Abstract

The spectral characteristics of the Kerr-lens mode-locked Cr4+:YAG laser have been investigated both experimentally and theoretically. It was demonstrated that third-order dispersion provides a frequency downshift of the pulse spectrum (by as much as 70 nm) in combination with extra broadening (as much as 400 nm), in analogy with the generation of a spectral continuum in the fibers in the vicinity of zero-dispersion wavelength. The large redshift of the few optical cycle pulses (greater than 100 nm) and the dependence of the spectrum’s position on dispersion can be explained only if stimulated Raman scattering in the active medium is taken into account. It was shown that third-order dispersion can act as either a stabilizing or a destabilizing factor, depending on the amount of group-delay dispersion. Stabilization is found to be due to the negative feedback produced by the spectral sidebands.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Scestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystal at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
    [Crossref]
  2. N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in the wavelength region of 1.35–1.6 μm,” Bull. Acad. Sci. USSR, Phys. Ser. 54, 54–56 (1990).
  3. I. T. Sorokina, S. Naumov, E. Sorokin, and E. Wintner, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett. 24, 1578–1580 (1999).
    [Crossref]
  4. A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153–157 (2003).
    [Crossref]
  5. P. M. W. French, N. H. Rizli, J. R. Taylor, and A. V. Shestakov, “Continuous-wave mode-locked Cr4+:YAG laser,” Opt. Lett. 18, 39–41 (1993).
    [Crossref] [PubMed]
  6. D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 20-fs pulses by a prismless Cr4+:YAG laser,” Opt. Lett. 27, 61–63 (2002).
    [Crossref]
  7. S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B 76, 1–11 (2003).
    [Crossref]
  8. P. J. Conlon, Y. P. Tong, P. M. W. French, J. R. Taylor, and A. V. Shestakov, “Passive mode locking and dispersion measurement of a sub-100-fs Cr4+:YAG laser,” Opt. Lett. 19, 1468–1470 (1994).
    [Crossref] [PubMed]
  9. Y. Ishida and K. Naganuma, “Characteristics of femtosecond pulses near 1.5 μm in a self-mode-locked Cr4+:YAG laser,” Opt. Lett. 19, 2003–2005 (1994).
    [Crossref] [PubMed]
  10. Y. P. Tong, J. M. Sutherland, P. M. W. French, J. R. Taylor, A. V. Shestakov, and B. H. T. Chai, “Self-starting Kerr-lens mode-locked femtosecond Cr4+:YAG and picosecond Pr3+:YLF solid-state lasers,” Opt. Lett. 21, 644–646 (1996).
    [Crossref] [PubMed]
  11. Zh. Zhang, T. Nakagawa, K. Torizuka, T. Sugaya, and K. Kobayashi, “Self-starting mode-locked Cr4+:YAG laser with a low-loss broadband semiconductor saturable-absorber mirror,” Opt. Lett. 24, 1768–1770 (1999).
    [Crossref]
  12. A. Sennaroglu, C. R. Pollock, and H. Nathel, “Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Opt. Lett. 19, 390–392 (1994).
    [PubMed]
  13. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716–1718 (1997).
    [Crossref]
  14. S. Uemura and K. Torizuka, “Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser,” Opt. Lett. 24, 780–782 (1997).
    [Crossref]
  15. C. Chudoba, J. F. Fujimoto, E. P. Ippen, H. A. Haus, A. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 μm,” Opt. Lett. 26, 292–294 (2001).
    [Crossref]
  16. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Mechanisms of spectral shift in ultrashort-pulse laser oscillators,” J. Opt. Soc. Am. B 18, 1732–1741 (2001).
    [Crossref]
  17. S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515–562 (2001).
    [Crossref]
  18. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001), Chap. 5.
  19. P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-mode fiber,” Opt. Lett. 12, 628–630 (1987).
    [Crossref] [PubMed]
  20. F. W. Wise, I. A. Walmsley, and C. L. Tang, “Simultaneous formation of solitons and dispersive waves in a femtosecond ring dye laser,” Opt. Lett. 13, 129–131 (1988).
    [Crossref] [PubMed]
  21. P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by solitons at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
    [Crossref] [PubMed]
  22. T. Tomura and H. Petek, “Effect of third-order dispersion on the phases of solitonlike Cr4+:YAG-laser pulses characterized by the second-harmonic generation frequency-resolved optical gating method,” J. Opt. Soc. Am. B 18, 388–393 (2001).
    [Crossref]
  23. P. C. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G. Angelow, M. J. Lederer, and F. X. Kärtner, “Generation of sub-10-fs pulses from a Kerr-lens mode-locked Cr3+:LiCAF laser oscillator by use of third-order dispersion-compensating double-chirped mirrors,” Opt. Lett. 27, 1726–1728 (2002).
    [Crossref]
  24. H. A. Haus, I. Sorokina, and E. Sorokin, “Raman-induced redshift of ultrashort mode-locked laser pulses,” J. Opt. Soc. Am. B 15, 223–231 (1998).
    [Crossref]
  25. Zh. Li, L. Li, H. Tian, G. Zhou, and K. H. Spatschek, “Chirped femtosecond solitonlike laser pulse form with self-frequency shift,” Phys. Rev. Lett. 89, 263901 (2002).
    [Crossref] [PubMed]
  26. M. Piché and F. Salin, “Self-mode locking of solid-state lasers without apertures,” Opt. Lett. 18, 1041–1043 (1993).
    [Crossref] [PubMed]
  27. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Multipulse operation and limits of the Kerr-lens mode locking stability,” IEEE J. Quantum Electron. 39, 323–336 (2003).
    [Crossref]
  28. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (Springer, New York, 1992), Chap. 1.
  29. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
    [Crossref]
  30. C. Headley and G. P. Agrawal, “Unified description of ultrafast stimulated Raman scattering in optical fibers,” J. Opt. Soc. Am. B 13, 2170–2177 (1996).
    [Crossref]
  31. D. Hollenbeck and C. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
    [Crossref]
  32. F. W. Wise, I. A. Walmsley, and C. L. Tang, “Simultaneous formation of solitons and dispersive waves in a femtosecond ring dye laser,” Opt. Lett. 13, 129–131 (1988).
    [Crossref] [PubMed]
  33. H. A. Haus, J. D. Moores, and L. E. Nelson, “Effect of third-order dispersion on passive mode locking,” Opt. Lett. 18, 51–53 (1993).
    [Crossref] [PubMed]
  34. A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, and V. Stoev, “Ultrafast laser and amplifier sources,” Appl. Phys. B 65, 161–174 (1997).
    [Crossref]
  35. T. Tomaru and H. Petek, “Effect of third-order dispersion on the phases of solitonlike Cr4+:YAG-laser pulses characterized by the second-harmonic generation frequency-resolved optical gating method,” J. Opt. Soc. Am. B 18, 388–393 (2001).
    [Crossref]
  36. J. N. Elgin, “Soliton propagation in an optical fiber with third-order dispersion,” Opt. Lett. 20, 1409–1411 (1992).
    [Crossref]
  37. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
    [Crossref]
  38. Q. Lin and I. Sorokina, “High-order dispersion effects in solitary mode-locked lasers: side-band generation,” Opt. Commun. 153, 285–288 (1998).
    [Crossref]
  39. R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B Suppl. 70, S51–S57 (2000).
    [Crossref]

2003 (3)

A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153–157 (2003).
[Crossref]

S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B 76, 1–11 (2003).
[Crossref]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Multipulse operation and limits of the Kerr-lens mode locking stability,” IEEE J. Quantum Electron. 39, 323–336 (2003).
[Crossref]

2002 (4)

2001 (5)

2000 (1)

R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B Suppl. 70, S51–S57 (2000).
[Crossref]

1999 (2)

1998 (2)

H. A. Haus, I. Sorokina, and E. Sorokin, “Raman-induced redshift of ultrashort mode-locked laser pulses,” J. Opt. Soc. Am. B 15, 223–231 (1998).
[Crossref]

Q. Lin and I. Sorokina, “High-order dispersion effects in solitary mode-locked lasers: side-band generation,” Opt. Commun. 153, 285–288 (1998).
[Crossref]

1997 (3)

1996 (2)

1994 (4)

1993 (3)

1992 (1)

1990 (2)

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by solitons at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in the wavelength region of 1.35–1.6 μm,” Bull. Acad. Sci. USSR, Phys. Ser. 54, 54–56 (1990).

1989 (1)

1988 (3)

F. W. Wise, I. A. Walmsley, and C. L. Tang, “Simultaneous formation of solitons and dispersive waves in a femtosecond ring dye laser,” Opt. Lett. 13, 129–131 (1988).
[Crossref] [PubMed]

F. W. Wise, I. A. Walmsley, and C. L. Tang, “Simultaneous formation of solitons and dispersive waves in a femtosecond ring dye laser,” Opt. Lett. 13, 129–131 (1988).
[Crossref] [PubMed]

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Scestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystal at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[Crossref]

1987 (1)

Agrawal, G. P.

