Abstract

Integer and fractional temporal self-imaging phenomena occur when an ideal (infinite-duration) periodic optical pulse sequence propagates through a suitable dispersive medium under the first-order dispersion approximation. I analytically and numerically investigate the impact of nonidealities in the input periodic pulse sequence, especially finite duration of the sequences as well as intensity and phase fluctuations between pulses, on the temporal self-imaging phenomena. I derive conditions for which effects associated with these nonidealities can be neglected. Under these conditions, the intensity of the input nonideal finite sequence can also be self-imaged—integer and fractional self-imaging are also possible—by propagation through a suitable dispersive medium. The resulting self-images of the input signal not only maintain the temporal features of the original individual pulses (temporal shape and duration) but also the total temporal duration of the finite input sequence and the original intensity fluctuations between pulses. The analytical results are confirmed by means of numerical simulations.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription