Abstract

Experimental measurements of nonlinear optical extinction of nanosecond laser pulses by a set of conjugated copolymer/multiwalled carbon-nanotube composites dispersed in solution are reported here. The polymer poly(para-phenylenevinylene-co-2,5-dioctyloxy-meta-phenylenevinylene) and multiwalled carbon-nanotube composites were varied according to nanotube mass content. The experiments were performed with an open-aperture Z scan with 6-ns Gaussian pulses at 532 nm from a frequency-doubled, Q-switched Nd:YAG laser. The nonlinear optical extinction of the incident pulses displays enhanced dissipation of the incident light for lower incident intensities relative to increasing multiwalled carbon-nanotube content. Either the multiwalled carbon nanotubes or the polymer dominates the nonlinear response of the composite depending on the relative mass of polymer to nanotube. Effective optical coefficients with a nonlinear absorption based model are calculated, and their intensity dependence is investigated. Mechanistic implications of the optical dissipation are also discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahioglu, D. Phillips, and J. A. Lacey, “Third-order optical non-linearity in Zn(II) complexes of 5, 10, 15, 20-tetraarylethynyl-substituted porphyrins,” Chem. Phys. Lett. 267, 229–233 (1997).
    [CrossRef]
  2. M. Q. Tian, S. Yanagi, K. Sasaki, T. Wada, and H. Sasabe, “Syntheses and nonlinear optical properties of nonaggregated metallophthalocyanines,” J. Opt. Soc. Am. B 15, 846–853 (1998).
    [CrossRef]
  3. F. Z. Henari, A. Davey, W. Blau, P. Haisch, and M. Hanack, “The electronic and nonlinear optical properties of oxo-titanium phthalocyanines,” J. Porphyrins Phthalocyanines 3, 331–338 (1999).
    [CrossRef]
  4. M. Fakis, J. Polyzos, G. Tsigaridas, J. Parthenios, A. Fragos, V. Giannetas, P. Persephonis, and J. Mikroyannidis, “Novel class of pyrylium dyes with high efficiency in lasing and two-photon absorption fluorescence,” Chem. Phys. Lett. 323, 111–116 (2000).
    [CrossRef]
  5. J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104, 1438–1449 (2000).
    [CrossRef]
  6. T. H. Wei, T. H. Huang, and M. S. Lin, “Signs of nonlinear refraction in chloroaluminum phthalocyanine solution,” Appl. Phys. Lett. 72, 2505–2507 (1998).
    [CrossRef]
  7. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
    [CrossRef]
  8. C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, and M. Nath, “Nanotubes,” Chem. Phys. Chem. 2, 78–105 (2001).
    [CrossRef] [PubMed]
  9. P. Fournet, J. N. Coleman, B. Lahr, A. Drury, W. J. Blau, D. F. O’Brien, and H. H. Horhold, “Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer,” J. Appl. Phys. 90, 969–975 (2001).
    [CrossRef]
  10. K. Mansour, M. J. Soileau, and E. W. Van Stryland, “Nonlinear optical properties of carbon-black suspensions,” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
    [CrossRef]
  11. J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
    [CrossRef]
  12. D. G. McLean, R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, and T. Pottenger, “Nonlinear absorption study of a C60-toluene solution,” Opt. Lett. 18, 858–860 (1993).
    [CrossRef]
  13. F. Henari, J. Callaghan, H. Stiel, W. Blau, and D. J. Cardin, “Intensity-dependent absorption and resonant optical nonlinearity of C-60 and C-70 solutions,” Chem. Phys. Lett. 199, 144–148 (1992).
    [CrossRef]
  14. R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C-60 and C-70 films and solutions,” Opt. Commun. 185, 473–478 (2000).
    [CrossRef]
  15. L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
    [CrossRef]
  16. S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
    [CrossRef]
  17. L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
    [CrossRef]
  18. L. Vivien, D. Riehl, P. Lancon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
    [CrossRef]
  19. X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
    [CrossRef]
  20. X. Sun, Y. N. Xiong, P. Chen, J. Y. Lin, W. Ji, J. H. Lim, S. S. Yang, D. J. Hagan, and E. W. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000).
    [CrossRef]
  21. J. E. Riggs, D. B. Walker, D. L. Carroll, and Y. P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
    [CrossRef]
  22. J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, A. Drury, R. C. Barklie, and W. J. Blau, “Measurement of nanotube content in pyrotically generated carbon soot,” Chem. Commun. 20, 2001–2002 (2000).
    [CrossRef]
  23. R. Murphy, J. N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R. C. Barklie, and W. J. Blau, “High yield, nondestructive purification and quantification method for multiwalled carbon nanotubes,” J. Phys. Chem. B 106, 3087–3091 (2002).
    [CrossRef]
  24. Z. X. Jin, X. Sun, G. Q. Xu, S. H. Goh, and W. Ji, “Nonlinear optical properties of some polymer/multiwalled carbon nanotube composites,” Chem. Phys. Lett. 318, 505–510 (2000).
    [CrossRef]
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  26. M. Cadek, R. Murphy, B. M. Carthy, A. Drury, B. Lahr, M. in het Panhuis, J. N. Coleman, R. Barklie, and W. J. Blau, “Optimization of the arc-discharge production of multiwalled carbon nanotubes,” Carbon 40, 923–928 (2002).
    [CrossRef]
  27. J. N. Coleman, S. A. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58, 7492–7495 (1998).
    [CrossRef]
  28. J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
    [CrossRef]
  29. J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, R. C. Barklie, and W. J. Blau, “Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes,” J. Chem. Phys. 113, 9788–9793 (2000).
    [CrossRef]
  30. A. Drury, S. Maier, A. P. Davey, A. B. Dalton, J. N. Coleman, H. J. Byme, and W. J. Blau, “Systematic trends in the synthesis of (meta-phenylene vinylene) copolymers,” Synth. Met. 119, 151–152 (2001).
    [CrossRef]
  31. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical Nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  32. C. H. Kwak, Y. L. Lee, and S. G. Kim, “Analysis of asymmetric Z-scan measurement for large optical nonlinearities in an amorphous As2S3 thin films,” J. Opt. Soc. Am. B 16, 600–604 (1999).
    [CrossRef]
  33. B. Z. Tang and H. Y. Xu, “Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes,” Macromolecules 32, 2569–2576 (1999).
    [CrossRef]
  34. M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. F. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
    [CrossRef]
  35. Y. Chen, S. O’Flaherty, L. R. Subramanian, W. J. Blau, and M. Hanack, “Synthesis, characterization and optical limiting properties of axially substituted gallium(III) naphthalocyanines,” Chem. Mater. (to be published).
  36. J. E. Riggs, Z. X. Guo, D. L. Carroll, and Y. P. Sun, “Strong luminescence of solubilized carbon nanotubes,” J. Am. Chem. Soc. 122, 5879–5880 (2000).
    [CrossRef]
  37. M. E. Brennan, J. N. Coleman, M. in het Panhuis, T. Kobayashi, and W. J. Blau, “Nonlinear photoluminescence from multiwalled carbon nanotubes,” in Linear and Nonlinear Optics of Organic Materials, M. Eich and M. G. Kuzyk, eds., Proc. SPIE 4461, 56–64 (2001).
    [CrossRef]
  38. M. E. Brennan, J. N. Coleman, M. in het Panhuis, L. Marty, H. J. Byrne, and W. J. Blau, “Nonlinear photoluminescence in multiwall carbon nanotubes,” Synth. Met. 119, 641–642 (2001).
    [CrossRef]
  39. M. Brennan, J. N. Coleman, T. Kobayashi, A. Drury, B. Lahr, and W. J. Blau, “Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes,” Opt. Lett. (to be published).
  40. M. Brennan, “Multiphoton processes in a series of designer organic materials,” Ph.D. dissertation (Trinity College Dublin, Dublin 2, Republic of Ireland, 2001).