Akhmanov, S. A.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (Springer, New York, 1992), Chap. 1.

Alcock, A. J.

A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153–157 (2003).
[Crossref]

Angelow, G.

Angert, N. B.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Scestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystal at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[Crossref]

Apai, P.

R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B Suppl. 70, S51–S57 (2000).
[Crossref]

Backus, S.

A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, and V. Stoev, “Ultrafast laser and amplifier sources,” Appl. Phys. B 65, 161–174 (1997).
[Crossref]

Borodin, N. I.

N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in the wavelength region of 1.35–1.6 μm,” Bull. Acad. Sci. USSR, Phys. Ser. 54, 54–56 (1990).

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Scestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystal at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[Crossref]

Brabec, T.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[Crossref]

Cantrell, C.

Cassanho, A.

Chai, B. H. T.

Chang, Z.

A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, and V. Stoev, “Ultrafast laser and amplifier sources,” Appl. Phys. B 65, 161–174 (1997).
[Crossref]

Chen, H. H.

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by solitons at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-mode fiber,” Opt. Lett. 12, 628–630 (1987).
[Crossref] [PubMed]

Chirkin, A. S.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (Springer, New York, 1992), Chap. 1.

Christov, I.

A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, and V. Stoev, “Ultrafast laser and amplifier sources,” Appl. Phys. B 65, 161–174 (1997).
[Crossref]

Chudoba, C.

Conlon, P. J.

Curley, P. F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[Crossref]

DeBell, G.

R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B Suppl. 70, S51–S57 (2000).
[Crossref]

Durfee, C.

A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, and V. Stoev, “Ultrafast laser and amplifier sources,” Appl. Phys. B 65, 161–174 (1997).
[Crossref]

Elgin, J. N.

French, P. M. W.

Fujimoto, J. F.

Fujimoto, J. G.

Garmash, V. M.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Scestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystal at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[Crossref]

Gopinath, J. T.

Gordon, J. P.

Grawert, F.

Haus, H. A.

Headley, C.

Hnatovsky, K.

A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153–157 (2003).
[Crossref]

Hollenbeck, D.

Ippen, E. P.

Ishida, Y.

Jenssen, H. P.

Kalashnikov, V. L.

S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B 76, 1–11 (2003).
[Crossref]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Multipulse operation and limits of the Kerr-lens mode locking stability,” IEEE J. Quantum Electron. 39, 323–336 (2003).
[Crossref]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Mechanisms of spectral shift in ultrashort-pulse laser oscillators,” J. Opt. Soc. Am. B 18, 1732–1741 (2001).
[Crossref]

Kapteyn, H. C.

A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, and V. Stoev, “Ultrafast laser and amplifier sources,” Appl. Phys. B 65, 161–174 (1997).
[Crossref]

Kärtner, F. X.

Kobayashi, K.

Köhazi-Kis, A.

R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B Suppl. 70, S51–S57 (2000).
[Crossref]

Kovacs, A. P.

R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B Suppl. 70, S51–S57 (2000).
[Crossref]

Krausz, F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[Crossref]

Kück, S.

S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515–562 (2001).
[Crossref]

Lako, S.

R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B Suppl. 70, S51–S57 (2000).
[Crossref]

Lederer, M. J.

Lee, Y. C.

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by solitons at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-mode fiber,” Opt. Lett. 12, 628–630 (1987).
[Crossref] [PubMed]

Li, L.

Zh. Li, L. Li, H. Tian, G. Zhou, and K. H. Spatschek, “Chirped femtosecond solitonlike laser pulse form with self-frequency shift,” Phys. Rev. Lett. 89, 263901 (2002).
[Crossref] [PubMed]

Li, Zh.

Zh. Li, L. Li, H. Tian, G. Zhou, and K. H. Spatschek, “Chirped femtosecond solitonlike laser pulse form with self-frequency shift,” Phys. Rev. Lett. 89, 263901 (2002).
[Crossref] [PubMed]

Lin, Q.

Q. Lin and I. Sorokina, “High-order dispersion effects in solitary mode-locked lasers: side-band generation,” Opt. Commun. 153, 285–288 (1998).
[Crossref]

Louderback, A. W.

R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B Suppl. 70, S51–S57 (2000).
[Crossref]

Menyuk, C. R.

Moores, J. D.

