Abstract

Intracavity sum-frequency generation and cascaded χ(2) wavelength conversions in a fiber ring resonator using a MgO-doped LiNbO3 quasi-phase-matched waveguide and an erbium-doped fiber amplifier were proposed and demonstrated. In the proposed configuration, the resonator enhances the pump light, and efficient wavelength conversion is realized. Dependence of converted signal power upon the position of a coupler used to couple a signal into the resonator and upon the round-trip loss of the resonator was studied in detail. The proposed configuration provides efficient wavelength conversion over a wide range of input signal power and resonator round-trip loss. The configuration provides a cost-effective solution to enhance pump power, thus increasing wavelength-conversion efficiency for practical system applications.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Asobe, I. Yokohama, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency-generation and difference-frequency-generation processes in periodically poled LiNbO3,” Opt. Lett. 22, 274–276 (1997).
    [CrossRef] [PubMed]
  2. H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11, 328–330 (1999).
    [CrossRef]
  3. I. Yokohama, M. Asobe, A. Yokoo, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency generation and difference-frequency generation processes,” J. Opt. Soc. Am. B 14, 3368–3377 (1997).
    [CrossRef]
  4. K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
    [CrossRef]
  5. T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11, 1027–1029 (1999).
    [CrossRef]
  6. M. B. Raschke, M. Hayashi, S. H. Lin, and Y. R. Shen, “Doubly-resonant sum-frequency generation spectroscopy for surface studies,” Chem. Phys. Lett. 359, 367–372 (2002).
    [CrossRef]
  7. B. Humbert, J. Grausem, A. Burneau, M. Spajer, and A. Tadjeddine, “Step towards sum frequency generation spectromicroscopy at a submicronic spatial resolution,” Appl. Phys. Lett. 78, 135–137 (2001).
    [CrossRef]
  8. P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80, 3084–3086 (2002).
    [CrossRef]
  9. V. Petrov, F. Noack, F. Rotermund, M. Tanaka, and Y. Okada, “Sum-frequency generation of femtosecond pulses in CsLiB6O10 down to 175 nm,” Appl. Opt. 39, 5076–5079 (2000).
    [CrossRef]
  10. P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
    [CrossRef]
  11. T. Nayuki, T. Fukuchi, N. Cao, H. Mori, T. Fujii, K. Nemoto, and N. Takeuchi, “Sum-frequency-generation system for differential absorption lidar measurement of atmospheric nitrogen dioxide,” Appl. Opt. 41, 3659–3664 (2002).
    [CrossRef] [PubMed]
  12. U. Hempelmann, “All-optical switching due to cascaded second-harmonic generation in directional couplers with laterally varying phase mismatches,” IEEE J. Quantum Electron. 35, 1834–1842 (1999).
    [CrossRef]
  13. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Optical signal processing and switching with second-order nonlinearities in waveguides,” IEICE Trans. Electron. E83-C, 869–874 (2000).
  14. C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993).
    [CrossRef]
  15. O. Gorbounova, Y. J. Ding, J. B. Khurgin, S. J. Lee, and A. E. Craig, “Optical frequency shifters based on cascaded second-order nonlinear processes,” Opt. Lett. 21, 558–560 (1996).
    [CrossRef] [PubMed]
  16. I. Cristiani, G. P. Banfi, V. Degiorgio, and L. Tartara, “Wavelength shifting of optical pulses through cascaded second-order processes in a lithium-niobate channel waveguide,” Appl. Phys. Lett. 75, 1198–1200 (1999).
    [CrossRef]
  17. K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
    [CrossRef]
  18. G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998).
    [CrossRef]
  19. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
    [CrossRef]
  20. G. T. Moore, “Resonant sum-frequency generation,” IEEE J. Quantum Electron. 38, 12–18 (2002).
    [CrossRef]
  21. G. T. Moore and K. Koch, “Optical parametric oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 29, 961–969 (1993).
    [CrossRef]
  22. C. Q. Xu, K. Shinozaki, H. Okayama, and T. Kamijoh, “Three wave mixing using a fiber ring resonator,” J. Appl. Phys. 81, 1055–1062 (1997).
    [CrossRef]
  23. D. W. Coutts and J. A. Piper, “One watt average power by second harmonic and sum frequency generation from a single medium scale copper vapor laser,” IEEE J. Quantum Electron. 28, 1761–1764 (1992).
    [CrossRef]
  24. I. Cristiani, V. Degiorgio, L. Socci, F. Carbone, and M. Romagnoli, “Polarization-insensitive wavelength conversion in a lithium niobate waveguide by the cascading technique,” IEEE Photon. Technol. Lett. 14, 669–671 (2002).
    [CrossRef]
  25. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
    [CrossRef]
  26. C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, “All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L881–L883 (2001).
    [CrossRef]
  27. T. Y. Fan, G. J. Dixon, and R. L. Byer, “Efficient GaAlAs diode-laser-pumped operation of Nd:YLF at 1.047 μm with intracavity doubling to 523.6 nm,” Opt. Lett. 11, 204–206 (1986).
    [CrossRef]
  28. W. P. Risk, J. C. Baumert, G. C. Bjorklund, F. M. Schellenberg, and W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium:yttrium aluminum garnet laser,” Appl. Phys. Lett. 52, 85–87 (1988).
    [CrossRef]
  29. J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, N. J. Hoffman, J. J. Smith, and D. Radecki, “Fiber-bundle coupled, diode end-pumped Nd: YAG laser,” Opt. Lett. 13, 306–308 (1988).
    [CrossRef] [PubMed]
  30. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
    [CrossRef]
  31. B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett 40, L796–L798 (2001).
    [CrossRef]
  32. C. Q. Xu, H. Okayama, and T. Kamijoh, “Quasiphase matched wavelength converters for optical communication systems,” Recent Res. Devel. Appl. Phys. 2, 193–221 (1999).
  33. B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
    [CrossRef]
  34. Q. Xu, M. Yao, Y. Dong, and J. Zhang, “Interferometric method of suppressing the pattern effect in a semiconductor optical amplifier,” Opt. Lett. 25, 1597–1599 (2000).
    [CrossRef]
  35. C. Q. Xu, H. Okayama, and K. Shinozaki, “Wavelength conversion apparatus with improved efficiency, easy adjustability, and polarization insensitivity,” U.S. patent 5946129 (Aug. 31, 1999).
  36. J. Bracken and C. Q. Xu, “All-optical wavelength conversions based on MgO doped LiNbO3 QPM waveguides using an EDFA as a pump source,” IEEE Photon. Technol. Lett. (to be published).
  37. B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L612–L614 (2001).
    [CrossRef]