2002

R. Murphy, J. N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R. C. Barklie, and W. J. Blau, “High yield, nondestructive purification and quantification method for multiwalled carbon nanotubes,” J. Phys. Chem. B 106, 3087–3091 (2002).
[CrossRef]

M. Cadek, R. Murphy, B. M. Carthy, A. Drury, B. Lahr, M. in het Panhuis, J. N. Coleman, R. Barklie, and W. J. Blau, “Optimization of the arc-discharge production of multiwalled carbon nanotubes,” Carbon 40, 923–928 (2002).
[CrossRef]

2001

A. Drury, S. Maier, A. P. Davey, A. B. Dalton, J. N. Coleman, H. J. Byme, and W. J. Blau, “Systematic trends in the synthesis of (meta-phenylene vinylene) copolymers,” Synth. Met. 119, 151–152 (2001).
[CrossRef]

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. F. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

M. E. Brennan, J. N. Coleman, M. in het Panhuis, T. Kobayashi, and W. J. Blau, “Nonlinear photoluminescence from multiwalled carbon nanotubes,” in Linear and Nonlinear Optics of Organic Materials, M. Eich and M. G. Kuzyk, eds., Proc. SPIE 4461, 56–64 (2001).
[CrossRef]

M. E. Brennan, J. N. Coleman, M. in het Panhuis, L. Marty, H. J. Byrne, and W. J. Blau, “Nonlinear photoluminescence in multiwall carbon nanotubes,” Synth. Met. 119, 641–642 (2001).
[CrossRef]

C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, and M. Nath, “Nanotubes,” Chem. Phys. Chem. 2, 78–105 (2001).
[CrossRef] [PubMed]

P. Fournet, J. N. Coleman, B. Lahr, A. Drury, W. J. Blau, D. F. O’Brien, and H. H. Horhold, “Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer,” J. Appl. Phys. 90, 969–975 (2001).
[CrossRef]

L. Vivien, D. Riehl, P. Lancon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
[CrossRef]

2000

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C-60 and C-70 films and solutions,” Opt. Commun. 185, 473–478 (2000).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
[CrossRef]

M. Fakis, J. Polyzos, G. Tsigaridas, J. Parthenios, A. Fragos, V. Giannetas, P. Persephonis, and J. Mikroyannidis, “Novel class of pyrylium dyes with high efficiency in lasing and two-photon absorption fluorescence,” Chem. Phys. Lett. 323, 111–116 (2000).
[CrossRef]

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104, 1438–1449 (2000).
[CrossRef]

J. E. Riggs, Z. X. Guo, D. L. Carroll, and Y. P. Sun, “Strong luminescence of solubilized carbon nanotubes,” J. Am. Chem. Soc. 122, 5879–5880 (2000).
[CrossRef]

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, R. C. Barklie, and W. J. Blau, “Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes,” J. Chem. Phys. 113, 9788–9793 (2000).
[CrossRef]

Z. X. Jin, X. Sun, G. Q. Xu, S. H. Goh, and W. Ji, “Nonlinear optical properties of some polymer/multiwalled carbon nanotube composites,” Chem. Phys. Lett. 318, 505–510 (2000).
[CrossRef]

X. Sun, Y. N. Xiong, P. Chen, J. Y. Lin, W. Ji, J. H. Lim, S. S. Yang, D. J. Hagan, and E. W. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000).
[CrossRef]

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y. P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, A. Drury, R. C. Barklie, and W. J. Blau, “Measurement of nanotube content in pyrotically generated carbon soot,” Chem. Commun. 20, 2001–2002 (2000).
[CrossRef]

1999

C. H. Kwak, Y. L. Lee, and S. G. Kim, “Analysis of asymmetric Z-scan measurement for large optical nonlinearities in an amorphous As2S3 thin films,” J. Opt. Soc. Am. B 16, 600–604 (1999).
[CrossRef]

B. Z. Tang and H. Y. Xu, “Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes,” Macromolecules 32, 2569–2576 (1999).
[CrossRef]

F. Z. Henari, A. Davey, W. Blau, P. Haisch, and M. Hanack, “The electronic and nonlinear optical properties of oxo-titanium phthalocyanines,” J. Porphyrins Phthalocyanines 3, 331–338 (1999).
[CrossRef]

1998

J. N. Coleman, S. A. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58, 7492–7495 (1998).
[CrossRef]

T. H. Wei, T. H. Huang, and M. S. Lin, “Signs of nonlinear refraction in chloroaluminum phthalocyanine solution,” Appl. Phys. Lett. 72, 2505–2507 (1998).
[CrossRef]

M. Q. Tian, S. Yanagi, K. Sasaki, T. Wada, and H. Sasabe, “Syntheses and nonlinear optical properties of nonaggregated metallophthalocyanines,” J. Opt. Soc. Am. B 15, 846–853 (1998).
[CrossRef]

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
[CrossRef]

1997

F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahioglu, D. Phillips, and J. A. Lacey, “Third-order optical non-linearity in Zn(II) complexes of 5, 10, 15, 20-tetraarylethynyl-substituted porphyrins,” Chem. Phys. Lett. 267, 229–233 (1997).
[CrossRef]

1993

1992

F. Henari, J. Callaghan, H. Stiel, W. Blau, and D. J. Cardin, “Intensity-dependent absorption and resonant optical nonlinearity of C-60 and C-70 solutions,” Chem. Phys. Lett. 199, 144–148 (1992).
[CrossRef]

K. Mansour, M. J. Soileau, and E. W. Van Stryland, “Nonlinear optical properties of carbon-black suspensions,” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
[CrossRef]

1991

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

1990

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical Nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Ajayan, P. M.

