystals is given based on jointly solving the two-center material equations and the coupled-wave equations. The nonuniformity of the dynamics of the photorefractive grating can be effectively described and analyzed by using this method. The time–space evolution, including the space-charge field, the diffraction efficiency, the light modulation depth, the phases of the space-charge field and the interference field, as well as the relative spatial phase shift between them, is studied for both oxidized and reduced crystals. The optimal conditions for material prescriptions and oxidation–reduction processing are discussed in detail. The bending isophase of the fringe pattern and the redistributed intensities of the two-coupled beams inside the crystal are presented. The theoretical results can confirm and predict experimental results. Some new effects are also discovered, such as: The fixed diffraction efficiency can exceed the saturation diffraction efficiency for strongly recorded gratings; the energy transfer direction between two-coupled beams can be reversed with crystal thickness; and the holographic readout in reduced crystal is always accompanied by fast phase changes, which results in the slow deterioration of the recorded holograms as a result of the production of homogeneous distributions of electrons.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
    [CrossRef]
  2. K. Buse, A. Adibi, and D. Psaltis, “Nonvolatile holographic storage in doubly-doped lithium niobate crystals,” Nature (London) 393, 665–668 (1998).
    [CrossRef]
  3. A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
    [CrossRef]
  4. A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
    [CrossRef]
  5. Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).
  6. D. Liu, L. Liu, Y. Liu, and C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
    [CrossRef]
  7. D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
    [CrossRef]
  8. D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Scattering suppression in photochromic LiNbO3:Fe:Mn nonvolatile holographic recording,” Chin. Phys. Lett. 18, 1064–1066 (2001).
    [CrossRef]
  9. A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999).
    [CrossRef]
  10. A. Adibi, K. Buse, and D. Psaltis, “System measure for persistence in holographic recording and application to singly-doped and doubly-doped lithium niobate,” Appl. Opt. 40, 5175–5182 (2001).
    [CrossRef]
  11. J. Li, L. Liu, Y. Guo, and C. Zhou, “Photorefractive holographic interferometer sensor integrated in a single block of photochromic Fe:Mn:LiNbO3 crystal,” in Photonic Devices and Algorithms for Computing II, K. M. Iftekharuddin A. A. S. Awwal, eds., Proc. SPIE 4114, 221–229 (2000).
    [CrossRef]
  12. K. Buse, “Light-induced charge transport processes in photorefractive crystals I: models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
    [CrossRef]
  13. Y. Liu, L. Liu, and C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
    [CrossRef]
  14. Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly-doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
    [CrossRef]
  15. A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
    [CrossRef]
  16. O. Momtahan and A. Adibi, “Global optimization of sensitivity and dynamic range for two-center holographic recording,” J. Opt. Soc. Am. B 20, 449–461 (2003).
    [CrossRef]
  17. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  18. M. G. Moharam and L. Young, “Hologram writing by the photorefractive effect,” J. Appl. Phys. 48, 3230–3236 (1977).
    [CrossRef]
  19. M. Jeganathan, M. C. Bashaw, and L. Hesselink, “Evolution and propagation of grating envelopes during erasure in bulk photorefractive media,” J. Opt. Soc. Am. B 12, 1370–1383 (1995).
    [CrossRef]
  20. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
    [CrossRef]
  21. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
    [CrossRef]
  22. E. S. Maniloff, K. M. Johnson, and K. Wagner, “Dynamic energy transfer and transient fringe dislocations in photorefractive lithium niobate,” J. Opt. Soc. Am. B 9, 1673–1684 (1992).
    [CrossRef]
  23. Y. Guo, L. Liu, Y. Liu, and C. Zhou, “Photorefractive grating formulation with any light modulation and excitation: exact and approximation steady-state analytic solutions,” J. Opt. Soc. Am. B 17, 889–897 (2000).
    [CrossRef]

2003

2001

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “System measure for persistence in holographic recording and application to singly-doped and doubly-doped lithium niobate,” Appl. Opt. 40, 5175–5182 (2001).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Scattering suppression in photochromic LiNbO3:Fe:Mn nonvolatile holographic recording,” Chin. Phys. Lett. 18, 1064–1066 (2001).
[CrossRef]