2002 (6)

M. B. Raschke, M. Hayashi, S. H. Lin, and Y. R. Shen, “Doubly-resonant sum-frequency generation spectroscopy for surface studies,” Chem. Phys. Lett. 359, 367–372 (2002).
[CrossRef]

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80, 3084–3086 (2002).
[CrossRef]

G. T. Moore, “Resonant sum-frequency generation,” IEEE J. Quantum Electron. 38, 12–18 (2002).
[CrossRef]

I. Cristiani, V. Degiorgio, L. Socci, F. Carbone, and M. Romagnoli, “Polarization-insensitive wavelength conversion in a lithium niobate waveguide by the cascading technique,” IEEE Photon. Technol. Lett. 14, 669–671 (2002).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

T. Nayuki, T. Fukuchi, N. Cao, H. Mori, T. Fujii, K. Nemoto, and N. Takeuchi, “Sum-frequency-generation system for differential absorption lidar measurement of atmospheric nitrogen dioxide,” Appl. Opt. 41, 3659–3664 (2002).
[CrossRef] [PubMed]

2001 (4)

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L612–L614 (2001).
[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett 40, L796–L798 (2001).
[CrossRef]

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, “All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L881–L883 (2001).
[CrossRef]

B. Humbert, J. Grausem, A. Burneau, M. Spajer, and A. Tadjeddine, “Step towards sum frequency generation spectromicroscopy at a submicronic spatial resolution,” Appl. Phys. Lett. 78, 135–137 (2001).
[CrossRef]

2000 (4)

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Optical signal processing and switching with second-order nonlinearities in waveguides,” IEICE Trans. Electron. E83-C, 869–874 (2000).