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

Andrieux, M.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Anglaret, E.

L. Vivien, D. Riehl, P. Lancon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
[CrossRef]

Bacou, F.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Bandyopadhyay, R.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Barklie, R.

M. Cadek, R. Murphy, B. M. Carthy, A. Drury, B. Lahr, M. in het Panhuis, J. N. Coleman, R. Barklie, and W. J. Blau, “Optimization of the arc-discharge production of multiwalled carbon nanotubes,” Carbon 40, 923–928 (2002).
[CrossRef]

Barklie, R. C.

R. Murphy, J. N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R. C. Barklie, and W. J. Blau, “High yield, nondestructive purification and quantification method for multiwalled carbon nanotubes,” J. Phys. Chem. B 106, 3087–3091 (2002).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, A. Drury, R. C. Barklie, and W. J. Blau, “Measurement of nanotube content in pyrotically generated carbon soot,” Chem. Commun. 20, 2001–2002 (2000).
[CrossRef]

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, R. C. Barklie, and W. J. Blau, “Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes,” J. Chem. Phys. 113, 9788–9793 (2000).
[CrossRef]

J. N. Coleman, S. A. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58, 7492–7495 (1998).
[CrossRef]

Barroso, J.

J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
[CrossRef]

Barthel, M.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. F. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

Bent, M.

R. Murphy, J. N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R. C. Barklie, and W. J. Blau, “High yield, nondestructive purification and quantification method for multiwalled carbon nanotubes,” J. Phys. Chem. B 106, 3087–3091 (2002).
[CrossRef]

Bernier, P.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Blau, W.

F. Z. Henari, A. Davey, W. Blau, P. Haisch, and M. Hanack, “The electronic and nonlinear optical properties of oxo-titanium phthalocyanines,” J. Porphyrins Phthalocyanines 3, 331–338 (1999).
[CrossRef]

J. N. Coleman, S. A. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58, 7492–7495 (1998).
[CrossRef]

F. Henari, J. Callaghan, H. Stiel, W. Blau, and D. J. Cardin, “Intensity-dependent absorption and resonant optical nonlinearity of C-60 and C-70 solutions,” Chem. Phys. Lett. 199, 144–148 (1992).
[CrossRef]

Blau, W. J.

M. Cadek, R. Murphy, B. M. Carthy, A. Drury, B. Lahr, M. in het Panhuis, J. N. Coleman, R. Barklie, and W. J. Blau, “Optimization of the arc-discharge production of multiwalled carbon nanotubes,” Carbon 40, 923–928 (2002).
[CrossRef]

R. Murphy, J. N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R. C. Barklie, and W. J. Blau, “High yield, nondestructive purification and quantification method for multiwalled carbon nanotubes,” J. Phys. Chem. B 106, 3087–3091 (2002).
[CrossRef]

P. Fournet, J. N. Coleman, B. Lahr, A. Drury, W. J. Blau, D. F. O’Brien, and H. H. Horhold, “Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer,” J. Appl. Phys. 90, 969–975 (2001).
[CrossRef]

M. E. Brennan, J. N. Coleman, M. in het Panhuis, T. Kobayashi, and W. J. Blau, “Nonlinear photoluminescence from multiwalled carbon nanotubes,” in Linear and Nonlinear Optics of Organic Materials, M. Eich and M. G. Kuzyk, eds., Proc. SPIE 4461, 56–64 (2001).
[CrossRef]

M. E. Brennan, J. N. Coleman, M. in het Panhuis, L. Marty, H. J. Byrne, and W. J. Blau, “Nonlinear photoluminescence in multiwall carbon nanotubes,” Synth. Met. 119, 641–642 (2001).
[CrossRef]

A. Drury, S. Maier, A. P. Davey, A. B. Dalton, J. N. Coleman, H. J. Byme, and W. J. Blau, “Systematic trends in the synthesis of (meta-phenylene vinylene) copolymers,” Synth. Met. 119, 151–152 (2001).
[CrossRef]

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, A. Drury, R. C. Barklie, and W. J. Blau, “Measurement of nanotube content in pyrotically generated carbon soot,” Chem. Commun. 20, 2001–2002 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, R. C. Barklie, and W. J. Blau, “Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes,” J. Chem. Phys. 113, 9788–9793 (2000).
[CrossRef]

F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahioglu, D. Phillips, and J. A. Lacey, “Third-order optical non-linearity in Zn(II) complexes of 5, 10, 15, 20-tetraarylethynyl-substituted porphyrins,” Chem. Phys. Lett. 267, 229–233 (1997).
[CrossRef]

Brandelik, D. M.

Brant, M. C.

Brennan, M. E.

M. E. Brennan, J. N. Coleman, M. in het Panhuis, L. Marty, H. J. Byrne, and W. J. Blau, “Nonlinear photoluminescence in multiwall carbon nanotubes,” Synth. Met. 119, 641–642 (2001).
[CrossRef]

M. E. Brennan, J. N. Coleman, M. in het Panhuis, T. Kobayashi, and W. J. Blau, “Nonlinear photoluminescence from multiwalled carbon nanotubes,” in Linear and Nonlinear Optics of Organic Materials, M. Eich and M. G. Kuzyk, eds., Proc. SPIE 4461, 56–64 (2001).
[CrossRef]

Brunet, M.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Byme, H. J.

A. Drury, S. Maier, A. P. Davey, A. B. Dalton, J. N. Coleman, H. J. Byme, and W. J. Blau, “Systematic trends in the synthesis of (meta-phenylene vinylene) copolymers,” Synth. Met. 119, 151–152 (2001).
[CrossRef]

Byrne, H. J.

M. E. Brennan, J. N. Coleman, M. in het Panhuis, L. Marty, H. J. Byrne, and W. J. Blau, “Nonlinear photoluminescence in multiwall carbon nanotubes,” Synth. Met. 119, 641–642 (2001).
[CrossRef]

Cadek, M.

R. Murphy, J. N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R. C. Barklie, and W. J. Blau, “High yield, nondestructive purification and quantification method for multiwalled carbon nanotubes,” J. Phys. Chem. B 106, 3087–3091 (2002).
[CrossRef]

M. Cadek, R. Murphy, B. M. Carthy, A. Drury, B. Lahr, M. in het Panhuis, J. N. Coleman, R. Barklie, and W. J. Blau, “Optimization of the arc-discharge production of multiwalled carbon nanotubes,” Carbon 40, 923–928 (2002).
[CrossRef]

Callaghan, J.

