Abstract

We discuss the effects on coupling efficiency of launching an optical fringe pattern into a single-mode optical fiber. We show that under some circumstances, coupling efficiencies of ∼90% can be obtained by the launching of the central fringe of a two-beam interference pattern into the fiber. Theoretical calculations based on mode overlapping integrals show that, compared with commonly used coupling schemes, it is possible to improve greatly the coupling efficiency into an optical fiber. By using a He-Ne laser operating at 633 nm and an optical fiber with a mode field diameter of 3.3 μm and N.A. of 0.16, we have obtained a coupling efficiency of ∼91% at an interfering half-angle of ∼60 mrad, in good agreement with our theoretical predictions.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. B. Jeunhomme, Single-Mode Fiber Optics: Principles and Applications (Optical Engineering Series, No. 23) (Marcel Dekker, New York, 1983).
  2. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, Cambridge, England, 1999).
  3. M. Lange, E. Bryant, M. Myers, J. Myers, R. Wu, and C. Hardy, “High-gain short length phosphate glass erbium-doped fiber amplifier material,” Vol. 54 of 2001 OSA Optical Fiber Communications, Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001).
  4. B. Porter, “Arrayed waveguide gratings,” Fiber Optic Product News, December (2000), pp. 84–85.
  5. N. Khan and J. Rue, “Focus on the 40Gb/s challenge,” Fiber Systems International 1, 33–36 (2000).
  6. G. Keiser, Optical Fiber Communications (McGraw-Hill, New York 1983), Chap. 5.
  7. B. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 3.
  8. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 2.
  9. F. C. Hallard, Fiber Optics Handbook for Engineers and Scientists (McGraw-Hill, New York, 1990).
  10. V. Vusirikala, S. S. Saini, R. E. Bartolo, R. Whaley, S. Agarwala, F. G. Johnson, D. R. Stone, and M. Dagenais, “High butt-coupling efficiency to single-mode fibers using a 1.55 mm InGaAsP laser integrated with a tapered ridge mode transformer,” IEEE Photon. Technol. Lett. 9, 1472–1474 (1997).
    [CrossRef]
  11. U. Peschel, L. Leine, F. Lederer, and C. Wachter, “Bending the path of light with a microprism,” Vol. 56 of 2001 Conference on Laser & Electro-Optics, Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001).
  12. Z. S. Benaich, R. D. Pradhan, S. M. Mian, and N. Melikechi, “Effects of interference in quasi-phase-matched, periodically segmented, potassium titanyl phosphate waveguides,” Appl. Phys. Lett. 75, 3261–3263 (1999).
    [CrossRef]
  13. M. K. Amara and N. Melikechi, “Enhancement of the coupling efficiency in optical fiber using two-beam optical interference,” Appl. Phys. Lett. 80, 3494–3496 (2002).
    [CrossRef]
  14. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High-spatial-resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
    [CrossRef]
  15. A. K. Ghatak and A. Sharma, “Single mode fiber characteristics,” J. Inst. Electron. Telecom. Engrs. (India) 32, 213–219 (1986).
  16. D. Marcuse, “Loss analysis of single mode fiber splices,” Bell Syst. Tech. J. 56, 703–717 (1977).
    [CrossRef]
  17. A. Y. Hamad and J. P. Wicksted, “Volume grating produced by intersecting Gaussian beams in an absorbing medium: a Bragg diffraction model,” Opt. Commun. 138, 354–356 (1997).
    [CrossRef]
  18. C. Ozkul, N. Anthore, M. K. Amara, S. Leroux, and S. Rasset, “Optical amplification of diffraction-free beams by photorefractive two-wave mixing and its application to laser Doppler velocimetry,” Appl. Opt. 34, 5485–5491 (1995).
    [CrossRef] [PubMed]
  19. L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).