Morgner, A.

Morgner, U.

Mott, L.

R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B Suppl. 70, S51–S57 (2000).
[Crossref]

Murnane, M. M.

A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, and V. Stoev, “Ultrafast laser and amplifier sources,” Appl. Phys. B 65, 161–174 (1997).
[Crossref]

Naganuma, K.

Nakagawa, T.

Nathel, H.

Naumov, S.

S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B 76, 1–11 (2003).
[Crossref]

I. T. Sorokina, S. Naumov, E. Sorokin, and E. Wintner, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett. 24, 1578–1580 (1999).
[Crossref]

Nelson, L. E.

Okhrimchuk, A. G.

N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in the wavelength region of 1.35–1.6 μm,” Bull. Acad. Sci. USSR, Phys. Ser. 54, 54–56 (1990).

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Scestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystal at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[Crossref]

Petek, H.

Piché, M.

Pollock, C. R.

Ripin, D. J.

Rizli, N. H.

Rundquist, A.

A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, and V. Stoev, “Ultrafast laser and amplifier sources,” Appl. Phys. B 65, 161–174 (1997).
[Crossref]

Salin, F.

Scestakov, A. V.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Scestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystal at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[Crossref]

Scheuer, V.

Scorah, P.

A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153–157 (2003).
[Crossref]

Sennaroglu, A.

Shestakov, A. V.

Siyuchenko, O. G.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Scestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystal at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[Crossref]

Sorokin, E.

Sorokina, I.

H. A. Haus, I. Sorokina, and E. Sorokin, “Raman-induced redshift of ultrashort mode-locked laser pulses,” J. Opt. Soc. Am. B 15, 223–231 (1998).
[Crossref]

Q. Lin and I. Sorokina, “High-order dispersion effects in solitary mode-locked lasers: side-band generation,” Opt. Commun. 153, 285–288 (1998).
[Crossref]

Sorokina, I. T.

Spatschek, K. H.

Zh. Li, L. Li, H. Tian, G. Zhou, and K. H. Spatschek, “Chirped femtosecond solitonlike laser pulse form with self-frequency shift,” Phys. Rev. Lett. 89, 263901 (2002).
[Crossref] [PubMed]

Spielmann, C.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[Crossref]

Stoev, V.

A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, and V. Stoev, “Ultrafast laser and amplifier sources,” Appl. Phys. B 65, 161–174 (1997).
[Crossref]

Stolen, R. H.

Sugaya, T.

Sutherland, J. M.

Szipöcs, R.

R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B Suppl. 70, S51–S57 (2000).
[Crossref]

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716–1718 (1997).
[Crossref]

Taft, G.

A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, and V. Stoev, “Ultrafast laser and amplifier sources,” Appl. Phys. B 65, 161–174 (1997).
[Crossref]

Tang, C. L.

Taylor, J. R.

Tempea, G.

S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B 76, 1–11 (2003).
[Crossref]

Tian, H.

Zh. Li, L. Li, H. Tian, G. Zhou, and K. H. Spatschek, “Chirped femtosecond solitonlike laser pulse form with self-frequency shift,” Phys. Rev. Lett. 89, 263901 (2002).
[Crossref] [PubMed]

Tikhonravov, A. V.

R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B Suppl. 70, S51–S57 (2000).
[Crossref]

Tomaru, T.

Tomlinson, W. J.

Tomura, T.

Tong, Y. P.

Torizuka, K.

Trubetskov, M. K.

R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B Suppl. 70, S51–S57 (2000).
[Crossref]

Tschudi, T.

Uemura, S.

Vysloukh, V. A.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (Springer, New York, 1992), Chap. 1.

Wagenblast, P. C.

Wai, P. K. A.

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by solitons at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-mode fiber,” Opt. Lett. 12, 628–630 (1987).
[Crossref] [PubMed]

Walmsley, I. A.

Wintner, E.

Wise, F. W.

Zeek, E.

A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, and V. Stoev, “Ultrafast laser and amplifier sources,” Appl. Phys. B 65, 161–174 (1997).
[Crossref]

Zhang, Zh.

Zhitnyuk, V. A.

N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in the wavelength region of 1.35–1.6 μm,” Bull. Acad. Sci. USSR, Phys. Ser. 54, 54–56 (1990).

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Scestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystal at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[Crossref]

Zhou, G.