F. Henari, J. Callaghan, H. Stiel, W. Blau, and D. J. Cardin, “Intensity-dependent absorption and resonant optical nonlinearity of C-60 and C-70 solutions,” Chem. Phys. Lett. 199, 144–148 (1992).
[CrossRef]

Cardin, D. J.

F. Henari, J. Callaghan, H. Stiel, W. Blau, and D. J. Cardin, “Intensity-dependent absorption and resonant optical nonlinearity of C-60 and C-70 solutions,” Chem. Phys. Lett. 199, 144–148 (1992).
[CrossRef]

Carroll, D. L.

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y. P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
[CrossRef]

J. E. Riggs, Z. X. Guo, D. L. Carroll, and Y. P. Sun, “Strong luminescence of solubilized carbon nanotubes,” J. Am. Chem. Soc. 122, 5879–5880 (2000).
[CrossRef]

Carthy, B. M.

M. Cadek, R. Murphy, B. M. Carthy, A. Drury, B. Lahr, M. in het Panhuis, J. N. Coleman, R. Barklie, and W. J. Blau, “Optimization of the arc-discharge production of multiwalled carbon nanotubes,” Carbon 40, 923–928 (2002).
[CrossRef]

Chen, P.

Coleman, J. N.

R. Murphy, J. N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R. C. Barklie, and W. J. Blau, “High yield, nondestructive purification and quantification method for multiwalled carbon nanotubes,” J. Phys. Chem. B 106, 3087–3091 (2002).
[CrossRef]

M. Cadek, R. Murphy, B. M. Carthy, A. Drury, B. Lahr, M. in het Panhuis, J. N. Coleman, R. Barklie, and W. J. Blau, “Optimization of the arc-discharge production of multiwalled carbon nanotubes,” Carbon 40, 923–928 (2002).
[CrossRef]

A. Drury, S. Maier, A. P. Davey, A. B. Dalton, J. N. Coleman, H. J. Byme, and W. J. Blau, “Systematic trends in the synthesis of (meta-phenylene vinylene) copolymers,” Synth. Met. 119, 151–152 (2001).
[CrossRef]

P. Fournet, J. N. Coleman, B. Lahr, A. Drury, W. J. Blau, D. F. O’Brien, and H. H. Horhold, “Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer,” J. Appl. Phys. 90, 969–975 (2001).
[CrossRef]

M. E. Brennan, J. N. Coleman, M. in het Panhuis, L. Marty, H. J. Byrne, and W. J. Blau, “Nonlinear photoluminescence in multiwall carbon nanotubes,” Synth. Met. 119, 641–642 (2001).
[CrossRef]

M. E. Brennan, J. N. Coleman, M. in het Panhuis, T. Kobayashi, and W. J. Blau, “Nonlinear photoluminescence from multiwalled carbon nanotubes,” in Linear and Nonlinear Optics of Organic Materials, M. Eich and M. G. Kuzyk, eds., Proc. SPIE 4461, 56–64 (2001).
[CrossRef]

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, A. Drury, R. C. Barklie, and W. J. Blau, “Measurement of nanotube content in pyrotically generated carbon soot,” Chem. Commun. 20, 2001–2002 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, R. C. Barklie, and W. J. Blau, “Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes,” J. Chem. Phys. 113, 9788–9793 (2000).
[CrossRef]

J. N. Coleman, S. A. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58, 7492–7495 (1998).
[CrossRef]

Costela, A.

J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
[CrossRef]

Curran, S.

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

Curran, S. A.

J. N. Coleman, S. A. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58, 7492–7495 (1998).
[CrossRef]

Dalton, A. B.

A. Drury, S. Maier, A. P. Davey, A. B. Dalton, J. N. Coleman, H. J. Byme, and W. J. Blau, “Systematic trends in the synthesis of (meta-phenylene vinylene) copolymers,” Synth. Met. 119, 151–152 (2001).
[CrossRef]

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, A. Drury, R. C. Barklie, and W. J. Blau, “Measurement of nanotube content in pyrotically generated carbon soot,” Chem. Commun. 20, 2001–2002 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, R. C. Barklie, and W. J. Blau, “Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes,” J. Chem. Phys. 113, 9788–9793 (2000).
[CrossRef]

J. N. Coleman, S. A. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58, 7492–7495 (1998).
[CrossRef]

Davey, A.

F. Z. Henari, A. Davey, W. Blau, P. Haisch, and M. Hanack, “The electronic and nonlinear optical properties of oxo-titanium phthalocyanines,” J. Porphyrins Phthalocyanines 3, 331–338 (1999).
[CrossRef]

Davey, A. P.

A. Drury, S. Maier, A. P. Davey, A. B. Dalton, J. N. Coleman, H. J. Byme, and W. J. Blau, “Systematic trends in the synthesis of (meta-phenylene vinylene) copolymers,” Synth. Met. 119, 151–152 (2001).
[CrossRef]

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

J. N. Coleman, S. A. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58, 7492–7495 (1998).
[CrossRef]

Drury, A.

M. Cadek, R. Murphy, B. M. Carthy, A. Drury, B. Lahr, M. in het Panhuis, J. N. Coleman, R. Barklie, and W. J. Blau, “Optimization of the arc-discharge production of multiwalled carbon nanotubes,” Carbon 40, 923–928 (2002).
[CrossRef]

R. Murphy, J. N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R. C. Barklie, and W. J. Blau, “High yield, nondestructive purification and quantification method for multiwalled carbon nanotubes,” J. Phys. Chem. B 106, 3087–3091 (2002).
[CrossRef]

P. Fournet, J. N. Coleman, B. Lahr, A. Drury, W. J. Blau, D. F. O’Brien, and H. H. Horhold, “Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer,” J. Appl. Phys. 90, 969–975 (2001).
[CrossRef]

A. Drury, S. Maier, A. P. Davey, A. B. Dalton, J. N. Coleman, H. J. Byme, and W. J. Blau, “Systematic trends in the synthesis of (meta-phenylene vinylene) copolymers,” Synth. Met. 119, 151–152 (2001).
[CrossRef]

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, A. Drury, R. C. Barklie, and W. J. Blau, “Measurement of nanotube content in pyrotically generated carbon soot,” Chem. Commun. 20, 2001–2002 (2000).
[CrossRef]

Fakis, M.

M. Fakis, J. Polyzos, G. Tsigaridas, J. Parthenios, A. Fragos, V. Giannetas, P. Persephonis, and J. Mikroyannidis, “Novel class of pyrylium dyes with high efficiency in lasing and two-photon absorption fluorescence,” Chem. Phys. Lett. 323, 111–116 (2000).
[CrossRef]

Fleitz, P. A.

Flom, S. F.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. F. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

Flom, S. R.

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104, 1438–1449 (2000).
[CrossRef]

Fournet, P.

P. Fournet, J. N. Coleman, B. Lahr, A. Drury, W. J. Blau, D. F. O’Brien, and H. H. Horhold, “Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer,” J. Appl. Phys. 90, 969–975 (2001).
[CrossRef]

Fragos, A.

M. Fakis, J. Polyzos, G. Tsigaridas, J. Parthenios, A. Fragos, V. Giannetas, P. Persephonis, and J. Mikroyannidis, “Novel class of pyrylium dyes with high efficiency in lasing and two-photon absorption fluorescence,” Chem. Phys. Lett. 323, 111–116 (2000).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C-60 and C-70 films and solutions,” Opt. Commun. 185, 473–478 (2000).
[CrossRef]

Garcia-Moreno, I.

J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
[CrossRef]

Giannetas, V.

M. Fakis, J. Polyzos, G. Tsigaridas, J. Parthenios, A. Fragos, V. Giannetas, P. Persephonis, and J. Mikroyannidis, “Novel class of pyrylium dyes with high efficiency in lasing and two-photon absorption fluorescence,” Chem. Phys. Lett. 323, 111–116 (2000).
[CrossRef]

Goh, S. H.

Z. X. Jin, X. Sun, G. Q. Xu, S. H. Goh, and W. Ji, “Nonlinear optical properties of some polymer/multiwalled carbon nanotube composites,” Chem. Phys. Lett. 318, 505–510 (2000).
[CrossRef]

Govindaraj, A.

C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, and M. Nath, “Nanotubes,” Chem. Phys. Chem. 2, 78–105 (2001).
[CrossRef] [PubMed]

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Goze, C.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Guo, Z. X.

J. E. Riggs, Z. X. Guo, D. L. Carroll, and Y. P. Sun, “Strong luminescence of solubilized carbon nanotubes,” J. Am. Chem. Soc. 122, 5879–5880 (2000).
[CrossRef]

Hache, F.

L. Vivien, D. Riehl, P. Lancon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
[CrossRef]

Hagan, D. J.

X. Sun, Y. N. Xiong, P. Chen, J. Y. Lin, W. Ji, J. H. Lim, S. S. Yang, D. J. Hagan, and E. W. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical Nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Haisch, P.

F. Z. Henari, A. Davey, W. Blau, P. Haisch, and M. Hanack, “The electronic and nonlinear optical properties of oxo-titanium phthalocyanines,” J. Porphyrins Phthalocyanines 3, 331–338 (1999).
[CrossRef]

Hanack, M.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. F. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104, 1438–1449 (2000).
[CrossRef]

F. Z. Henari, A. Davey, W. Blau, P. Haisch, and M. Hanack, “The electronic and nonlinear optical properties of oxo-titanium phthalocyanines,” J. Porphyrins Phthalocyanines 3, 331–338 (1999).
[CrossRef]

Heckmann, H.

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104, 1438–1449 (2000).
[CrossRef]

Henari, F.

F. Henari, J. Callaghan, H. Stiel, W. Blau, and D. J. Cardin, “Intensity-dependent absorption and resonant optical nonlinearity of C-60 and C-70 solutions,” Chem. Phys. Lett. 199, 144–148 (1992).
[CrossRef]

Henari, F. Z.

F. Z. Henari, A. Davey, W. Blau, P. Haisch, and M. Hanack, “The electronic and nonlinear optical properties of oxo-titanium phthalocyanines,” J. Porphyrins Phthalocyanines 3, 331–338 (1999).
[CrossRef]

F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahioglu, D. Phillips, and J. A. Lacey, “Third-order optical non-linearity in Zn(II) complexes of 5, 10, 15, 20-tetraarylethynyl-substituted porphyrins,” Chem. Phys. Lett. 267, 229–233 (1997).
[CrossRef]

Hor, T. S. A.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Horhold, H. H.

P. Fournet, J. N. Coleman, B. Lahr, A. Drury, W. J. Blau, D. F. O’Brien, and H. H. Horhold, “Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer,” J. Appl. Phys. 90, 969–975 (2001).
[CrossRef]

Huang, T. H.

T. H. Wei, T. H. Huang, and M. S. Lin, “Signs of nonlinear refraction in chloroaluminum phthalocyanine solution,” Appl. Phys. Lett. 72, 2505–2507 (1998).
[CrossRef]

Iijima, S.

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

in het Panhuis, M.

M. Cadek, R. Murphy, B. M. Carthy, A. Drury, B. Lahr, M. in het Panhuis, J. N. Coleman, R. Barklie, and W. J. Blau, “Optimization of the arc-discharge production of multiwalled carbon nanotubes,” Carbon 40, 923–928 (2002).
[CrossRef]

M. E. Brennan, J. N. Coleman, M. in het Panhuis, T. Kobayashi, and W. J. Blau, “Nonlinear photoluminescence from multiwalled carbon nanotubes,” in Linear and Nonlinear Optics of Organic Materials, M. Eich and M. G. Kuzyk, eds., Proc. SPIE 4461, 56–64 (2001).
[CrossRef]

M. E. Brennan, J. N. Coleman, M. in het Panhuis, L. Marty, H. J. Byrne, and W. J. Blau, “Nonlinear photoluminescence in multiwall carbon nanotubes,” Synth. Met. 119, 641–642 (2001).
[CrossRef]

Ji, W.

X. Sun, Y. N. Xiong, P. Chen, J. Y. Lin, W. Ji, J. H. Lim, S. S. Yang, D. J. Hagan, and E. W. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000).
[CrossRef]

Z. X. Jin, X. Sun, G. Q. Xu, S. H. Goh, and W. Ji, “Nonlinear optical properties of some polymer/multiwalled carbon nanotube composites,” Chem. Phys. Lett. 318, 505–510 (2000).
[CrossRef]

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Jin, Z. X.

Z. X. Jin, X. Sun, G. Q. Xu, S. H. Goh, and W. Ji, “Nonlinear optical properties of some polymer/multiwalled carbon nanotube composites,” Chem. Phys. Lett. 318, 505–510 (2000).
[CrossRef]

Journet, C.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Kim, S. G.

Kobayashi, T.

M. E. Brennan, J. N. Coleman, M. in het Panhuis, T. Kobayashi, and W. J. Blau, “Nonlinear photoluminescence from multiwalled carbon nanotubes,” in Linear and Nonlinear Optics of Organic Materials, M. Eich and M. G. Kuzyk, eds., Proc. SPIE 4461, 56–64 (2001).
[CrossRef]

Kodirov, M. K.