Q. Xu, M. Yao, Y. Dong, and J. Zhang, “Interferometric method of suppressing the pattern effect in a semiconductor optical amplifier,” Opt. Lett. 25, 1597–1599 (2000).
[CrossRef]

V. Petrov, F. Noack, F. Rotermund, M. Tanaka, and Y. Okada, “Sum-frequency generation of femtosecond pulses in CsLiB6O10 down to 175 nm,” Appl. Opt. 39, 5076–5079 (2000).
[CrossRef]

1999 (6)

U. Hempelmann, “All-optical switching due to cascaded second-harmonic generation in directional couplers with laterally varying phase mismatches,” IEEE J. Quantum Electron. 35, 1834–1842 (1999).
[CrossRef]

C. Q. Xu, H. Okayama, and T. Kamijoh, “Quasiphase matched wavelength converters for optical communication systems,” Recent Res. Devel. Appl. Phys. 2, 193–221 (1999).

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11, 1027–1029 (1999).
[CrossRef]

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

I. Cristiani, G. P. Banfi, V. Degiorgio, and L. Tartara, “Wavelength shifting of optical pulses through cascaded second-order processes in a lithium-niobate channel waveguide,” Appl. Phys. Lett. 75, 1198–1200 (1999).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

1998 (1)

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998).
[CrossRef]

1997 (4)

C. Q. Xu, K. Shinozaki, H. Okayama, and T. Kamijoh, “Three wave mixing using a fiber ring resonator,” J. Appl. Phys. 81, 1055–1062 (1997).
[CrossRef]

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

I. Yokohama, M. Asobe, A. Yokoo, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency generation and difference-frequency generation processes,” J. Opt. Soc. Am. B 14, 3368–3377 (1997).
[CrossRef]

M. Asobe, I. Yokohama, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency-generation and difference-frequency-generation processes in periodically poled LiNbO3,” Opt. Lett. 22, 274–276 (1997).
[CrossRef] [PubMed]

1996 (2)

1995 (1)

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

1993 (2)

G. T. Moore and K. Koch, “Optical parametric oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 29, 961–969 (1993).
[CrossRef]

C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993).
[CrossRef]

1992 (1)

D. W. Coutts and J. A. Piper, “One watt average power by second harmonic and sum frequency generation from a single medium scale copper vapor laser,” IEEE J. Quantum Electron. 28, 1761–1764 (1992).
[CrossRef]

1988 (2)

W. P. Risk, J. C. Baumert, G. C. Bjorklund, F. M. Schellenberg, and W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium:yttrium aluminum garnet laser,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, N. J. Hoffman, J. J. Smith, and D. Radecki, “Fiber-bundle coupled, diode end-pumped Nd: YAG laser,” Opt. Lett. 13, 306–308 (1988).
[CrossRef] [PubMed]

1986 (1)

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Aitchison, J. S.

C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993).
[CrossRef]

Arahira, S.

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, “All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L881–L883 (2001).
[CrossRef]

Arnold, J. M.

C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993).
[CrossRef]

Asobe, M.

Assanto, G.

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

Baldi, P.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

Banfi, G. P.

I. Cristiani, G. P. Banfi, V. Degiorgio, and L. Tartara, “Wavelength shifting of optical pulses through cascaded second-order processes in a lithium-niobate channel waveguide,” Appl. Phys. Lett. 75, 1198–1200 (1999).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998).
[CrossRef]

Baumert, J. C.

W. P. Risk, J. C. Baumert, G. C. Bjorklund, F. M. Schellenberg, and W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium:yttrium aluminum garnet laser,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

Berger, J.

Bjorklund, G. C.

W. P. Risk, J. C. Baumert, G. C. Bjorklund, F. M. Schellenberg, and W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium:yttrium aluminum garnet laser,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

Brener, I.

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Optical signal processing and switching with second-order nonlinearities in waveguides,” IEICE Trans. Electron. E83-C, 869–874 (2000).

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Briggman, K. A.

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80, 3084–3086 (2002).
[CrossRef]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Burneau, A.

B. Humbert, J. Grausem, A. Burneau, M. Spajer, and A. Tadjeddine, “Step towards sum frequency generation spectromicroscopy at a submicronic spatial resolution,” Appl. Phys. Lett. 78, 135–137 (2001).
[CrossRef]

Byer, R. L.

Cao, N.

Carbone, F.

I. Cristiani, V. Degiorgio, L. Socci, F. Carbone, and M. Romagnoli, “Polarization-insensitive wavelength conversion in a lithium niobate waveguide by the cascading technique,” IEEE Photon. Technol. Lett. 14, 669–671 (2002).
[CrossRef]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Chen, B.

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L612–L614 (2001).
[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett 40, L796–L798 (2001).
[CrossRef]

Chou, M. H.