2002 (1)

M. K. Amara and N. Melikechi, “Enhancement of the coupling efficiency in optical fiber using two-beam optical interference,” Appl. Phys. Lett. 80, 3494–3496 (2002).
[CrossRef]

2001 (1)

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High-spatial-resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

2000 (1)

N. Khan and J. Rue, “Focus on the 40Gb/s challenge,” Fiber Systems International 1, 33–36 (2000).

1999 (1)

Z. S. Benaich, R. D. Pradhan, S. M. Mian, and N. Melikechi, “Effects of interference in quasi-phase-matched, periodically segmented, potassium titanyl phosphate waveguides,” Appl. Phys. Lett. 75, 3261–3263 (1999).
[CrossRef]

1997 (2)

V. Vusirikala, S. S. Saini, R. E. Bartolo, R. Whaley, S. Agarwala, F. G. Johnson, D. R. Stone, and M. Dagenais, “High butt-coupling efficiency to single-mode fibers using a 1.55 mm InGaAsP laser integrated with a tapered ridge mode transformer,” IEEE Photon. Technol. Lett. 9, 1472–1474 (1997).
[CrossRef]

A. Y. Hamad and J. P. Wicksted, “Volume grating produced by intersecting Gaussian beams in an absorbing medium: a Bragg diffraction model,” Opt. Commun. 138, 354–356 (1997).
[CrossRef]

1995 (1)

1986 (1)

A. K. Ghatak and A. Sharma, “Single mode fiber characteristics,” J. Inst. Electron. Telecom. Engrs. (India) 32, 213–219 (1986).

1977 (1)

D. Marcuse, “Loss analysis of single mode fiber splices,” Bell Syst. Tech. J. 56, 703–717 (1977).
[CrossRef]

Agarwala, S.

V. Vusirikala, S. S. Saini, R. E. Bartolo, R. Whaley, S. Agarwala, F. G. Johnson, D. R. Stone, and M. Dagenais, “High butt-coupling efficiency to single-mode fibers using a 1.55 mm InGaAsP laser integrated with a tapered ridge mode transformer,” IEEE Photon. Technol. Lett. 9, 1472–1474 (1997).
[CrossRef]

Amara, M. K.

Anthore, N.

Bartolo, R. E.

V. Vusirikala, S. S. Saini, R. E. Bartolo, R. Whaley, S. Agarwala, F. G. Johnson, D. R. Stone, and M. Dagenais, “High butt-coupling efficiency to single-mode fibers using a 1.55 mm InGaAsP laser integrated with a tapered ridge mode transformer,” IEEE Photon. Technol. Lett. 9, 1472–1474 (1997).
[CrossRef]

Benaich, Z. S.

Z. S. Benaich, R. D. Pradhan, S. M. Mian, and N. Melikechi, “Effects of interference in quasi-phase-matched, periodically segmented, potassium titanyl phosphate waveguides,” Appl. Phys. Lett. 75, 3261–3263 (1999).
[CrossRef]

Dagenais, M.

V. Vusirikala, S. S. Saini, R. E. Bartolo, R. Whaley, S. Agarwala, F. G. Johnson, D. R. Stone, and M. Dagenais, “High butt-coupling efficiency to single-mode fibers using a 1.55 mm InGaAsP laser integrated with a tapered ridge mode transformer,” IEEE Photon. Technol. Lett. 9, 1472–1474 (1997).
[CrossRef]

Ghatak, A. K.

A. K. Ghatak and A. Sharma, “Single mode fiber characteristics,” J. Inst. Electron. Telecom. Engrs. (India) 32, 213–219 (1986).

Goldberg, B. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High-spatial-resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

Hamad, A. Y.

A. Y. Hamad and J. P. Wicksted, “Volume grating produced by intersecting Gaussian beams in an absorbing medium: a Bragg diffraction model,” Opt. Commun. 138, 354–356 (1997).
[CrossRef]

Ippolito, S. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High-spatial-resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

Johnson, F. G.

V. Vusirikala, S. S. Saini, R. E. Bartolo, R. Whaley, S. Agarwala, F. G. Johnson, D. R. Stone, and M. Dagenais, “High butt-coupling efficiency to single-mode fibers using a 1.55 mm InGaAsP laser integrated with a tapered ridge mode transformer,” IEEE Photon. Technol. Lett. 9, 1472–1474 (1997).
[CrossRef]

Khan, N.

N. Khan and J. Rue, “Focus on the 40Gb/s challenge,” Fiber Systems International 1, 33–36 (2000).

Leroux, S.

Marcuse, D.

D. Marcuse, “Loss analysis of single mode fiber splices,” Bell Syst. Tech. J. 56, 703–717 (1977).
[CrossRef]

Melikechi, N.

M. K. Amara and N. Melikechi, “Enhancement of the coupling efficiency in optical fiber using two-beam optical interference,” Appl. Phys. Lett. 80, 3494–3496 (2002).
[CrossRef]

Z. S. Benaich, R. D. Pradhan, S. M. Mian, and N. Melikechi, “Effects of interference in quasi-phase-matched, periodically segmented, potassium titanyl phosphate waveguides,” Appl. Phys. Lett. 75, 3261–3263 (1999).
[CrossRef]

Mian, S. M.

Z. S. Benaich, R. D. Pradhan, S. M. Mian, and N. Melikechi, “Effects of interference in quasi-phase-matched, periodically segmented, potassium titanyl phosphate waveguides,” Appl. Phys. Lett. 75, 3261–3263 (1999).
[CrossRef]

Ozkul, C.

Pradhan, R. D.

Z. S. Benaich, R. D. Pradhan, S. M. Mian, and N. Melikechi, “Effects of interference in quasi-phase-matched, periodically segmented, potassium titanyl phosphate waveguides,” Appl. Phys. Lett. 75, 3261–3263 (1999).
[CrossRef]

Rasset, S.

Rue, J.

N. Khan and J. Rue, “Focus on the 40Gb/s challenge,” Fiber Systems International 1, 33–36 (2000).

Saini, S. S.

V. Vusirikala, S. S. Saini, R. E. Bartolo, R. Whaley, S. Agarwala, F. G. Johnson, D. R. Stone, and M. Dagenais, “High butt-coupling efficiency to single-mode fibers using a 1.55 mm InGaAsP laser integrated with a tapered ridge mode transformer,” IEEE Photon. Technol. Lett. 9, 1472–1474 (1997).
[CrossRef]

Sharma, A.

A. K. Ghatak and A. Sharma, “Single mode fiber characteristics,” J. Inst. Electron. Telecom. Engrs. (India) 32, 213–219 (1986).

Stone, D. R.

V. Vusirikala, S. S. Saini, R. E. Bartolo, R. Whaley, S. Agarwala, F. G. Johnson, D. R. Stone, and M. Dagenais, “High butt-coupling efficiency to single-mode fibers using a 1.55 mm InGaAsP laser integrated with a tapered ridge mode transformer,” IEEE Photon. Technol. Lett. 9, 1472–1474 (1997).
[CrossRef]

Ünlü, M. S.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High-spatial-resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

Vusirikala, V.

V. Vusirikala, S. S. Saini, R. E. Bartolo, R. Whaley, S. Agarwala, F. G. Johnson, D. R. Stone, and M. Dagenais, “High butt-coupling efficiency to single-mode fibers using a 1.55 mm InGaAsP laser integrated with a tapered ridge mode transformer,” IEEE Photon. Technol. Lett. 9, 1472–1474 (1997).
[CrossRef]

Whaley, R.

V. Vusirikala, S. S. Saini, R. E. Bartolo, R. Whaley, S. Agarwala, F. G. Johnson, D. R. Stone, and M. Dagenais, “High butt-coupling efficiency to single-mode fibers using a 1.55 mm InGaAsP laser integrated with a tapered ridge mode transformer,” IEEE Photon. Technol. Lett. 9, 1472–1474 (1997).
[CrossRef]

Wicksted, J. P.

A. Y. Hamad and J. P. Wicksted, “Volume grating produced by intersecting Gaussian beams in an absorbing medium: a Bragg diffraction model,” Opt. Commun. 138, 354–356 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Z. S. Benaich, R. D. Pradhan, S. M. Mian, and N. Melikechi, “Effects of interference in quasi-phase-matched, periodically segmented, potassium titanyl phosphate waveguides,” Appl. Phys. Lett. 75, 3261–3263 (1999).
[CrossRef]

M. K. Amara and N. Melikechi, “Enhancement of the coupling efficiency in optical fiber using two-beam optical interference,” Appl. Phys. Lett. 80, 3494–3496 (2002).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High-spatial-resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single mode fiber splices,” Bell Syst. Tech. J. 56, 703–717 (1977).
[CrossRef]

Fiber Systems International (1)

N. Khan and J. Rue, “Focus on the 40Gb/s challenge,” Fiber Systems International 1, 33–36 (2000).

IEEE Photon. Technol. Lett. (1)

V. Vusirikala, S. S. Saini, R. E. Bartolo, R. Whaley, S. Agarwala, F. G. Johnson, D. R. Stone, and M. Dagenais, “High butt-coupling efficiency to single-mode fibers using a 1.55 mm InGaAsP laser integrated with a tapered ridge mode transformer,” IEEE Photon. Technol. Lett. 9, 1472–1474 (1997).
[CrossRef]

J. Inst. Electron. Telecom. Engrs. (India) (1)

A. K. Ghatak and A. Sharma, “Single mode fiber characteristics,” J. Inst. Electron. Telecom. Engrs. (India) 32, 213–219 (1986).

Opt. Commun. (1)

A. Y. Hamad and J. P. Wicksted, “Volume grating produced by intersecting Gaussian beams in an absorbing medium: a Bragg diffraction model,” Opt. Commun. 138, 354–356 (1997).
[CrossRef]

Other (10)

U. Peschel, L. Leine, F. Lederer, and C. Wachter, “Bending the path of light with a microprism,” Vol. 56 of 2001 Conference on Laser & Electro-Optics, Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001).

G. Keiser, Optical Fiber Communications (McGraw-Hill, New York 1983), Chap. 5.

B. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 3.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 2.

F. C. Hallard, Fiber Optics Handbook for Engineers and Scientists (McGraw-Hill, New York, 1990).

L. B. Jeunhomme, Single-Mode Fiber Optics: Principles and Applications (Optical Engineering Series, No. 23) (Marcel Dekker, New York, 1983).

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, Cambridge, England, 1999).

M. Lange, E. Bryant, M. Myers, J. Myers, R. Wu, and C. Hardy, “High-gain short length phosphate glass erbium-doped fiber amplifier material,” Vol. 54 of 2001 OSA Optical Fiber Communications, Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001).

B. Porter, “Arrayed waveguide gratings,” Fiber Optic Product News, December (2000), pp. 84–85.

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Theoretical curves corresponding to two interfering plane-wave beams or two interfering Gaussian beams (solid curve) fit substantially the measured fringe width data (triangles). A He-Ne laser wavelength of 633 nm is used. The experimental error bars are within the presented points

Fig. 2
Fig. 2

Invariance of the coupling properties with the characteristic parameter Vwo=76.32. The same Corning SMF-28 fiber (a=4.1 μm and N.A.=0.14) is considered. The wavelengths and the beam radii are, respectively: a, 1310 nm and 27.72 μm; b, 1550 nm and 32.8 μm; c, 1803 nm and 38.16 μm.

Fig. 3
Fig. 3

Relative coupling factor variations as a function of the interference half-angle for different characteristic parameter values.

Fig. 4
Fig. 4

Variations of the relative coupling factor and the single-beam coupling efficiency as a function of the beam radius for different interference half-angle values (in radians). The solid curve joins the calculated single-beam coupling efficiency. The normalized fiber number considered in these calculations is V=2.32 for a Corning SMF-28 fiber. The characteristic parameter ranges from 0 to V15a, or 57.42.

Fig. 5
Fig. 5

Michelson interferometer setup used to compare the two coupling techniques. M, mirror; L, lens; BS, beam splitter; FO, fiber optic.

Fig. 6
Fig. 6

Comparison, at a wavelength of 633 nm and a characteristic parameter Vwo=8±1.4 μm, of the output powers from a single-mode optical fiber shows a relative coupling factor of 1.7 between (a) the two-beam interference coupling and (b) the two single focused beams in a Michelson experiment.

Fig. 7
Fig. 7

Adjustable-angle, two-beam interference set-up. BS, beam splitter; P, Prism. The solid-line beams interfere with a larger half-angle than the dashed-line beams obtained by sliding BS and P in opposite directions equally.

Fig. 8
Fig. 8

Variations of the normalized coupling efficiency as a function of (a) and (b), angular misalignment; (c) and (d), longitudinal misalignment; (e) and (f), lateral misalignment. The (a), (c), (e) curves correspond to the single-beam coupling scheme while the (b), (d), (f) data correspond to the interference coupling scheme. The solid curves in all graphs represent the fit with Gaussian functions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Dout=4λ f#π,
η=0αω0exp(-r2/ωD2)f(r)rdr0αω0exp(-2r2/ωD2)rdr0αω0f2(r)rdr1/2,
G=ηintηsb,

Metrics