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C-60 and C-70 films and solutions,” Opt. Commun. 185, 473–478 (2000).
[CrossRef]

Kwak, C. H.

Lacey, J. A.

F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahioglu, D. Phillips, and J. A. Lacey, “Third-order optical non-linearity in Zn(II) complexes of 5, 10, 15, 20-tetraarylethynyl-substituted porphyrins,” Chem. Phys. Lett. 267, 229–233 (1997).
[CrossRef]

Lafonta, F.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Lahr, B.

M. Cadek, R. Murphy, B. M. Carthy, A. Drury, B. Lahr, M. in het Panhuis, J. N. Coleman, R. Barklie, and W. J. Blau, “Optimization of the arc-discharge production of multiwalled carbon nanotubes,” Carbon 40, 923–928 (2002).
[CrossRef]

P. Fournet, J. N. Coleman, B. Lahr, A. Drury, W. J. Blau, D. F. O’Brien, and H. H. Horhold, “Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer,” J. Appl. Phys. 90, 969–975 (2001).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, A. Drury, R. C. Barklie, and W. J. Blau, “Measurement of nanotube content in pyrotically generated carbon soot,” Chem. Commun. 20, 2001–2002 (2000).
[CrossRef]

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, R. C. Barklie, and W. J. Blau, “Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes,” J. Chem. Phys. 113, 9788–9793 (2000).
[CrossRef]

Lancon, P.

Lee, Y. L.

Lim, J. H.

Lin, J. Y.

Lin, M. S.

T. H. Wei, T. H. Huang, and M. S. Lin, “Signs of nonlinear refraction in chloroaluminum phthalocyanine solution,” Appl. Phys. Lett. 72, 2505–2507 (1998).
[CrossRef]

Maier, S.

A. Drury, S. Maier, A. P. Davey, A. B. Dalton, J. N. Coleman, H. J. Byme, and W. J. Blau, “Systematic trends in the synthesis of (meta-phenylene vinylene) copolymers,” Synth. Met. 119, 151–152 (2001).
[CrossRef]

Mansour, K.

Marty, L.

M. E. Brennan, J. N. Coleman, M. in het Panhuis, L. Marty, H. J. Byrne, and W. J. Blau, “Nonlinear photoluminescence in multiwall carbon nanotubes,” Synth. Met. 119, 641–642 (2001).
[CrossRef]

McCarthy, B.

R. Murphy, J. N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R. C. Barklie, and W. J. Blau, “High yield, nondestructive purification and quantification method for multiwalled carbon nanotubes,” J. Phys. Chem. B 106, 3087–3091 (2002).
[CrossRef]

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, A. Drury, R. C. Barklie, and W. J. Blau, “Measurement of nanotube content in pyrotically generated carbon soot,” Chem. Commun. 20, 2001–2002 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, R. C. Barklie, and W. J. Blau, “Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes,” J. Chem. Phys. 113, 9788–9793 (2000).
[CrossRef]

J. N. Coleman, S. A. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58, 7492–7495 (1998).
[CrossRef]

McLean, D. G.

Mehendale, S. C.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Mikroyannidis, J.

M. Fakis, J. Polyzos, G. Tsigaridas, J. Parthenios, A. Fragos, V. Giannetas, P. Persephonis, and J. Mikroyannidis, “Novel class of pyrylium dyes with high efficiency in lasing and two-photon absorption fluorescence,” Chem. Phys. Lett. 323, 111–116 (2000).
[CrossRef]

Milgrom, L. R.

F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahioglu, D. Phillips, and J. A. Lacey, “Third-order optical non-linearity in Zn(II) complexes of 5, 10, 15, 20-tetraarylethynyl-substituted porphyrins,” Chem. Phys. Lett. 267, 229–233 (1997).
[CrossRef]

Mishra, S. R.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Murphy, R.

R. Murphy, J. N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R. C. Barklie, and W. J. Blau, “High yield, nondestructive purification and quantification method for multiwalled carbon nanotubes,” J. Phys. Chem. B 106, 3087–3091 (2002).
[CrossRef]

M. Cadek, R. Murphy, B. M. Carthy, A. Drury, B. Lahr, M. in het Panhuis, J. N. Coleman, R. Barklie, and W. J. Blau, “Optimization of the arc-discharge production of multiwalled carbon nanotubes,” Carbon 40, 923–928 (2002).
[CrossRef]

Nath, M.

C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, and M. Nath, “Nanotubes,” Chem. Phys. Chem. 2, 78–105 (2001).
[CrossRef] [PubMed]

O’Brien, D. F.

P. Fournet, J. N. Coleman, B. Lahr, A. Drury, W. J. Blau, D. F. O’Brien, and H. H. Horhold, “Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer,” J. Appl. Phys. 90, 969–975 (2001).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, A. Drury, R. C. Barklie, and W. J. Blau, “Measurement of nanotube content in pyrotically generated carbon soot,” Chem. Commun. 20, 2001–2002 (2000).
[CrossRef]

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, R. C. Barklie, and W. J. Blau, “Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes,” J. Chem. Phys. 113, 9788–9793 (2000).
[CrossRef]

Parthenios, J.

M. Fakis, J. Polyzos, G. Tsigaridas, J. Parthenios, A. Fragos, V. Giannetas, P. Persephonis, and J. Mikroyannidis, “Novel class of pyrylium dyes with high efficiency in lasing and two-photon absorption fluorescence,” Chem. Phys. Lett. 323, 111–116 (2000).
[CrossRef]

Persephonis, P.

M. Fakis, J. Polyzos, G. Tsigaridas, J. Parthenios, A. Fragos, V. Giannetas, P. Persephonis, and J. Mikroyannidis, “Novel class of pyrylium dyes with high efficiency in lasing and two-photon absorption fluorescence,” Chem. Phys. Lett. 323, 111–116 (2000).
[CrossRef]

Phillips, D.

F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahioglu, D. Phillips, and J. A. Lacey, “Third-order optical non-linearity in Zn(II) complexes of 5, 10, 15, 20-tetraarylethynyl-substituted porphyrins,” Chem. Phys. Lett. 267, 229–233 (1997).
[CrossRef]

Polyzos, J.

M. Fakis, J. Polyzos, G. Tsigaridas, J. Parthenios, A. Fragos, V. Giannetas, P. Persephonis, and J. Mikroyannidis, “Novel class of pyrylium dyes with high efficiency in lasing and two-photon absorption fluorescence,” Chem. Phys. Lett. 323, 111–116 (2000).
[CrossRef]

Pong, R. G. S.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. F. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104, 1438–1449 (2000).
[CrossRef]

Pottenger, T.

Rao, C. N. R.

