Abstract

Mega-electron-volt (MeV) electron emission from the interaction of an ultrafast (τ29 fs), intense (>1018 W/cm2) laser pulse with underdense plasmas has been studied. A beam of MeV electrons with a divergence angle as small as 1° is observed in the forward direction, which is correlated with relativistic filamentation of the laser pulse in plasmas. A novel net-energy-gain mechanism is proposed for electron acceleration resulting from the relativistic filamentation and beam breakup. These results suggest an approach for generating a beam of femtosecond, MeV electrons at a kilohertz repetition rate with a compact ultrafast intense laser system.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Mourou, C. P. J. Barty, and M. D. Perry, “Ultrahigh-intensity lasers: physics of the extreme on a tabletop,” Phys. Today 51(1), 22–28 (1998).
    [CrossRef]
  2. R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996).
    [CrossRef]
  3. H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, “Direct imaging of transient molecular structures with ultrafast diffraction,” Science 291, 458–462 (2001).
    [CrossRef] [PubMed]
  4. P. G. O’Shea and H. P. Freund, “Free-electron lasers: status and applications,” Science 292, 1855–1858 (2001).
  5. D. Umstadter, “Review of physics and applications of relativistic plasmas driven by ultraintense lasers,” Phys. Plasmas 8, 1774–1785 (2001), and references therein.
    [CrossRef]
  6. T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).
    [CrossRef]
  7. D. W. Forslund, J. M. Kindel, W. B. Mori, C. Joshi, and J. M. Dawson, “Two-dimensional simulations of single-frequency and beat-wave laser-plasma heating,” Phys. Rev. Lett. 54, 558–561 (1985).
    [CrossRef] [PubMed]
  8. P. Sprangle, E. Esarey, A. Ting, and G. Joyce, “Laser wakefield acceleration and relativistic optical guiding,” Appl. Phys. Lett. 53, 2146–2148 (1988).
    [CrossRef]
  9. C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, “Observation of the transition from Thomson to Compton scattering in multiphoton interactions with low-energy electrons,” Phys. Rev. Lett. 74, 2439–2442 (1995).
    [CrossRef] [PubMed]
  10. G. Malka and J. L. Miquel, “Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target,” Phys. Rev. Lett. 77, 75–78 (1996).
    [CrossRef] [PubMed]
  11. G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett. 78, 3314–3317 (1997).
    [CrossRef]
  12. C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, “Electron trapping in self-modulated laser wakefields by Raman backscatter,” Phys. Rev. Lett. 79, 3909–3912 (1997).
    [CrossRef]
  13. K.-C. Tzeng, W. B. Mori, and T. Katsouleas, “Electron beam characteristics from laser-driven wave breaking,” Phys. Rev. Lett. 79, 5258–5261 (1997).
    [CrossRef]
  14. C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
    [CrossRef]
  15. A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6, 2847–2854 (1999).
    [CrossRef]
  16. W. Yu, V. Bychenkov, Y. Sentoku, M. Y. Yu, Z. M. Sheng, and K. Mima, “Electron acceleration by a short relativistic laser pulse at the front of solid target,” Phys. Rev. Lett. 85, 570–573 (2000).
    [CrossRef] [PubMed]
  17. X. Wang, M. Krishnan, N. Saleh, H. Wang, and D. Umstadter, “Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas,” Phys. Rev. Lett. 84, 5324–5327 (2000).
    [CrossRef] [PubMed]
  18. V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
    [CrossRef]
  19. D. Giulietii, M. Galimberti, A. Giulietti, L. A. Gizzi, M. Borghesi, Ph. Balcou, A. Rousse, and J. Ph. Rousseau, “High-energy electron beam production by femtosecond laser interactions with exploding-foil plasmas,” Phys. Rev. E 64, 015402–1–015402–4 (2001).
  20. X. Wang, S. Backus, H. Kapteyn, M. Murnane, N. Saleh, D. Umstadter, and W. Yu, “Generation of megaelectronvolt electron beams by an ultrashort (<30 fs), intense laser pulse,” in Applications of High Field and Short Wavelength Sources, Vol. 65 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001).
  21. H. Wang, S. Backus, Z. Chang, R. Wagner, K. Kim, X. Wang, D. Umstadter, T. Lei, M. Murnane, and H. Kapteyn, “Generation of 10-W average-power, 24-fs pulses from a Ti:sap-phire amplifier system,” J. Opt. Soc. Am. B 16, 1790–1794 (1999).
    [CrossRef]
  22. The generated maximum electron density from the H2 was ~2.5×1019 cm−3, one fifth of that from the N2 under the same backing pressure. For the laser conditions described in the text, no MeV electrons were observed with H2 or at such densities.
  23. S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212–2215 (1989).
    [CrossRef] [PubMed]
  24. D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons,” Science 273, 472–475 (1996).
    [CrossRef] [PubMed]
  25. R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Electron acceleration by a laser wakefield in a relativistically self-guided channel,” Phys. Rev. Lett. 78, 3125–3128 (1997).
    [CrossRef]
  26. A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
    [CrossRef]
  27. X. Wang, Q. Wang, and B. Shen, “Forward acceleration and the generation of femtosecond, magaelectronvolt electron beams by an ultrafast intense laser pulse,” Chin. Opt. Lett. (to be published).
  28. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed. (Butterworth-Heinemann, Oxford, 1979).
  29. P. H. Bucksbaum, M. Bashkansky, and T. J. McIlrath, “Scattering of electrons by intense coherent light,” Phys. Rev. Lett. 58, 349–352 (1987).
    [CrossRef] [PubMed]
  30. A. Pukhov and J. Meyer-ter-Vehn, “Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation,” Phys. Rev. Lett. 76, 3975–3978 (1996).
    [CrossRef] [PubMed]
  31. J. C. Adam, A. Hèron, S. Guèrin, G. Laval, P. Mora, and B. Quesnel, “Anomalous absorption of very high-intensity laser pulses propagating through moderately dense plasma,” Phys. Rev. Lett. 78, 4765–4768 (1997).
    [CrossRef]
  32. E. Esarey and M. Pilloff, “Trapping and acceleration in nonlinear plasma waves,” Phys. Plasmas 2, 1432–1436 (1995).
    [CrossRef]
  33. S. Backus, C. G. Durfee III, G. Mourou, H. C. Kapteyn, and M. M. Murnane, “0.2-TW laser system at 1 kHz,” Opt. Lett. 22, 1256–1258 (1997).
    [CrossRef] [PubMed]
  34. O. Albert, H. Wang, D. Liu, Z. Chang, and G. Mourou, “Generation of relativistic intensity pulses at a kilohertz repetition rate,” Opt. Lett. 25, 1125–1127 (2000).
    [CrossRef]