2000

D. Liu, L. Liu, Y. Liu, and C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

J. Li, L. Liu, Y. Guo, and C. Zhou, “Photorefractive holographic interferometer sensor integrated in a single block of photochromic Fe:Mn:LiNbO3 crystal,” in Photonic Devices and Algorithms for Computing II, K. M. Iftekharuddin A. A. S. Awwal, eds., Proc. SPIE 4114, 221–229 (2000).
[CrossRef]

Y. Liu, L. Liu, and C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly-doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
[CrossRef]

Y. Guo, L. Liu, Y. Liu, and C. Zhou, “Photorefractive grating formulation with any light modulation and excitation: exact and approximation steady-state analytic solutions,” J. Opt. Soc. Am. B 17, 889–897 (2000).
[CrossRef]

1999

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999).
[CrossRef]

1998

K. Buse, A. Adibi, and D. Psaltis, “Nonvolatile holographic storage in doubly-doped lithium niobate crystals,” Nature (London) 393, 665–668 (1998).
[CrossRef]

1997

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

1995

1992

1989

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
[CrossRef]

1979

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

1977

M. G. Moharam and L. Young, “Hologram writing by the photorefractive effect,” J. Appl. Phys. 48, 3230–3236 (1977).
[CrossRef]

1974

D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Adibi, A.

Bashaw, M. C.

Buse, K.

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “System measure for persistence in holographic recording and application to singly-doped and doubly-doped lithium niobate,” Appl. Opt. 40, 5175–5182 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Nonvolatile holographic storage in doubly-doped lithium niobate crystals,” Nature (London) 393, 665–668 (1998).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

Guo, Y.

J. Li, L. Liu, Y. Guo, and C. Zhou, “Photorefractive holographic interferometer sensor integrated in a single block of photochromic Fe:Mn:LiNbO3 crystal,” in Photonic Devices and Algorithms for Computing II, K. M. Iftekharuddin A. A. S. Awwal, eds., Proc. SPIE 4114, 221–229 (2000).
[CrossRef]

Y. Guo, L. Liu, Y. Liu, and C. Zhou, “Photorefractive grating formulation with any light modulation and excitation: exact and approximation steady-state analytic solutions,” J. Opt. Soc. Am. B 17, 889–897 (2000).
[CrossRef]

Hesselink, L.

Jeganathan, M.

Johnson, K. M.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Li, J.

J. Li, L. Liu, Y. Guo, and C. Zhou, “Photorefractive holographic interferometer sensor integrated in a single block of photochromic Fe:Mn:LiNbO3 crystal,” in Photonic Devices and Algorithms for Computing II, K. M. Iftekharuddin A. A. S. Awwal, eds., Proc. SPIE 4114, 221–229 (2000).
[CrossRef]

Liu, D.

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Scattering suppression in photochromic LiNbO3:Fe:Mn nonvolatile holographic recording,” Chin. Phys. Lett. 18, 1064–1066 (2001).
[CrossRef]

D. Liu, L. Liu, Y. Liu, and C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Liu, L.

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Scattering suppression in photochromic LiNbO3:Fe:Mn nonvolatile holographic recording,” Chin. Phys. Lett. 18, 1064–1066 (2001).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

J. Li, L. Liu, Y. Guo, and C. Zhou, “Photorefractive holographic interferometer sensor integrated in a single block of photochromic Fe:Mn:LiNbO3 crystal,” in Photonic Devices and Algorithms for Computing II, K. M. Iftekharuddin A. A. S. Awwal, eds., Proc. SPIE 4114, 221–229 (2000).
[CrossRef]

D. Liu, L. Liu, Y. Liu, and C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Y. Guo, L. Liu, Y. Liu, and C. Zhou, “Photorefractive grating formulation with any light modulation and excitation: exact and approximation steady-state analytic solutions,” J. Opt. Soc. Am. B 17, 889–897 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly-doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
[CrossRef]

Y. Liu, L. Liu, and C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Liu, Y.

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Scattering suppression in photochromic LiNbO3:Fe:Mn nonvolatile holographic recording,” Chin. Phys. Lett. 18, 1064–1066 (2001).
[CrossRef]

D. Liu, L. Liu, Y. Liu, and C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly-doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
[CrossRef]

Y. Liu, L. Liu, and C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
[CrossRef]

Y. Guo, L. Liu, Y. Liu, and C. Zhou, “Photorefractive grating formulation with any light modulation and excitation: exact and approximation steady-state analytic solutions,” J. Opt. Soc. Am. B 17, 889–897 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Maniloff, E. S.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Moharam, M. G.