C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, and M. Nath, “Nanotubes,” Chem. Phys. Chem. 2, 78–105 (2001).
[CrossRef] [PubMed]

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Rawat, H. S.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Riehl, D.

L. Vivien, D. Riehl, P. Lancon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Riggs, J. E.

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y. P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
[CrossRef]

J. E. Riggs, Z. X. Guo, D. L. Carroll, and Y. P. Sun, “Strong luminescence of solubilized carbon nanotubes,” J. Am. Chem. Soc. 122, 5879–5880 (2000).
[CrossRef]

Roth, S.

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

Rubio, A.

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

Rustagi, K. C.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C-60 and C-70 films and solutions,” Opt. Commun. 185, 473–478 (2000).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical Nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Saiz, J. L.

J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
[CrossRef]

Sasabe, H.

Sasaki, K.

Satishkumar, B. C.

C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, and M. Nath, “Nanotubes,” Chem. Phys. Chem. 2, 78–105 (2001).
[CrossRef] [PubMed]

Schneider, T.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. F. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical Nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Shirk, J. S.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. F. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104, 1438–1449 (2000).
[CrossRef]

Soileau, M. J.

Sood, A. K.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Stiel, H.

F. Henari, J. Callaghan, H. Stiel, W. Blau, and D. J. Cardin, “Intensity-dependent absorption and resonant optical nonlinearity of C-60 and C-70 solutions,” Chem. Phys. Lett. 199, 144–148 (1992).
[CrossRef]

Sun, X.

Z. X. Jin, X. Sun, G. Q. Xu, S. H. Goh, and W. Ji, “Nonlinear optical properties of some polymer/multiwalled carbon nanotube composites,” Chem. Phys. Lett. 318, 505–510 (2000).
[CrossRef]

X. Sun, Y. N. Xiong, P. Chen, J. Y. Lin, W. Ji, J. H. Lim, S. S. Yang, D. J. Hagan, and E. W. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000).
[CrossRef]

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Sun, Y. P.

J. E. Riggs, Z. X. Guo, D. L. Carroll, and Y. P. Sun, “Strong luminescence of solubilized carbon nanotubes,” J. Am. Chem. Soc. 122, 5879–5880 (2000).
[CrossRef]

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y. P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
[CrossRef]

Sutherland, R. L.

Tang, B. Z.

B. Z. Tang and H. Y. Xu, “Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes,” Macromolecules 32, 2569–2576 (1999).
[CrossRef]

Tian, M. Q.

Tsigaridas, G.

M. Fakis, J. Polyzos, G. Tsigaridas, J. Parthenios, A. Fragos, V. Giannetas, P. Persephonis, and J. Mikroyannidis, “Novel class of pyrylium dyes with high efficiency in lasing and two-photon absorption fluorescence,” Chem. Phys. Lett. 323, 111–116 (2000).
[CrossRef]

Usmanov, T.

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C-60 and C-70 films and solutions,” Opt. Commun. 185, 473–478 (2000).
[CrossRef]

Van Stryland, E. W.

Vivien, L.

L. Vivien, D. Riehl, P. Lancon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Wada, T.

Walker, D. B.

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y. P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
[CrossRef]

Wei, T. H.

T. H. Wei, T. H. Huang, and M. S. Lin, “Signs of nonlinear refraction in chloroaluminum phthalocyanine solution,” Appl. Phys. Lett. 72, 2505–2507 (1998).
[CrossRef]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical Nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Xiong, Y. N.

Xu, G. Q.

Z. X. Jin, X. Sun, G. Q. Xu, S. H. Goh, and W. Ji, “Nonlinear optical properties of some polymer/multiwalled carbon nanotube composites,” Chem. Phys. Lett. 318, 505–510 (2000).
[CrossRef]

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Xu, H. Y.

B. Z. Tang and H. Y. Xu, “Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes,” Macromolecules 32, 2569–2576 (1999).
[CrossRef]

Yahioglu, G.

F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahioglu, D. Phillips, and J. A. Lacey, “Third-order optical non-linearity in Zn(II) complexes of 5, 10, 15, 20-tetraarylethynyl-substituted porphyrins,” Chem. Phys. Lett. 267, 229–233 (1997).
[CrossRef]

Yanagi, S.

Yang, S. S.

Yu, R. Q.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Adv. Mater.

J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater. 12, 213–216 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

T. H. Wei, T. H. Huang, and M. S. Lin, “Signs of nonlinear refraction in chloroaluminum phthalocyanine solution,” Appl. Phys. Lett. 72, 2505–2507 (1998).
[CrossRef]

Carbon

M. Cadek, R. Murphy, B. M. Carthy, A. Drury, B. Lahr, M. in het Panhuis, J. N. Coleman, R. Barklie, and W. J. Blau, “Optimization of the arc-discharge production of multiwalled carbon nanotubes,” Carbon 40, 923–928 (2002).
[CrossRef]

Chem. Commun.

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, A. Drury, R. C. Barklie, and W. J. Blau, “Measurement of nanotube content in pyrotically generated carbon soot,” Chem. Commun. 20, 2001–2002 (2000).
[CrossRef]

Chem. Phys. Chem.

C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, and M. Nath, “Nanotubes,” Chem. Phys. Chem. 2, 78–105 (2001).
[CrossRef] [PubMed]

Chem. Phys. Lett.

F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahioglu, D. Phillips, and J. A. Lacey, “Third-order optical non-linearity in Zn(II) complexes of 5, 10, 15, 20-tetraarylethynyl-substituted porphyrins,” Chem. Phys. Lett. 267, 229–233 (1997).
[CrossRef]

M. Fakis, J. Polyzos, G. Tsigaridas, J. Parthenios, A. Fragos, V. Giannetas, P. Persephonis, and J. Mikroyannidis, “Novel class of pyrylium dyes with high efficiency in lasing and two-photon absorption fluorescence,” Chem. Phys. Lett. 323, 111–116 (2000).
[CrossRef]

Z. X. Jin, X. Sun, G. Q. Xu, S. H. Goh, and W. Ji, “Nonlinear optical properties of some polymer/multiwalled carbon nanotube composites,” Chem. Phys. Lett. 318, 505–510 (2000).
[CrossRef]

F. Henari, J. Callaghan, H. Stiel, W. Blau, and D. J. Cardin, “Intensity-dependent absorption and resonant optical nonlinearity of C-60 and C-70 solutions,” Chem. Phys. Lett. 199, 144–148 (1992).
[CrossRef]

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Coord. Chem. Rev.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. F. Flom, and R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical Nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Am. Chem. Soc.