2001 (5)

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, “Direct imaging of transient molecular structures with ultrafast diffraction,” Science 291, 458–462 (2001).
[CrossRef] [PubMed]

P. G. O’Shea and H. P. Freund, “Free-electron lasers: status and applications,” Science 292, 1855–1858 (2001).

D. Umstadter, “Review of physics and applications of relativistic plasmas driven by ultraintense lasers,” Phys. Plasmas 8, 1774–1785 (2001), and references therein.
[CrossRef]

V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
[CrossRef]

D. Giulietii, M. Galimberti, A. Giulietti, L. A. Gizzi, M. Borghesi, Ph. Balcou, A. Rousse, and J. Ph. Rousseau, “High-energy electron beam production by femtosecond laser interactions with exploding-foil plasmas,” Phys. Rev. E 64, 015402–1–015402–4 (2001).

2000 (3)

O. Albert, H. Wang, D. Liu, Z. Chang, and G. Mourou, “Generation of relativistic intensity pulses at a kilohertz repetition rate,” Opt. Lett. 25, 1125–1127 (2000).
[CrossRef]

W. Yu, V. Bychenkov, Y. Sentoku, M. Y. Yu, Z. M. Sheng, and K. Mima, “Electron acceleration by a short relativistic laser pulse at the front of solid target,” Phys. Rev. Lett. 85, 570–573 (2000).
[CrossRef] [PubMed]

X. Wang, M. Krishnan, N. Saleh, H. Wang, and D. Umstadter, “Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas,” Phys. Rev. Lett. 84, 5324–5327 (2000).
[CrossRef] [PubMed]

1999 (3)

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[CrossRef]

A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6, 2847–2854 (1999).
[CrossRef]

H. Wang, S. Backus, Z. Chang, R. Wagner, K. Kim, X. Wang, D. Umstadter, T. Lei, M. Murnane, and H. Kapteyn, “Generation of 10-W average-power, 24-fs pulses from a Ti:sap-phire amplifier system,” J. Opt. Soc. Am. B 16, 1790–1794 (1999).
[CrossRef]

1998 (1)

G. A. Mourou, C. P. J. Barty, and M. D. Perry, “Ultrahigh-intensity lasers: physics of the extreme on a tabletop,” Phys. Today 51(1), 22–28 (1998).
[CrossRef]

1997 (6)

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett. 78, 3314–3317 (1997).
[CrossRef]

C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, “Electron trapping in self-modulated laser wakefields by Raman backscatter,” Phys. Rev. Lett. 79, 3909–3912 (1997).
[CrossRef]

K.-C. Tzeng, W. B. Mori, and T. Katsouleas, “Electron beam characteristics from laser-driven wave breaking,” Phys. Rev. Lett. 79, 5258–5261 (1997).
[CrossRef]

S. Backus, C. G. Durfee III, G. Mourou, H. C. Kapteyn, and M. M. Murnane, “0.2-TW laser system at 1 kHz,” Opt. Lett. 22, 1256–1258 (1997).
[CrossRef] [PubMed]

R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Electron acceleration by a laser wakefield in a relativistically self-guided channel,” Phys. Rev. Lett. 78, 3125–3128 (1997).
[CrossRef]

J. C. Adam, A. Hèron, S. Guèrin, G. Laval, P. Mora, and B. Quesnel, “Anomalous absorption of very high-intensity laser pulses propagating through moderately dense plasma,” Phys. Rev. Lett. 78, 4765–4768 (1997).
[CrossRef]

1996 (4)

D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons,” Science 273, 472–475 (1996).
[CrossRef] [PubMed]

A. Pukhov and J. Meyer-ter-Vehn, “Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation,” Phys. Rev. Lett. 76, 3975–3978 (1996).
[CrossRef] [PubMed]

G. Malka and J. L. Miquel, “Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target,” Phys. Rev. Lett. 77, 75–78 (1996).
[CrossRef] [PubMed]

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996).
[CrossRef]

1995 (3)

C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, “Observation of the transition from Thomson to Compton scattering in multiphoton interactions with low-energy electrons,” Phys. Rev. Lett. 74, 2439–2442 (1995).
[CrossRef] [PubMed]

E. Esarey and M. Pilloff, “Trapping and acceleration in nonlinear plasma waves,” Phys. Plasmas 2, 1432–1436 (1995).
[CrossRef]

A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
[CrossRef]

1989 (1)

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212–2215 (1989).
[CrossRef] [PubMed]

1988 (1)

P. Sprangle, E. Esarey, A. Ting, and G. Joyce, “Laser wakefield acceleration and relativistic optical guiding,” Appl. Phys. Lett. 53, 2146–2148 (1988).
[CrossRef]

1987 (1)

P. H. Bucksbaum, M. Bashkansky, and T. J. McIlrath, “Scattering of electrons by intense coherent light,” Phys. Rev. Lett. 58, 349–352 (1987).
[CrossRef] [PubMed]

1985 (1)

D. W. Forslund, J. M. Kindel, W. B. Mori, C. Joshi, and J. M. Dawson, “Two-dimensional simulations of single-frequency and beat-wave laser-plasma heating,” Phys. Rev. Lett. 54, 558–561 (1985).
[CrossRef] [PubMed]

1979 (1)

T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).
[CrossRef]

Adam, J. C.

J. C. Adam, A. Hèron, S. Guèrin, G. Laval, P. Mora, and B. Quesnel, “Anomalous absorption of very high-intensity laser pulses propagating through moderately dense plasma,” Phys. Rev. Lett. 78, 4765–4768 (1997).
[CrossRef]

Albert, O.

Amiranoff, F.

V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
[CrossRef]

Augst, S.

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212–2215 (1989).
[CrossRef] [PubMed]

Backus, S.

Balcou, Ph.

D. Giulietii, M. Galimberti, A. Giulietti, L. A. Gizzi, M. Borghesi, Ph. Balcou, A. Rousse, and J. Ph. Rousseau, “High-energy electron beam production by femtosecond laser interactions with exploding-foil plasmas,” Phys. Rev. E 64, 015402–1–015402–4 (2001).

Balling, P.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996).
[CrossRef]

Barty, C. P. J.

G. A. Mourou, C. P. J. Barty, and M. D. Perry, “Ultrahigh-intensity lasers: physics of the extreme on a tabletop,” Phys. Today 51(1), 22–28 (1998).
[CrossRef]

Bashkansky, M.

P. H. Bucksbaum, M. Bashkansky, and T. J. McIlrath, “Scattering of electrons by intense coherent light,” Phys. Rev. Lett. 58, 349–352 (1987).
[CrossRef] [PubMed]

Borghesi, M.

D. Giulietii, M. Galimberti, A. Giulietti, L. A. Gizzi, M. Borghesi, Ph. Balcou, A. Rousse, and J. Ph. Rousseau, “High-energy electron beam production by femtosecond laser interactions with exploding-foil plasmas,” Phys. Rev. E 64, 015402–1–015402–4 (2001).

Bucksbaum, P. H.

P. H. Bucksbaum, M. Bashkansky, and T. J. McIlrath, “Scattering of electrons by intense coherent light,” Phys. Rev. Lett. 58, 349–352 (1987).
[CrossRef] [PubMed]

Burris, H. R.

C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, “Electron trapping in self-modulated laser wakefields by Raman backscatter,” Phys. Rev. Lett. 79, 3909–3912 (1997).
[CrossRef]

Bychenkov, V.

W. Yu, V. Bychenkov, Y. Sentoku, M. Y. Yu, Z. M. Sheng, and K. Mima, “Electron acceleration by a short relativistic laser pulse at the front of solid target,” Phys. Rev. Lett. 85, 570–573 (2000).
[CrossRef] [PubMed]

Chambaret, J. P.

V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
[CrossRef]

Chang, Z.

Chattopadhyay, S.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996).
[CrossRef]

Chen, S.-Y.

R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Electron acceleration by a laser wakefield in a relativistically self-guided channel,” Phys. Rev. Lett. 78, 3125–3128 (1997).
[CrossRef]

D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons,” Science 273, 472–475 (1996).
[CrossRef] [PubMed]

Chin, A. H.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996).
[CrossRef]

Chin, S. L.

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212–2215 (1989).
[CrossRef] [PubMed]

Clayton, C. E.

A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
[CrossRef]

Dangor, A. E.

A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
[CrossRef]

Danson, C.

A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
[CrossRef]

Darrow, C. B.

A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
[CrossRef]

Dawson, J. M.

D. W. Forslund, J. M. Kindel, W. B. Mori, C. Joshi, and J. M. Dawson, “Two-dimensional simulations of single-frequency and beat-wave laser-plasma heating,” Phys. Rev. Lett. 54, 558–561 (1985).
[CrossRef] [PubMed]

T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).
[CrossRef]

Durfee III, C. G.

Eberly, J. H.

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212–2215 (1989).
[CrossRef] [PubMed]

Esarey, E.

