Abstract

The field-energy distributions and effective mode areas of silica-based photonic bandgap fibers with a honeycomb air-hole structure in the cladding and an extra air hole defining the core are investigated. We present a generalization of the common effective-area definition, suitable for the problem at hand, and compare the results for the photonic bandgap fibers with those of index-guiding microstructured fibers. While the majority of the field energy in the honeycomb photonic bandgap fibers is found to reside in the silica, a substantial fraction (up to ∼30%) can be located in the air holes. This property may show such fibers as particularly interesting for sensor applications, especially those based on nonlinear effects or interaction with other structures (e.g., Bragg gratings) in the glass.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription