Abstract

The field-energy distributions and effective mode areas of silica-based photonic bandgap fibers with a honeycomb air-hole structure in the cladding and an extra air hole defining the core are investigated. We present a generalization of the common effective-area definition, suitable for the problem at hand, and compare the results for the photonic bandgap fibers with those of index-guiding microstructured fibers. While the majority of the field energy in the honeycomb photonic bandgap fibers is found to reside in the silica, a substantial fraction (up to ∼30%) can be located in the air holes. This property may show such fibers as particularly interesting for sensor applications, especially those based on nonlinear effects or interaction with other structures (e.g., Bragg gratings) in the glass.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight and P. St. J. Russell, “Applied optics: new ways to guide light,” Science 296, 276–277 (2002).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres: an endless variety,” IEICE Trans. Electron. E84-C, 585–591 (2001).
  3. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
    [CrossRef]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  5. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
    [CrossRef]
  6. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, and A. Petersson, “Highly nonlinear photonic crystal fiber with zero dispersion at 1.55 μm,” Optical Fiber Communications Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper FA9.
  7. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  8. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  9. J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
    [CrossRef]
  10. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [CrossRef] [PubMed]
  11. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
    [CrossRef]
  12. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
    [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).
  14. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1996).
  15. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef] [PubMed]
  16. J. Lægsgaard, S. E. B. Libori, and A. Bjarklev, “Chromatic dispersion in photonic crystal fibers: fast and accurate scheme for calculation,” J. Opt. Soc. Am. B 20, 443–448 (2003).
    [CrossRef]
  17. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. S. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
    [CrossRef]
  18. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35, 1189–1189 (1999).
    [CrossRef]

2003

2002

J. C. Knight and P. St. J. Russell, “Applied optics: new ways to guide light,” Science 296, 276–277 (2002).
[CrossRef] [PubMed]

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

2001

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres: an endless variety,” IEICE Trans. Electron. E84-C, 585–591 (2001).

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

2000

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

1999

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. S. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35, 1189–1189 (1999).
[CrossRef]

1998

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

1996

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Atkin, D. M.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Barkou, S. E.

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Bennett, P. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35, 1189–1189 (1999).
[CrossRef]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[CrossRef]

Birks, T. A.

T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres: an endless variety,” IEICE Trans. Electron. E84-C, 585–591 (2001).

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. S. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Bjarklev, A.

J. Lægsgaard, S. E. B. Libori, and A. Bjarklev, “Chromatic dispersion in photonic crystal fibers: fast and accurate scheme for calculation,” J. Opt. Soc. Am. B 20, 443–448 (2003).
[CrossRef]

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[CrossRef]

Broeng, J.

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Ho, H. L.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

Hoo, Y. L.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

Jin, W.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Knight, J. C.

J. C. Knight and P. St. J. Russell, “Applied optics: new ways to guide light,” Science 296, 276–277 (2002).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres: an endless variety,” IEICE Trans. Electron. E84-C, 585–591 (2001).

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. S. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Lægsgaard, J.

Libori, S. E. B.

Mangan, B. J.

T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres: an endless variety,” IEICE Trans. Electron. E84-C, 585–591 (2001).

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. S. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35, 1189–1189 (1999).
[CrossRef]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[CrossRef]

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Ranka, J. K.

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35, 1189–1189 (1999).
[CrossRef]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[CrossRef]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. S. J.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. S. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Russell, P. St. J.

J. C. Knight and P. St. J. Russell, “Applied optics: new ways to guide light,” Science 296, 276–277 (2002).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres: an endless variety,” IEICE Trans. Electron. E84-C, 585–591 (2001).

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Stentz, A. J.

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Wang, D. N.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

Windeler, R. S.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

Electron. Lett.

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35, 1189–1189 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. S. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

IEICE Trans. Electron.

T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres: an endless variety,” IEICE Trans. Electron. E84-C, 585–591 (2001).

J. Opt. Soc. Am. B

Meas. Sci. Technol.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Opt. Commun.

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

Opt. Eng.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Science

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight and P. St. J. Russell, “Applied optics: new ways to guide light,” Science 296, 276–277 (2002).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1996).