C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, “Electron trapping in self-modulated laser wakefields by Raman backscatter,” Phys. Rev. Lett. 79, 3909–3912 (1997).
[CrossRef]

E. Esarey and M. Pilloff, “Trapping and acceleration in nonlinear plasma waves,” Phys. Plasmas 2, 1432–1436 (1995).
[CrossRef]

P. Sprangle, E. Esarey, A. Ting, and G. Joyce, “Laser wakefield acceleration and relativistic optical guiding,” Appl. Phys. Lett. 53, 2146–2148 (1988).
[CrossRef]

Fauer, J.

V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
[CrossRef]

Forslund, D. W.

D. W. Forslund, J. M. Kindel, W. B. Mori, C. Joshi, and J. M. Dawson, “Two-dimensional simulations of single-frequency and beat-wave laser-plasma heating,” Phys. Rev. Lett. 54, 558–561 (1985).
[CrossRef] [PubMed]

Freund, H. P.

P. G. O’Shea and H. P. Freund, “Free-electron lasers: status and applications,” Science 292, 1855–1858 (2001).

Gahn, C.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[CrossRef]

Galimberti, M.

D. Giulietii, M. Galimberti, A. Giulietti, L. A. Gizzi, M. Borghesi, Ph. Balcou, A. Rousse, and J. Ph. Rousseau, “High-energy electron beam production by femtosecond laser interactions with exploding-foil plasmas,” Phys. Rev. E 64, 015402–1–015402–4 (2001).

Giulietii, D.

D. Giulietii, M. Galimberti, A. Giulietti, L. A. Gizzi, M. Borghesi, Ph. Balcou, A. Rousse, and J. Ph. Rousseau, “High-energy electron beam production by femtosecond laser interactions with exploding-foil plasmas,” Phys. Rev. E 64, 015402–1–015402–4 (2001).

Giulietti, A.

D. Giulietii, M. Galimberti, A. Giulietti, L. A. Gizzi, M. Borghesi, Ph. Balcou, A. Rousse, and J. Ph. Rousseau, “High-energy electron beam production by femtosecond laser interactions with exploding-foil plasmas,” Phys. Rev. E 64, 015402–1–015402–4 (2001).

Gizzi, L. A.

D. Giulietii, M. Galimberti, A. Giulietti, L. A. Gizzi, M. Borghesi, Ph. Balcou, A. Rousse, and J. Ph. Rousseau, “High-energy electron beam production by femtosecond laser interactions with exploding-foil plasmas,” Phys. Rev. E 64, 015402–1–015402–4 (2001).

Glover, T. E.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996).
[CrossRef]

Gomez, U. M.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, “Direct imaging of transient molecular structures with ultrafast diffraction,” Science 291, 458–462 (2001).
[CrossRef] [PubMed]

Goodson, B. M.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, “Direct imaging of transient molecular structures with ultrafast diffraction,” Science 291, 458–462 (2001).
[CrossRef] [PubMed]

Guèrin, S.

J. C. Adam, A. Hèron, S. Guèrin, G. Laval, P. Mora, and B. Quesnel, “Anomalous absorption of very high-intensity laser pulses propagating through moderately dense plasma,” Phys. Rev. Lett. 78, 4765–4768 (1997).
[CrossRef]

Habs, D.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[CrossRef]

Hafizi, B.

C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, “Electron trapping in self-modulated laser wakefields by Raman backscatter,” Phys. Rev. Lett. 79, 3909–3912 (1997).
[CrossRef]

Hèron, A.

J. C. Adam, A. Hèron, S. Guèrin, G. Laval, P. Mora, and B. Quesnel, “Anomalous absorption of very high-intensity laser pulses propagating through moderately dense plasma,” Phys. Rev. Lett. 78, 4765–4768 (1997).
[CrossRef]

Hubbard, R. F.

C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, “Electron trapping in self-modulated laser wakefields by Raman backscatter,” Phys. Rev. Lett. 79, 3909–3912 (1997).
[CrossRef]

Ihee, H.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, “Direct imaging of transient molecular structures with ultrafast diffraction,” Science 291, 458–462 (2001).
[CrossRef] [PubMed]

Joshi, C.

A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
[CrossRef]

D. W. Forslund, J. M. Kindel, W. B. Mori, C. Joshi, and J. M. Dawson, “Two-dimensional simulations of single-frequency and beat-wave laser-plasma heating,” Phys. Rev. Lett. 54, 558–561 (1985).
[CrossRef] [PubMed]

Joyce, G.

P. Sprangle, E. Esarey, A. Ting, and G. Joyce, “Laser wakefield acceleration and relativistic optical guiding,” Appl. Phys. Lett. 53, 2146–2148 (1988).
[CrossRef]

Kapteyn, H.

Kapteyn, H. C.

Katsouleas, T.

K.-C. Tzeng, W. B. Mori, and T. Katsouleas, “Electron beam characteristics from laser-driven wave breaking,” Phys. Rev. Lett. 79, 5258–5261 (1997).
[CrossRef]

Kim, K.

Kim, K. J.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996).
[CrossRef]

Kindel, J. M.

D. W. Forslund, J. M. Kindel, W. B. Mori, C. Joshi, and J. M. Dawson, “Two-dimensional simulations of single-frequency and beat-wave laser-plasma heating,” Phys. Rev. Lett. 54, 558–561 (1985).
[CrossRef] [PubMed]

Knauer, J. P.

C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, “Observation of the transition from Thomson to Compton scattering in multiphoton interactions with low-energy electrons,” Phys. Rev. Lett. 74, 2439–2442 (1995).
[CrossRef] [PubMed]

Krishnan, M.

X. Wang, M. Krishnan, N. Saleh, H. Wang, and D. Umstadter, “Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas,” Phys. Rev. Lett. 84, 5324–5327 (2000).
[CrossRef] [PubMed]

Krushelnick, K.

C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, “Electron trapping in self-modulated laser wakefields by Raman backscatter,” Phys. Rev. Lett. 79, 3909–3912 (1997).
[CrossRef]

Laval, G.

J. C. Adam, A. Hèron, S. Guèrin, G. Laval, P. Mora, and B. Quesnel, “Anomalous absorption of very high-intensity laser pulses propagating through moderately dense plasma,” Phys. Rev. Lett. 78, 4765–4768 (1997).
[CrossRef]

Leemans, W. P.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996).
[CrossRef]

Lefebvre, E.

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett. 78, 3314–3317 (1997).
[CrossRef]

Lei, T.

Liu, D.

Lobastov, V. A.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, “Direct imaging of transient molecular structures with ultrafast diffraction,” Science 291, 458–462 (2001).
[CrossRef] [PubMed]

Maksimchuk, A.

R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Electron acceleration by a laser wakefield in a relativistically self-guided channel,” Phys. Rev. Lett. 78, 3125–3128 (1997).
[CrossRef]

D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons,” Science 273, 472–475 (1996).
[CrossRef] [PubMed]

Malka, G.

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett. 78, 3314–3317 (1997).
[CrossRef]

G. Malka and J. L. Miquel, “Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target,” Phys. Rev. Lett. 77, 75–78 (1996).
[CrossRef] [PubMed]

Malka, V.

V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
[CrossRef]

A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
[CrossRef]

Manka, C.

C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, “Electron trapping in self-modulated laser wakefields by Raman backscatter,” Phys. Rev. Lett. 79, 3909–3912 (1997).
[CrossRef]

Marquès, J. R.

V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
[CrossRef]

Marsh, K. A.

A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
[CrossRef]

McIlrath, T. J.

P. H. Bucksbaum, M. Bashkansky, and T. J. McIlrath, “Scattering of electrons by intense coherent light,” Phys. Rev. Lett. 58, 349–352 (1987).
[CrossRef] [PubMed]

Meyerhofer, D. D.

C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, “Observation of the transition from Thomson to Compton scattering in multiphoton interactions with low-energy electrons,” Phys. Rev. Lett. 74, 2439–2442 (1995).
[CrossRef] [PubMed]

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212–2215 (1989).
[CrossRef] [PubMed]

Meyer-ter-vehn, J.

A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6, 2847–2854 (1999).
[CrossRef]

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[CrossRef]

A. Pukhov and J. Meyer-ter-Vehn, “Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation,” Phys. Rev. Lett. 76, 3975–3978 (1996).
[CrossRef] [PubMed]

Mima, K.

W. Yu, V. Bychenkov, Y. Sentoku, M. Y. Yu, Z. M. Sheng, and K. Mima, “Electron acceleration by a short relativistic laser pulse at the front of solid target,” Phys. Rev. Lett. 85, 570–573 (2000).
[CrossRef] [PubMed]

Miquel, J. L.

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett. 78, 3314–3317 (1997).
[CrossRef]

G. Malka and J. L. Miquel, “Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target,” Phys. Rev. Lett. 77, 75–78 (1996).
[CrossRef] [PubMed]

Modena, A.

A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
[CrossRef]

Moore, C. I.

C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, “Electron trapping in self-modulated laser wakefields by Raman backscatter,” Phys. Rev. Lett. 79, 3909–3912 (1997).
[CrossRef]

C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, “Observation of the transition from Thomson to Compton scattering in multiphoton interactions with low-energy electrons,” Phys. Rev. Lett. 74, 2439–2442 (1995).
[CrossRef] [PubMed]

Mora, P.

V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
[CrossRef]

J. C. Adam, A. Hèron, S. Guèrin, G. Laval, P. Mora, and B. Quesnel, “Anomalous absorption of very high-intensity laser pulses propagating through moderately dense plasma,” Phys. Rev. Lett. 78, 4765–4768 (1997).
[CrossRef]

Mori, W. B.

K.-C. Tzeng, W. B. Mori, and T. Katsouleas, “Electron beam characteristics from laser-driven wave breaking,” Phys. Rev. Lett. 79, 5258–5261 (1997).
[CrossRef]

D. W. Forslund, J. M. Kindel, W. B. Mori, C. Joshi, and J. M. Dawson, “Two-dimensional simulations of single-frequency and beat-wave laser-plasma heating,” Phys. Rev. Lett. 54, 558–561 (1985).
[CrossRef] [PubMed]

Mourou, G.

Mourou, G. A.

G. A. Mourou, C. P. J. Barty, and M. D. Perry, “Ultrahigh-intensity lasers: physics of the extreme on a tabletop,” Phys. Today 51(1), 22–28 (1998).
[CrossRef]

Murnane, M.

Murnane, M. M.

Najmudin, Z.

V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
[CrossRef]

A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
[CrossRef]

Neely, D.

A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
[CrossRef]

O’Shea, P. G.

P. G. O’Shea and H. P. Freund, “Free-electron lasers: status and applications,” Science 292, 1855–1858 (2001).

Perry, M. D.

G. A. Mourou, C. P. J. Barty, and M. D. Perry, “Ultrahigh-intensity lasers: physics of the extreme on a tabletop,” Phys. Today 51(1), 22–28 (1998).
[CrossRef]

Pilloff, M.

E. Esarey and M. Pilloff, “Trapping and acceleration in nonlinear plasma waves,” Phys. Plasmas 2, 1432–1436 (1995).
[CrossRef]

Pretzler, G.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[CrossRef]

Pukhov, A.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[CrossRef]

A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6, 2847–2854 (1999).
[CrossRef]

A. Pukhov and J. Meyer-ter-Vehn, “Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation,” Phys. Rev. Lett. 76, 3975–3978 (1996).
[CrossRef] [PubMed]

Quesnel, B.

J. C. Adam, A. Hèron, S. Guèrin, G. Laval, P. Mora, and B. Quesnel, “Anomalous absorption of very high-intensity laser pulses propagating through moderately dense plasma,” Phys. Rev. Lett. 78, 4765–4768 (1997).
[CrossRef]

Ranc, S.

V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
[CrossRef]

Rousse, A.

D. Giulietii, M. Galimberti, A. Giulietti, L. A. Gizzi, M. Borghesi, Ph. Balcou, A. Rousse, and J. Ph. Rousseau, “High-energy electron beam production by femtosecond laser interactions with exploding-foil plasmas,” Phys. Rev. E 64, 015402–1–015402–4 (2001).

Rousseau, J. P.

V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
[CrossRef]

Rousseau, J. Ph.

D. Giulietii, M. Galimberti, A. Giulietti, L. A. Gizzi, M. Borghesi, Ph. Balcou, A. Rousse, and J. Ph. Rousseau, “High-energy electron beam production by femtosecond laser interactions with exploding-foil plasmas,” Phys. Rev. E 64, 015402–1–015402–4 (2001).

Ruan, C.-Y.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, “Direct imaging of transient molecular structures with ultrafast diffraction,” Science 291, 458–462 (2001).
[CrossRef] [PubMed]

Saleh, N.

X. Wang, M. Krishnan, N. Saleh, H. Wang, and D. Umstadter, “Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas,” Phys. Rev. Lett. 84, 5324–5327 (2000).
[CrossRef] [PubMed]

Schoenlein, R. W.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996).
[CrossRef]

Sentoku, Y.

W. Yu, V. Bychenkov, Y. Sentoku, M. Y. Yu, Z. M. Sheng, and K. Mima, “Electron acceleration by a short relativistic laser pulse at the front of solid target,” Phys. Rev. Lett. 85, 570–573 (2000).
[CrossRef] [PubMed]

Shank, C. V.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996).
[CrossRef]

Sheng, Z. M.

W. Yu, V. Bychenkov, Y. Sentoku, M. Y. Yu, Z. M. Sheng, and K. Mima, “Electron acceleration by a short relativistic laser pulse at the front of solid target,” Phys. Rev. Lett. 85, 570–573 (2000).
[CrossRef] [PubMed]

Sheng, Z.-M.

A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6, 2847–2854 (1999).
[CrossRef]

Solodov, A.

V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
[CrossRef]

Sprangle, P.

C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, “Electron trapping in self-modulated laser wakefields by Raman backscatter,” Phys. Rev. Lett. 79, 3909–3912 (1997).
[CrossRef]

P. Sprangle, E. Esarey, A. Ting, and G. Joyce, “Laser wakefield acceleration and relativistic optical guiding,” Appl. Phys. Lett. 53, 2146–2148 (1988).
[CrossRef]

Srinivasan, R.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, “Direct imaging of transient molecular structures with ultrafast diffraction,” Science 291, 458–462 (2001).
[CrossRef] [PubMed]

Strickland, D.

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212–2215 (1989).
[CrossRef] [PubMed]

Tajima, T.

T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).
[CrossRef]

Thirolf, P.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[CrossRef]

Ting, A.

C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, “Electron trapping in self-modulated laser wakefields by Raman backscatter,” Phys. Rev. Lett. 79, 3909–3912 (1997).
[CrossRef]

P. Sprangle, E. Esarey, A. Ting, and G. Joyce, “Laser wakefield acceleration and relativistic optical guiding,” Appl. Phys. Lett. 53, 2146–2148 (1988).
[CrossRef]

Tsakiris, G. D.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[CrossRef]

Tzeng, K.-C.

K.-C. Tzeng, W. B. Mori, and T. Katsouleas, “Electron beam characteristics from laser-driven wave breaking,” Phys. Rev. Lett. 79, 5258–5261 (1997).
[CrossRef]

Umstadter, D.