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Optical signal processing and switching with second-order nonlinearities in waveguides,” IEICE Trans. Electron. E83-C, 869–874 (2000).

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Coutts, D. W.

D. W. Coutts and J. A. Piper, “One watt average power by second harmonic and sum frequency generation from a single medium scale copper vapor laser,” IEEE J. Quantum Electron. 28, 1761–1764 (1992).
[CrossRef]

Craig, A. E.

Cristiani, I.

I. Cristiani, V. Degiorgio, L. Socci, F. Carbone, and M. Romagnoli, “Polarization-insensitive wavelength conversion in a lithium niobate waveguide by the cascading technique,” IEEE Photon. Technol. Lett. 14, 669–671 (2002).
[CrossRef]

I. Cristiani, G. P. Banfi, V. Degiorgio, and L. Tartara, “Wavelength shifting of optical pulses through cascaded second-order processes in a lithium-niobate channel waveguide,” Appl. Phys. Lett. 75, 1198–1200 (1999).
[CrossRef]

Datta, P. K.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998).
[CrossRef]

De Micheli, M. P.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

Degiorgio, V.

I. Cristiani, V. Degiorgio, L. Socci, F. Carbone, and M. Romagnoli, “Polarization-insensitive wavelength conversion in a lithium niobate waveguide by the cascading technique,” IEEE Photon. Technol. Lett. 14, 669–671 (2002).
[CrossRef]

I. Cristiani, G. P. Banfi, V. Degiorgio, and L. Tartara, “Wavelength shifting of optical pulses through cascaded second-order processes in a lithium-niobate channel waveguide,” Appl. Phys. Lett. 75, 1198–1200 (1999).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998).
[CrossRef]

Delacourt, D.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

Ding, Y. J.

Dixon, G. J.

Dong, Y.

Fan, T. Y.

Fejer, M. M.

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Optical signal processing and switching with second-order nonlinearities in waveguides,” IEICE Trans. Electron. E83-C, 869–874 (2000).

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Fortusini, D.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998).
[CrossRef]

Fujii, T.

Fujimura, M.

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11, 1027–1029 (1999).
[CrossRef]

Fukuchi, T.

Gallo, K.

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Gorbounova, O.

Grausem, J.

B. Humbert, J. Grausem, A. Burneau, M. Spajer, and A. Tadjeddine, “Step towards sum frequency generation spectromicroscopy at a submicronic spatial resolution,” Appl. Phys. Lett. 78, 135–137 (2001).
[CrossRef]

Harada, A.

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L612–L614 (2001).
[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett 40, L796–L798 (2001).
[CrossRef]

Hayashi, M.

M. B. Raschke, M. Hayashi, S. H. Lin, and Y. R. Shen, “Doubly-resonant sum-frequency generation spectroscopy for surface studies,” Chem. Phys. Lett. 359, 367–372 (2002).
[CrossRef]

Hempelmann, U.

U. Hempelmann, “All-optical switching due to cascaded second-harmonic generation in directional couplers with laterally varying phase mismatches,” IEEE J. Quantum Electron. 35, 1834–1842 (1999).
[CrossRef]

Hoffman, N. J.

Humbert, B.

B. Humbert, J. Grausem, A. Burneau, M. Spajer, and A. Tadjeddine, “Step towards sum frequency generation spectromicroscopy at a submicronic spatial resolution,” Appl. Phys. Lett. 78, 135–137 (2001).
[CrossRef]

Ironside, C. N.

C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993).
[CrossRef]

Ishizuki, H.

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11, 1027–1029 (1999).
[CrossRef]

Ito, H.

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, “All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L881–L883 (2001).
[CrossRef]

Itoh, H.

Kaino, T.

Kamijoh, T.

C. Q. Xu, H. Okayama, and T. Kamijoh, “Quasiphase matched wavelength converters for optical communication systems,” Recent Res. Devel. Appl. Phys. 2, 193–221 (1999).

C. Q. Xu, K. Shinozaki, H. Okayama, and T. Kamijoh, “Three wave mixing using a fiber ring resonator,” J. Appl. Phys. 81, 1055–1062 (1997).
[CrossRef]

Kanbara, H.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

Khurgin, J. B.

Koch, K.

G. T. Moore and K. Koch, “Optical parametric oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 29, 961–969 (1993).
[CrossRef]

Lam, Y. L.