M. G. Moharam and L. Young, “Hologram writing by the photorefractive effect,” J. Appl. Phys. 48, 3230–3236 (1977).
[CrossRef]

Momtahan, O.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Phillips, W.

D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[CrossRef]

Psaltis, D.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Staebler, D. L.

D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Wagner, K.

Xu, L.

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Scattering suppression in photochromic LiNbO3:Fe:Mn nonvolatile holographic recording,” Chin. Phys. Lett. 18, 1064–1066 (2001).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly-doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Yeh, P.

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
[CrossRef]

Young, L.

M. G. Moharam and L. Young, “Hologram writing by the photorefractive effect,” J. Appl. Phys. 48, 3230–3236 (1977).
[CrossRef]

Zhou, C.

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Scattering suppression in photochromic LiNbO3:Fe:Mn nonvolatile holographic recording,” Chin. Phys. Lett. 18, 1064–1066 (2001).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

D. Liu, L. Liu, Y. Liu, and C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly-doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
[CrossRef]

Y. Liu, L. Liu, and C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
[CrossRef]

J. Li, L. Liu, Y. Guo, and C. Zhou, “Photorefractive holographic interferometer sensor integrated in a single block of photochromic Fe:Mn:LiNbO3 crystal,” in Photonic Devices and Algorithms for Computing II, K. M. Iftekharuddin A. A. S. Awwal, eds., Proc. SPIE 4114, 221–229 (2000).
[CrossRef]

Y. Guo, L. Liu, Y. Liu, and C. Zhou, “Photorefractive grating formulation with any light modulation and excitation: exact and approximation steady-state analytic solutions,” J. Opt. Soc. Am. B 17, 889–897 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Acta Opt. Sin.

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Appl. Opt.

Appl. Phys. B

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

Appl. Phys. Lett.

D. Liu, L. Liu, Y. Liu, and C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Chin. Phys. Lett.

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly-doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Scattering suppression in photochromic LiNbO3:Fe:Mn nonvolatile holographic recording,” Chin. Phys. Lett. 18, 1064–1066 (2001).
[CrossRef]

Ferroelectrics

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

IEEE J. Quantum Electron.

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
[CrossRef]

J. Appl. Phys.

M. G. Moharam and L. Young, “Hologram writing by the photorefractive effect,” J. Appl. Phys. 48, 3230–3236 (1977).
[CrossRef]

J. Opt. Soc. Am. B

Nature (London)

K. Buse, A. Adibi, and D. Psaltis, “Nonvolatile holographic storage in doubly-doped lithium niobate crystals,” Nature (London) 393, 665–668 (1998).
[CrossRef]

Opt. Commun.

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

Opt. Lett.

Proc. SPIE

J. Li, L. Liu, Y. Guo, and C. Zhou, “Photorefractive holographic interferometer sensor integrated in a single block of photochromic Fe:Mn:LiNbO3 crystal,” in Photonic Devices and Algorithms for Computing II, K. M. Iftekharuddin A. A. S. Awwal, eds., Proc. SPIE 4114, 221–229 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Time–space evolution of (a) space-charge field (Esc), (b) diffraction efficiency (η), (c) light modulation depth (m), (d) phase of space-charge field (ϕEsc), (e) phase of interference pattern (ϕm), (f) spatial phase shift ϕ between the space-charge field and the interference pattern in oxidized LN:Fe:Mn crystal.

Fig. 2
Fig. 2

Same as Fig. 1 but in reduced LN:Fe:Mn crystal. Phases are extended to overcome discontinuities.