Zh. Li, L. Li, H. Tian, G. Zhou, and K. H. Spatschek, “Chirped femtosecond solitonlike laser pulse form with self-frequency shift,” Phys. Rev. Lett. 89, 263901 (2002).
[Crossref] [PubMed]

Appl. Phys. B (3)

S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B 76, 1–11 (2003).
[Crossref]

S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515–562 (2001).
[Crossref]

A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, and V. Stoev, “Ultrafast laser and amplifier sources,” Appl. Phys. B 65, 161–174 (1997).
[Crossref]

Appl. Phys. B Suppl. (1)

R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers,” Appl. Phys. B Suppl. 70, S51–S57 (2000).
[Crossref]

Bull. Acad. Sci. USSR, Phys. Ser. (1)

N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in the wavelength region of 1.35–1.6 μm,” Bull. Acad. Sci. USSR, Phys. Ser. 54, 54–56 (1990).

IEEE J. Quantum Electron. (2)

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[Crossref]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Multipulse operation and limits of the Kerr-lens mode locking stability,” IEEE J. Quantum Electron. 39, 323–336 (2003).
[Crossref]

J. Opt. Soc. Am. B (7)

Opt. Commun. (2)

A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153–157 (2003).
[Crossref]

Q. Lin and I. Sorokina, “High-order dispersion effects in solitary mode-locked lasers: side-band generation,” Opt. Commun. 153, 285–288 (1998).
[Crossref]

Opt. Lett. (18)

J. N. Elgin, “Soliton propagation in an optical fiber with third-order dispersion,” Opt. Lett. 20, 1409–1411 (1992).
[Crossref]

F. W. Wise, I. A. Walmsley, and C. L. Tang, “Simultaneous formation of solitons and dispersive waves in a femtosecond ring dye laser,” Opt. Lett. 13, 129–131 (1988).
[Crossref] [PubMed]

H. A. Haus, J. D. Moores, and L. E. Nelson, “Effect of third-order dispersion on passive mode locking,” Opt. Lett. 18, 51–53 (1993).
[Crossref] [PubMed]

P. C. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G. Angelow, M. J. Lederer, and F. X. Kärtner, “Generation of sub-10-fs pulses from a Kerr-lens mode-locked Cr3+:LiCAF laser oscillator by use of third-order dispersion-compensating double-chirped mirrors,” Opt. Lett. 27, 1726–1728 (2002).
[Crossref]

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-mode fiber,” Opt. Lett. 12, 628–630 (1987).
[Crossref] [PubMed]

F. W. Wise, I. A. Walmsley, and C. L. Tang, “Simultaneous formation of solitons and dispersive waves in a femtosecond ring dye laser,” Opt. Lett. 13, 129–131 (1988).
[Crossref] [PubMed]

P. M. W. French, N. H. Rizli, J. R. Taylor, and A. V. Shestakov, “Continuous-wave mode-locked Cr4+:YAG laser,” Opt. Lett. 18, 39–41 (1993).
[Crossref] [PubMed]

D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 20-fs pulses by a prismless Cr4+:YAG laser,” Opt. Lett. 27, 61–63 (2002).
[Crossref]

I. T. Sorokina, S. Naumov, E. Sorokin, and E. Wintner, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett. 24, 1578–1580 (1999).
[Crossref]

P. J. Conlon, Y. P. Tong, P. M. W. French, J. R. Taylor, and A. V. Shestakov, “Passive mode locking and dispersion measurement of a sub-100-fs Cr4+:YAG laser,” Opt. Lett. 19, 1468–1470 (1994).
[Crossref] [PubMed]

Y. Ishida and K. Naganuma, “Characteristics of femtosecond pulses near 1.5 μm in a self-mode-locked Cr4+:YAG laser,” Opt. Lett. 19, 2003–2005 (1994).
[Crossref] [PubMed]

Y. P. Tong, J. M. Sutherland, P. M. W. French, J. R. Taylor, A. V. Shestakov, and B. H. T. Chai, “Self-starting Kerr-lens mode-locked femtosecond Cr4+:YAG and picosecond Pr3+:YLF solid-state lasers,” Opt. Lett. 21, 644–646 (1996).
[Crossref] [PubMed]

Zh. Zhang, T. Nakagawa, K. Torizuka, T. Sugaya, and K. Kobayashi, “Self-starting mode-locked Cr4+:YAG laser with a low-loss broadband semiconductor saturable-absorber mirror,” Opt. Lett. 24, 1768–1770 (1999).
[Crossref]

A. Sennaroglu, C. R. Pollock, and H. Nathel, “Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Opt. Lett. 19, 390–392 (1994).
[PubMed]