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, “All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L881–L883 (2001).
[CrossRef]

Lee, S. J.

Lenth, W.

W. P. Risk, J. C. Baumert, G. C. Bjorklund, F. M. Schellenberg, and W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium:yttrium aluminum garnet laser,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

Lin, S. H.

M. B. Raschke, M. Hayashi, S. H. Lin, and Y. R. Shen, “Doubly-resonant sum-frequency generation spectroscopy for surface studies,” Chem. Phys. Lett. 359, 367–372 (2002).
[CrossRef]

Lu, C.

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett 40, L796–L798 (2001).
[CrossRef]

Miyazawa, H.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

Moore, G. T.

G. T. Moore, “Resonant sum-frequency generation,” IEEE J. Quantum Electron. 38, 12–18 (2002).
[CrossRef]

G. T. Moore and K. Koch, “Optical parametric oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 29, 961–969 (1993).
[CrossRef]

Mori, H.

Nayuki, T.

Nemoto, K.

Nihei, Y.

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L612–L614 (2001).
[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett 40, L796–L798 (2001).
[CrossRef]

Nishihara, H.

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11, 1027–1029 (1999).
[CrossRef]

Noack, F.

Noguchi, K.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

Ogawa, Y.

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, “All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L881–L883 (2001).
[CrossRef]

Okada, Y.

Okayama, H.

C. Q. Xu, H. Okayama, and T. Kamijoh, “Quasiphase matched wavelength converters for optical communication systems,” Recent Res. Devel. Appl. Phys. 2, 193–221 (1999).

C. Q. Xu, K. Shinozaki, H. Okayama, and T. Kamijoh, “Three wave mixing using a fiber ring resonator,” J. Appl. Phys. 81, 1055–1062 (1997).
[CrossRef]

Ostrowsky, D. B.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

Papuchon, M.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

Parameswaran, K. R.

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Optical signal processing and switching with second-order nonlinearities in waveguides,” IEICE Trans. Electron. E83-C, 869–874 (2000).

Petrov, V.

Piper, J. A.

D. W. Coutts and J. A. Piper, “One watt average power by second harmonic and sum frequency generation from a single medium scale copper vapor laser,” IEEE J. Quantum Electron. 28, 1761–1764 (1992).
[CrossRef]

Radecki, D.

Raschke, M. B.

M. B. Raschke, M. Hayashi, S. H. Lin, and Y. R. Shen, “Doubly-resonant sum-frequency generation spectroscopy for surface studies,” Chem. Phys. Lett. 359, 367–372 (2002).
[CrossRef]

Richter, L. J.

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80, 3084–3086 (2002).
[CrossRef]

Risk, W. P.

W. P. Risk, J. C. Baumert, G. C. Bjorklund, F. M. Schellenberg, and W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium:yttrium aluminum garnet laser,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

Romagnoli, M.

I. Cristiani, V. Degiorgio, L. Socci, F. Carbone, and M. Romagnoli, “Polarization-insensitive wavelength conversion in a lithium niobate waveguide by the cascading technique,” IEEE Photon. Technol. Lett. 14, 669–671 (2002).
[CrossRef]

Rotermund, F.

Schellenberg, F. M.

W. P. Risk, J. C. Baumert, G. C. Bjorklund, F. M. Schellenberg, and W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium:yttrium aluminum garnet laser,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

Scifres, D. R.

Shen, Y. R.

M. B. Raschke, M. Hayashi, S. H. Lin, and Y. R. Shen, “Doubly-resonant sum-frequency generation spectroscopy for surface studies,” Chem. Phys. Lett. 359, 367–372 (2002).
[CrossRef]

Shinozaki, K.

C. Q. Xu, K. Shinozaki, H. Okayama, and T. Kamijoh, “Three wave mixing using a fiber ring resonator,” J. Appl. Phys. 81, 1055–1062 (1997).
[CrossRef]

Smith, J. J.

Socci, L.

I. Cristiani, V. Degiorgio, L. Socci, F. Carbone, and M. Romagnoli, “Polarization-insensitive wavelength conversion in a lithium niobate waveguide by the cascading technique,” IEEE Photon. Technol. Lett. 14, 669–671 (2002).
[CrossRef]

Spajer, M.

B. Humbert, J. Grausem, A. Burneau, M. Spajer, and A. Tadjeddine, “Step towards sum frequency generation spectromicroscopy at a submicronic spatial resolution,” Appl. Phys. Lett. 78, 135–137 (2001).
[CrossRef]

Stegeman, G.

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

Stegeman, G. I.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

Stephenson, J. C.

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80, 3084–3086 (2002).
[CrossRef]

Streifer, W.

Suhara, T.

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11, 1027–1029 (1999).
[CrossRef]

Tadjeddine, A.

B. Humbert, J. Grausem, A. Burneau, M. Spajer, and A. Tadjeddine, “Step towards sum frequency generation spectromicroscopy at a submicronic spatial resolution,” Appl. Phys. Lett. 78, 135–137 (2001).
[CrossRef]

Takeuchi, N.

Tanaka, M.

Tang, X. H.

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

Tartara, L.

I. Cristiani, G. P. Banfi, V. Degiorgio, and L. Tartara, “Wavelength shifting of optical pulses through cascaded second-order processes in a lithium-niobate channel waveguide,” Appl. Phys. Lett. 75, 1198–1200 (1999).
[CrossRef]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Trevino-Palacios, C. G.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

Wallace, W. E.

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80, 3084–3086 (2002).
[CrossRef]

Wang, Y.

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L612–L614 (2001).
[CrossRef]

Welch, D. F.

Wilson, P. T.

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80, 3084–3086 (2002).
[CrossRef]

Xu, C. Q.

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L612–L614 (2001).
[CrossRef]

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, “All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L881–L883 (2001).
[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett 40, L796–L798 (2001).
[CrossRef]

C. Q. Xu, H. Okayama, and T. Kamijoh, “Quasiphase matched wavelength converters for optical communication systems,” Recent Res. Devel. Appl. Phys. 2, 193–221 (1999).

C. Q. Xu, K. Shinozaki, H. Okayama, and T. Kamijoh, “Three wave mixing using a fiber ring resonator,” J. Appl. Phys. 81, 1055–1062 (1997).
[CrossRef]

Xu, Q.

Yanagawa, T.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

Yang, X. F.

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett 40, L796–L798 (2001).
[CrossRef]

Yao, M.

Yokohama, I.

Yokoo, A.

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[CrossRef]

Zhang, J.

Zhou, B.

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett 40, L796–L798 (2001).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L612–L614 (2001).
[CrossRef]

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, “All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L881–L883 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (7)

I. Cristiani, G. P. Banfi, V. Degiorgio, and L. Tartara, “Wavelength shifting of optical pulses through cascaded second-order processes in a lithium-niobate channel waveguide,” Appl. Phys. Lett. 75, 1198–1200 (1999).
[CrossRef]

K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998).
[CrossRef]

B. Humbert, J. Grausem, A. Burneau, M. Spajer, and A. Tadjeddine, “Step towards sum frequency generation spectromicroscopy at a submicronic spatial resolution,” Appl. Phys. Lett. 78, 135–137 (2001).
[CrossRef]

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80, 3084–3086 (2002).
[CrossRef]

W. P. Risk, J. C. Baumert, G. C. Bjorklund, F. M. Schellenberg, and W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium:yttrium aluminum garnet laser,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Chem. Phys. Lett. (1)

M. B. Raschke, M. Hayashi, S. H. Lin, and Y. R. Shen, “Doubly-resonant sum-frequency generation spectroscopy for surface studies,” Chem. Phys. Lett. 359, 367–372 (2002).
[CrossRef]

Electron. Lett. (1)

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

IEEE J. Quantum Electron. (5)

U. Hempelmann, “All-optical switching due to cascaded second-harmonic generation in directional couplers with laterally varying phase mismatches,” IEEE J. Quantum Electron. 35, 1834–1842 (1999).
[CrossRef]

C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993).
[CrossRef]

G. T. Moore, “Resonant sum-frequency generation,” IEEE J. Quantum Electron. 38, 12–18 (2002).
[CrossRef]

G. T. Moore and K. Koch, “Optical parametric oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 29, 961–969 (1993).
[CrossRef]

D. W. Coutts and J. A. Piper, “One watt average power by second harmonic and sum frequency generation from a single medium scale copper vapor laser,” IEEE J. Quantum Electron. 28, 1761–1764 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

I. Cristiani, V. Degiorgio, L. Socci, F. Carbone, and M. Romagnoli, “Polarization-insensitive wavelength conversion in a lithium niobate waveguide by the cascading technique,” IEEE Photon. Technol. Lett. 14, 669–671 (2002).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11, 1027–1029 (1999).
[CrossRef]

IEICE Trans. Electron. (1)

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Optical signal processing and switching with second-order nonlinearities in waveguides,” IEICE Trans. Electron. E83-C, 869–874 (2000).

J. Appl. Phys. (1)

C. Q. Xu, K. Shinozaki, H. Okayama, and T. Kamijoh, “Three wave mixing using a fiber ring resonator,” J. Appl. Phys. 81, 1055–1062 (1997).
[CrossRef]

J. Lightwave Technol. (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. Lett (1)

B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett 40, L796–L798 (2001).
[CrossRef]

Jpn. J. Appl. Phys. Lett. (2)

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, “All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L881–L883 (2001).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L612–L614 (2001).
[CrossRef]

Opt. Lett. (5)

Recent Res. Devel. Appl. Phys. (1)

C. Q. Xu, H. Okayama, and T. Kamijoh, “Quasiphase matched wavelength converters for optical communication systems,” Recent Res. Devel. Appl. Phys. 2, 193–221 (1999).

Other (2)

C. Q. Xu, H. Okayama, and K. Shinozaki, “Wavelength conversion apparatus with improved efficiency, easy adjustability, and polarization insensitivity,” U.S. patent 5946129 (Aug. 31, 1999).

J. Bracken and C. Q. Xu, “All-optical wavelength conversions based on MgO doped LiNbO3 QPM waveguides using an EDFA as a pump source,” IEEE Photon. Technol. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for the intracavity fiber ring resonator. LN, PMF, SMF, EDFA, and OSA represent the periodically poled LiNbO 3 wavelength converter, polarization-maintained fiber, single-mode fiber, the erbium-doped fiber amplifier, and the optical spectrum analyzer, respectively.

Fig. 2
Fig. 2

Power spectrum of (a) pump and signal and (b) converted wavelengths. The 20/80 coupler was placed before the EDFA. A peak SFG power of -13.8 dBm is shown. Some SHG power is also present.

Fig. 3
Fig. 3

SFG power dependence upon input signal power. The 20/80 coupler was placed before the EDFA. The dots are the experimental data, and the solid line is the expected linear increase of the SFG power.

Fig. 4
Fig. 4

SFG conversion-efficiency dependence upon signal wavelength detuning from the QPM wavelength of the LiNbO 3 wavelength converter. The 20/80 coupler was placed before the EDFA.

Fig. 5
Fig. 5

SFG output power dependence upon attenuation in the fiber ring resonator. The attenuation is the setting on the attenuator plus its insertion loss. The 20/80 coupler was placed before the EDFA. The attenuator was placed before the TOBPF. The dots are the experimental data, and the solid curve is a fit to the data.

Fig. 6
Fig. 6

Calibrated conversion spectrum with the 20/80 coupler placed (a) before and (b) after the EDFA.

Fig. 7
Fig. 7

Cascaded χ ( 2 ) conversion-efficiency dependence upon input signal power. The dots are the experimental data, and the solid curve is a fit to the data. The 20/80 coupler was placed before the EDFA.

Fig. 8
Fig. 8

Cascaded χ ( 2 ) conversion-efficiency dependence upon pump wavelength. The dots are the experimental data, and the solid curve is a theoretical fit to the data. The 20/80 coupler was placed after the EDFA.

Fig. 9
Fig. 9

Cascaded χ ( 2 ) conversion-efficiency dependence upon attenuation in the fiber ring resonator. The dots are the experimental data, and the solid curve is a fit to the data. The 20/80 coupler was placed before the EDFA.

Fig. 10
Fig. 10

Cascaded χ ( 2 ) conversion-efficiency dependence upon signal wavelength. The dots are the experimental data, and the solid curve is a theoretical fit to the data. The 20/80 coupler was placed after the EDFA.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ k sf Λ = 2 π ,
Δ k sf = 2 π λ sf   n sf - 2 π λ s   n s - 2 π λ p   n p
Δ k Λ = 2 π ,
Δ k DFG = 2 π λ p   n p - 2 π λ s   n s - 2 π λ c   n c ,
Δ k SHG = 2 π λ SHG   n SHG - 4 π λ p   n p .
η = P SFG P P P S × 100 ( % / W ) .
η = P C - P S   ( dB ) .

Metrics