J. E. Riggs, Z. X. Guo, D. L. Carroll, and Y. P. Sun, “Strong luminescence of solubilized carbon nanotubes,” J. Am. Chem. Soc. 122, 5879–5880 (2000).
[CrossRef]

J. Appl. Phys.

P. Fournet, J. N. Coleman, B. Lahr, A. Drury, W. J. Blau, D. F. O’Brien, and H. H. Horhold, “Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer,” J. Appl. Phys. 90, 969–975 (2001).
[CrossRef]

J. Chem. Phys.

J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, R. C. Barklie, and W. J. Blau, “Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes,” J. Chem. Phys. 113, 9788–9793 (2000).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
[CrossRef]

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104, 1438–1449 (2000).
[CrossRef]

J. Phys. Chem. B

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y. P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
[CrossRef]

R. Murphy, J. N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R. C. Barklie, and W. J. Blau, “High yield, nondestructive purification and quantification method for multiwalled carbon nanotubes,” J. Phys. Chem. B 106, 3087–3091 (2002).
[CrossRef]

J. Porphyrins Phthalocyanines

F. Z. Henari, A. Davey, W. Blau, P. Haisch, and M. Hanack, “The electronic and nonlinear optical properties of oxo-titanium phthalocyanines,” J. Porphyrins Phthalocyanines 3, 331–338 (1999).
[CrossRef]

Macromolecules

B. Z. Tang and H. Y. Xu, “Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes,” Macromolecules 32, 2569–2576 (1999).
[CrossRef]

Nature

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

Opt. Commun.

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C-60 and C-70 films and solutions,” Opt. Commun. 185, 473–478 (2000).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Opt. Lett.

Phys. Rev. B

J. N. Coleman, S. A. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58, 7492–7495 (1998).
[CrossRef]

Proc. SPIE

M. E. Brennan, J. N. Coleman, M. in het Panhuis, T. Kobayashi, and W. J. Blau, “Nonlinear photoluminescence from multiwalled carbon nanotubes,” in Linear and Nonlinear Optics of Organic Materials, M. Eich and M. G. Kuzyk, eds., Proc. SPIE 4461, 56–64 (2001).
[CrossRef]

Synth. Met.

M. E. Brennan, J. N. Coleman, M. in het Panhuis, L. Marty, H. J. Byrne, and W. J. Blau, “Nonlinear photoluminescence in multiwall carbon nanotubes,” Synth. Met. 119, 641–642 (2001).
[CrossRef]

A. Drury, S. Maier, A. P. Davey, A. B. Dalton, J. N. Coleman, H. J. Byme, and W. J. Blau, “Systematic trends in the synthesis of (meta-phenylene vinylene) copolymers,” Synth. Met. 119, 151–152 (2001).
[CrossRef]

Other

Y. Chen, S. O’Flaherty, L. R. Subramanian, W. J. Blau, and M. Hanack, “Synthesis, characterization and optical limiting properties of axially substituted gallium(III) naphthalocyanines,” Chem. Mater. (to be published).

M. Brennan, J. N. Coleman, T. Kobayashi, A. Drury, B. Lahr, and W. J. Blau, “Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes,” Opt. Lett. (to be published).

M. Brennan, “Multiphoton processes in a series of designer organic materials,” Ph.D. dissertation (Trinity College Dublin, Dublin 2, Republic of Ireland, 2001).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Chemical structure of poly(para-phenylenevinylene-co-2,5-dioctyloxy-meta-phenylenevinylene) (PmPV).

Fig. 2
Fig. 2

Thermo-gravemetric analysis curves of the pure PmPV, PmPV/MWNT composites, and arc-discharge generated soot, where the normalized mass is plotted against the temperature of the sample. The inset is the first temperature derivative of the normalized mass for the composite with maximum MWNT content ∼5.9%, as can be seen from the numerical integration of the MWNT peak. Numerical integration of the other spectra gave MWNT mass percentages of 1.3, 2.5, and 3.6%.

Fig. 3
Fig. 3

Schematic diagram of the experimental arrangement for the open-aperture Z-scan measurements. The arrow indicates the direction in which the backscattered light was measured. Thus this corresponded to scattered light being collected from solid angle ∼60°.

Fig. 4
Fig. 4

Typical visible spectrum for the PmPV/MWNT composite material. The inset plots the linear absorption coefficient against the MWNT mass fraction in the sample.

Fig. 5
Fig. 5

Plots of normalized transmission against incident pulse energy density for each sample. In the inset, the transmission of the 0% MWNT mass fraction plot was shifted by +15%, and the transmission on the 2.5% MWNT mass fraction plot was shifted by -15% for clarity. The curve M is a sample of purified MWNTs with linear transmission ∼67%.

Fig. 6
Fig. 6

Plots of output against input on focus intensity for each sample. The straight lines, defined in the legend, represent the linear optical transmission for the respective samples.

Fig. 7
Fig. 7

Typical open-aperture data for each sample; normalized transmission is plotted against z position. Data are shown for I0 values ∼1.62–1.73 GW cm-2; precise values of I0 are in the legend.

Fig. 8
Fig. 8

Plot of effective Im{χ(3)} against intensity for each sample.

Fig. 9
Fig. 9

Plot of (a) backscattered signal and (b) front-scattered signal against incident intensity. The scattered energy is measured in arbitrary units, and the sample is positioned on focus. Additional transmission filters were applied in the front-scattering case.

Fig. 10
Fig. 10

(a) Polar plot displaying angular profile of scattered light from the 5.9% MWNT mass fraction sample. (b) Plot of the front-scattered signal as a function of angular position from 20° to 90° for each sample. The samples were irradiated at ∼1.7 GW cm-2, and the scattered signal is plotted in arbitrary units in all cases.

Fig. 11
Fig. 11

Temporal evolution of the MWNT phase-conjugate signal as a function of backward pump delay, for the purified MWNT sample. A Gaussian fit to the MWNT phase-conjugate signal at zero temporal delay is depicted in the inset, resulted in a FWHM of (38±3) ps, which was within the temporal resolution of the experiment given that the laser pulse width was 35 ps.

Tables (1)

Tables Icon

Table 1 Summary of the Numerical Results

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

av=(1-p)h+pfii1-p+pfi,
fi=P(L1,L2) j=13λj3dL1dL2,
fi=5h+i3(h+i),
ΔP=P(1)+P(2)+P(3)+ ,
P(1)=0χ(1)E,
P(3)=0χ(3)E3,
δχ(3)|E(ω)|2.
δiχi(3)|Ei|2,
χ(3)=p|fi-1|4χi(3),
TNorm(z)=loge[1+q0(z)]q0(z),
q0(z)=q001+(z/z0)2,
Im{χ(3)}=n02ε0cλβ12π,

Metrics