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716–1718 (1997).
[Crossref]

S. Uemura and K. Torizuka, “Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser,” Opt. Lett. 24, 780–782 (1997).
[Crossref]

C. Chudoba, J. F. Fujimoto, E. P. Ippen, H. A. Haus, A. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 μm,” Opt. Lett. 26, 292–294 (2001).
[Crossref]

M. Piché and F. Salin, “Self-mode locking of solid-state lasers without apertures,” Opt. Lett. 18, 1041–1043 (1993).
[Crossref] [PubMed]

Phys. Rev. A (1)

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by solitons at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

Zh. Li, L. Li, H. Tian, G. Zhou, and K. H. Spatschek, “Chirped femtosecond solitonlike laser pulse form with self-frequency shift,” Phys. Rev. Lett. 89, 263901 (2002).
[Crossref] [PubMed]

Sov. J. Quantum Electron. (1)

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Scestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystal at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001), Chap. 5.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (Springer, New York, 1992), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the Cr:YAG laser. Mirrors M1, M2 (radius of curvature, 100 mm) and M3 are all highly reflecting at 1500 nm and transmitting at 1070 nm. OC, output coupler; FS, fused-silica; F, focusing lens.

Fig. 2
Fig. 2

Dependence of central wavelength on pulse duration. The open circles correspond to different pulse energies and intracavity dispersion.

Fig. 3
Fig. 3

Spectra of measured intracavity loss owing to water vapor (solid curve), the output coupler (dashed curve), and reabsorption inside the active medium (dotted curve).

Fig. 4
Fig. 4

Dependence on GDD of (a), (d) pulse width; (b), (e) energy; and (c), (f) spectrum shift averaged over saturation parameter δ. The TOD parameters are 0 (curves A), 2550 (curves B), and 5100 fs3 (curves C). (a)–(c) α-ρ=0.048 for γ=0.05; (d)–(f) α-ρ=0.023 for γ=0.025.

Fig. 5
Fig. 5

Single-pulse stability zones (shaded regions). The TOD parameters are (a), (d) 0; (b), (e) 2550; and (c), (f) 5100 fs3. (a)–(c) γ=0.05; α-ρ=0.048; (d)–(f) γ=0.025; α-ρ=0.023.

Fig. 6
Fig. 6

Field intensities for γ=0.05, α-ρ=0.04, β2=-200 fs2, δ=7, and (a) β3=5100, (b) 6800, and (c) 12,000 fs3. Dashed curves, correspond to the sech-shaped pulse.

Fig. 7
Fig. 7

Quasi-cw perturbation (labeled by arrows) of (a) the generation spectrum and (b) the field intensity profile. γ=0.05, α-ρ=0.05, β2=-610 fs2, β3=5100 fs3, and δ=0.3.

Fig. 8
Fig. 8

Experimentally observed (darker curve) and simulated (lighter curve) spectra. Simulation parameters are γ=0.05, α-ρ=0.04, β2=-200 fs2, δ=5, and β3=6800 fs3. λ0 is the ZDW; λ0+Δλ corresponds to the maximum spectrum from soliton theory; λsb is the wavelength of the dispersive wave, with j=-1 [see Eq. (5)].

Fig. 9
Fig. 9

Spectral shifts resulting from the joint action of SRS, TOD, and frequency-dependent losses (solid curve) and from sole TOD action (dashed curve, β3=5100 fs3). Data correspond to the shortest pulses for a given β2. γ=0.05 and α-ρ=0.048. Circles denote the experimentally observed shifts.

Tables (2)

Tables Icon

Table 1 Active Medium and Laser Parameters

Tables Icon

Table 2 Parameters of Raman Scattering a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

a(z, t)z=α-ρ+tg22t2-γ1+δ|a(z, t)|2a(z, t)-im=2N(-i)mβmm!mtm+i|a(z, t)|2×a(z, t)+PSRS(t).
ρ=m=06κmmtm,
α(z, t)t=σa[αmax-α(z, t)] Ipωp-σgα(z, t) |a(z, t)|2ω0-α(z, t)τg,
α=αmσaIpTcavωpσaIpTcavωp+EEg+Tcavτg-1,
PSRSl(t)=i gSRSl2τl as(t)-tG(t-t)ap(t)as*(t)×exp[iΩl(t-t)]dt.
m=3(-1)m(ω0-ωsb)mβmm!+β22tp2=2πj,
j=0,±1,,

Metrics