D. Umstadter, “Review of physics and applications of relativistic plasmas driven by ultraintense lasers,” Phys. Plasmas 8, 1774–1785 (2001), and references therein.
[CrossRef]

X. Wang, M. Krishnan, N. Saleh, H. Wang, and D. Umstadter, “Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas,” Phys. Rev. Lett. 84, 5324–5327 (2000).
[CrossRef] [PubMed]

H. Wang, S. Backus, Z. Chang, R. Wagner, K. Kim, X. Wang, D. Umstadter, T. Lei, M. Murnane, and H. Kapteyn, “Generation of 10-W average-power, 24-fs pulses from a Ti:sap-phire amplifier system,” J. Opt. Soc. Am. B 16, 1790–1794 (1999).
[CrossRef]

R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Electron acceleration by a laser wakefield in a relativistically self-guided channel,” Phys. Rev. Lett. 78, 3125–3128 (1997).
[CrossRef]

D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons,” Science 273, 472–475 (1996).
[CrossRef] [PubMed]

Volfbeyn, P.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996).
[CrossRef]

Wagner, R.

H. Wang, S. Backus, Z. Chang, R. Wagner, K. Kim, X. Wang, D. Umstadter, T. Lei, M. Murnane, and H. Kapteyn, “Generation of 10-W average-power, 24-fs pulses from a Ti:sap-phire amplifier system,” J. Opt. Soc. Am. B 16, 1790–1794 (1999).
[CrossRef]

R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Electron acceleration by a laser wakefield in a relativistically self-guided channel,” Phys. Rev. Lett. 78, 3125–3128 (1997).
[CrossRef]

D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons,” Science 273, 472–475 (1996).
[CrossRef] [PubMed]

Walsh, F. N.

A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
[CrossRef]

Walton, B.

V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
[CrossRef]

Wang, H.

Wang, X.

X. Wang, M. Krishnan, N. Saleh, H. Wang, and D. Umstadter, “Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas,” Phys. Rev. Lett. 84, 5324–5327 (2000).
[CrossRef] [PubMed]

H. Wang, S. Backus, Z. Chang, R. Wagner, K. Kim, X. Wang, D. Umstadter, T. Lei, M. Murnane, and H. Kapteyn, “Generation of 10-W average-power, 24-fs pulses from a Ti:sap-phire amplifier system,” J. Opt. Soc. Am. B 16, 1790–1794 (1999).
[CrossRef]

Witte, K. J.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[CrossRef]

Yu, M. Y.

W. Yu, V. Bychenkov, Y. Sentoku, M. Y. Yu, Z. M. Sheng, and K. Mima, “Electron acceleration by a short relativistic laser pulse at the front of solid target,” Phys. Rev. Lett. 85, 570–573 (2000).
[CrossRef] [PubMed]

Yu, W.

W. Yu, V. Bychenkov, Y. Sentoku, M. Y. Yu, Z. M. Sheng, and K. Mima, “Electron acceleration by a short relativistic laser pulse at the front of solid target,” Phys. Rev. Lett. 85, 570–573 (2000).
[CrossRef] [PubMed]

Zewail, A. H.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, “Direct imaging of transient molecular structures with ultrafast diffraction,” Science 291, 458–462 (2001).
[CrossRef] [PubMed]

Zolotorev, M.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

P. Sprangle, E. Esarey, A. Ting, and G. Joyce, “Laser wakefield acceleration and relativistic optical guiding,” Appl. Phys. Lett. 53, 2146–2148 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, “Electron acceleration from the breaking of relativistic plasma waves,” Nature 377, 606–608 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Plasmas (4)

E. Esarey and M. Pilloff, “Trapping and acceleration in nonlinear plasma waves,” Phys. Plasmas 2, 1432–1436 (1995).
[CrossRef]

D. Umstadter, “Review of physics and applications of relativistic plasmas driven by ultraintense lasers,” Phys. Plasmas 8, 1774–1785 (2001), and references therein.
[CrossRef]

A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6, 2847–2854 (1999).
[CrossRef]

V. Malka, J. Fauer, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, “Characteristics of electron beams produced by ultrashort (30 fs) laser pulses,” Phys. Plasmas 8, 2605–2608 (2001).
[CrossRef]

Phys. Rev. E (1)

D. Giulietii, M. Galimberti, A. Giulietti, L. A. Gizzi, M. Borghesi, Ph. Balcou, A. Rousse, and J. Ph. Rousseau, “High-energy electron beam production by femtosecond laser interactions with exploding-foil plasmas,” Phys. Rev. E 64, 015402–1–015402–4 (2001).

Phys. Rev. Lett. (15)

W. Yu, V. Bychenkov, Y. Sentoku, M. Y. Yu, Z. M. Sheng, and K. Mima, “Electron acceleration by a short relativistic laser pulse at the front of solid target,” Phys. Rev. Lett. 85, 570–573 (2000).
[CrossRef] [PubMed]

X. Wang, M. Krishnan, N. Saleh, H. Wang, and D. Umstadter, “Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas,” Phys. Rev. Lett. 84, 5324–5327 (2000).
[CrossRef] [PubMed]

T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).
[CrossRef]

D. W. Forslund, J. M. Kindel, W. B. Mori, C. Joshi, and J. M. Dawson, “Two-dimensional simulations of single-frequency and beat-wave laser-plasma heating,” Phys. Rev. Lett. 54, 558–561 (1985).
[CrossRef] [PubMed]

C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, “Observation of the transition from Thomson to Compton scattering in multiphoton interactions with low-energy electrons,” Phys. Rev. Lett. 74, 2439–2442 (1995).
[CrossRef] [PubMed]