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, and A. Petersson, “Highly nonlinear photonic crystal fiber with zero dispersion at 1.55 μm,” Optical Fiber Communications Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper FA9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Generic PCF structure investigated in the present work. The core and innermost cladding holes are shown along with the defining parameters dc, dcl, and Λ.

Fig. 2
Fig. 2

Relative difference between the effective-area definition proposed here, Eq. (18), and the commonly used definition, Eq. (19).

Fig. 3
Fig. 3

Effective area, relative to wavelength, calculated from Eq. (18) for a fiber with dcl/Λ=0.95 and various values of the core-hole diameter, dc.

Fig. 4
Fig. 4

Effective area relative to the wavelength of the guided mode for honeycomb PBG fibers with dcl/Λ equal to (a) 0.56, (b) 0.68, and (c) 0.8, and various values of dc/dcl.

Fig. 5
Fig. 5

Plots of the chromatic dispersion coefficient, D, in units of ps/nm/km for various values of the pitch in a honeycomb PBG fiber with dcl/Λ=0.68 and dc/dcl=0.45.

Fig. 6
Fig. 6

Longest zero-dispersion wavelength, λ0, as a function of the physical pitch, Λ. Structures and labeling are as in Fig. 4.

Fig. 7
Fig. 7

Effective area at the zero-dispersion wavelength, λ0, as a function of λ0. Structures and labeling are as in Fig. 4.

Fig. 8
Fig. 8

Effective area and dispersion zeros for index-guiding PCF’s. Top panel: Zero-dispersion wavelength versus pitch. Lower panel: Effective area at the zero-dispersion wavelength as a function of the zero-dispersion wavelength.

Fig. 9
Fig. 9

Fraction of the electric field energy of the guided mode present in the air holes. Structures and labeling are as in Fig. 4.

Fig. 10
Fig. 10

(a) Effective area relative to wavelength, (b) effective area at the zero-dispersion wavelength, and (c) energy fraction in air for some fiber designs in which a substantial part of the field energy resides in the airholes.

Fig. 11
Fig. 11

Radial profile of the electric field-energy density, obtained by integration over the angular coordinate in a coordinate system with origin at the core center. The curves are normalized to have unit radial integrals. The thin vertical lines indicate the position of the first ring of cladding airholes.

Fig. 12
Fig. 12

Variation of the prefactor n1/ng0 in Eq. (18) with wavelength for a fiber with dcl/Λ=0.8 and various values of the core-hole diameter, dc.

Fig. 13
Fig. 13

Energy fraction in air of index-guiding fibers with a cladding structure as shown in Fig. 8 and various air-hole diameters d.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

H(r)=exp[i(ωt-βz)]H(x, y)
ω2c2=H, ΘHH, H,
ΘH=×1r(r) ×H,
×H=iωE.
n=n0+Δn=n1+n2|E|2,
n2=38n1Re χxxxx(3).
Δω=-ω0c2E, ΔrE2H, H.
ω(β0+Δβ)+Δω=ω0,ω(β0)=ω0.
ωβ Δβ=-ΔωΔβ=-Δωvg0.
Δneff=-cΔωvg0ω0.
Δr=2rn2|E|2+O(n22|E|4),
Δneff=0c3n1n2|E|4dAvg0H, H=0cn1n2|E|4dAvg0E, D,
Δneff=P n2PAeff,
Δneff=Pi=1Nn2iPAeffi,
P=(E×H)zdA=vg0E, D.
Δneff=Pi=1Nn2iP(n1i0c)2i|E|4dA(vg0E, D)2=Pi=1Nn2iP(n1ing0)2i|E|4dAE, Dr2.
Aeffi=E, Dr2(n1ing0)2i|E|4dA=n1ing02E, Dr2i|EDr|2dA.
Aeff=n1ng02E, Dr2SiO2|EDr|2dA.
A˜eff=|E|2dA2|E|4dA.
n1ng02E, Dr2SiO2|EDr|2dA=n12|E|2dA2(n1ng0)2|E|4dA|E|2dA2|E|4dA.
ΔAeff=Aeff-A˜eff,

Metrics