Fig. 3
Fig. 3

Variation of (a) saturation and fixed average space-charge fields and (b) saturation and fixed diffraction efficiency, as well as time consumed for saturation average space-charge field with NA/ND in oxidized LN:Fe:Mn crystal. For more clarity the point of intersection at NA/ND=0.96 in Fig. 3(b) is enlarged in Fig. 3(c).

Fig. 4
Fig. 4

Variation of (a) saturation and fixed average space-charge fields and (b) saturation and fixed diffraction efficiency with the intensity ratio of red to UV in oxidized LN:Fe:Mn crystal. Here the electron concentration corresponds to NA/ND=0.92 or x=0.935. The intensity of UV light is fixed at 200 W/m2.

Fig. 5
Fig. 5

Variation of (a) saturation and fixed average space-charge fields and (b) saturation and fixed diffraction efficiency, as well as time consumed for saturation average space-charge field with the concentration of Mn traps in oxidized LN:Fe:Mn crystal. Here we have chosen IL0/IH0=25, NS=5.2×1025 m-3, NA/ND=0.95. The concentration ratio of Mn to Fe centers (ND/NS) is also given in the upper horizontal axis.

Fig. 6
Fig. 6

Variation of (a) saturation and fixed average space-charge fields and (b) saturation and fixed diffraction efficiency with the concentration of Fe traps in oxidized LN:Fe:Mn crystal. Here we have chosen IL0/IH0=25, ND=3.9×1024 m-3, NA/ND=0.95.

Fig. 7
Fig. 7

Time evolution of diffraction efficiency in a 2.5-mm-thick oxidized LN crystal doped with 0.15 wt. % Fe2O3 and 0.01 wt. % MnO when using transmission geometry with incidence angle of 6.5° inside the crystal. Here sensitizing and recording intensities are 200 W/m2 and 5000 W/m2 (each red beam is 2500 W/m2), respectively. The absorption of both recording and sensitizing beams is considered in the simulation. In fitting the theoretical curves to the experimental result, we have assumed that the OR state is x=0.954.

Fig. 8
Fig. 8

Variation of (a) phase shift, (b) light intensity and light modulation depth, as well as (c) isophase of fringe pattern with depth z at the end of recording in oxidized LN:Fe:Mn crystal. The inset shows the isophase of the fringe pattern inside the crystal.

Fig. 9
Fig. 9

Same as Fig. 8, but after fixing.

Tables (1)

Tables Icon

Table 1 Parameters of LiNbO3:Fe:Mn Crystal Used in the Theoretical Calculations

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

ND0-t=-gDND0-+γDNe0(ND-ND0-),
NS0-t=-gSNS0-+γSNe0(NS-NS0-),
Ne0=gDND0-+gSNS0-γD(ND-ND0-)+γS(NS-NS0-);
ND1-t=-gDND1--SD,LmIL0ND0-+γDNe1(ND-ND0-)-γDNe0ND1-,
NS1-t=-gSNS1--SS,LmIL0NS0-+γSNe1(NS-NS0-)-γSNe0NS1-,
Ne1=(gD+γDNe0)ND1-+(gS+γSNe0)NS1--eμNe00 (ND1-+NS1-)-iKe [κDND1-+κSNS1-+(κD,LND0-+κS,LNS0-)mIL0]+(SD,LND0-+SS,LNS0-)mIL0/γD(ND-ND0-)+γS(NS-NS0-)+eμNe00+KBTμK2e,
IH=IH0exp(-αUVz).
Esc=-i e0K (ND1-+NS1-+Ne1),
ϕEsc=arg(Esc).
n1exp(iϕEsc)=-no3γ13Esc2,
Ej=Ajexp[i(ωt-kjr)],j=1, 2,
IL=IL0+½IL0[m exp(-iKr)+c.c.],
IL0=A1A1*+A2A2*,
m=2A1A2*IL0,
ϕm=arg(m).
cos θ A1z=-iπn1λexp(iϕEsc)A2-αred2 A1,
cos θ A2z=-iπn1λexp(-iϕEsc)A1-αred2 A2,
ϕ=ϕEsc-ϕm.
NA=ND0-(0)+NS0-(0),
xC=NSND+NS,
x=1-NAND+NS.

Metrics