G. Malka and J. L. Miquel, “Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target,” Phys. Rev. Lett. 77, 75–78 (1996).
[CrossRef] [PubMed]

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett. 78, 3314–3317 (1997).
[CrossRef]

C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, “Electron trapping in self-modulated laser wakefields by Raman backscatter,” Phys. Rev. Lett. 79, 3909–3912 (1997).
[CrossRef]

K.-C. Tzeng, W. B. Mori, and T. Katsouleas, “Electron beam characteristics from laser-driven wave breaking,” Phys. Rev. Lett. 79, 5258–5261 (1997).
[CrossRef]

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[CrossRef]

R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Electron acceleration by a laser wakefield in a relativistically self-guided channel,” Phys. Rev. Lett. 78, 3125–3128 (1997).
[CrossRef]

P. H. Bucksbaum, M. Bashkansky, and T. J. McIlrath, “Scattering of electrons by intense coherent light,” Phys. Rev. Lett. 58, 349–352 (1987).
[CrossRef] [PubMed]

A. Pukhov and J. Meyer-ter-Vehn, “Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation,” Phys. Rev. Lett. 76, 3975–3978 (1996).
[CrossRef] [PubMed]

J. C. Adam, A. Hèron, S. Guèrin, G. Laval, P. Mora, and B. Quesnel, “Anomalous absorption of very high-intensity laser pulses propagating through moderately dense plasma,” Phys. Rev. Lett. 78, 4765–4768 (1997).
[CrossRef]

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212–2215 (1989).
[CrossRef] [PubMed]

Phys. Today (1)

G. A. Mourou, C. P. J. Barty, and M. D. Perry, “Ultrahigh-intensity lasers: physics of the extreme on a tabletop,” Phys. Today 51(1), 22–28 (1998).
[CrossRef]

Science (4)

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996).
[CrossRef]

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, “Direct imaging of transient molecular structures with ultrafast diffraction,” Science 291, 458–462 (2001).
[CrossRef] [PubMed]

P. G. O’Shea and H. P. Freund, “Free-electron lasers: status and applications,” Science 292, 1855–1858 (2001).

D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons,” Science 273, 472–475 (1996).
[CrossRef] [PubMed]

Other (4)

X. Wang, Q. Wang, and B. Shen, “Forward acceleration and the generation of femtosecond, magaelectronvolt electron beams by an ultrafast intense laser pulse,” Chin. Opt. Lett. (to be published).

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed. (Butterworth-Heinemann, Oxford, 1979).

X. Wang, S. Backus, H. Kapteyn, M. Murnane, N. Saleh, D. Umstadter, and W. Yu, “Generation of megaelectronvolt electron beams by an ultrashort (<30 fs), intense laser pulse,” in Applications of High Field and Short Wavelength Sources, Vol. 65 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001).

The generated maximum electron density from the H2 was ~2.5×1019 cm−3, one fifth of that from the N2 under the same backing pressure. For the laser conditions described in the text, no MeV electrons were observed with H2 or at such densities.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

High-dynamic-range pulse measurement with a frequency-resolved optical gating (FROG) technique. Dashed curve, experimentally measured result; solid line curve, fitted profile, which is the superposition of two separate Gaussian temporal profiles (dotted curves) of 28.4 and 110 fs FWHM.

Fig. 2
Fig. 2

Microscopic images of the transmitted light as a function of plasma density and the corresponding intensity distributions for an incident laser power of 6 TW. The image labeled vacuum is the laser beam image at the best focal position under vacuum, and the other images correspond to 400 μm beyond the best vacuum focal position.

Fig. 3
Fig. 3

Measured MeV electron signal (a) as a function of laser power for plasma density ne=0.06nc and (b) as a function of plasma density for laser power P6 TW. The error bars indicate shot-to-shot fluctuations. The numbers and arrows indicate the threshold for observing the MeV electrons. The dashed curves assist the eye.

Fig. 4
Fig. 4

(a) Lanex image of the main electron beam component and (b) lineouts in the horizontal (solid curve) and vertical (dotted curve) directions through the beam center.

Fig. 5
Fig. 5

(a) Measured electron number distribution versus energy (points) and exponential decay fit (solid curve). (b) Measured radiation intensity as a function of lead thickness. Error bars indicate shot-to-shot fluctuations. The incident laser power P=6 TW, and the plasma density ne=0.06nc.

Fig. 6
Fig. 6

Final velocities V/C of the electrons, after the laser pulse traverses them, as a function of their initial positions z. The laser pulse propagates along the z axis (from left to right in the plot) and its pulse width is 30 fs in FWHM. The laser’s intensity begins to decrease from the position z=50 μm with an attenuation coefficient α=0.5 μm-1. The laser strength parameters are a0=1, 2, 3.

Fig. 7
Fig. 7

The relativistic factors γ of two representative electrons as a function of their longitudinal positions z. The two electrons are initially at zi=21 μm and zi=42 μm. For the laser pulse, a0=3 and the other conditions are the same as described in Fig. 6.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

a=a0sin2z-CtCt0sin(ωt-kz)×exp[-α(z-z0)]xˆ
(z<z0,α=0;zz0,α>0).
d(γmV)dt=(-e)(E+V×B),
d(γmC2)dt=(-e)EV,

Metrics