Abstract

Ablation driven by intense, femtosecond laser pulses offers a novel route to fabrication of nanometer-sized particles. I model particle formation by considering the hydrodynamics of material expansion into vacuum. Modeling reveals rapid material dilution and cooling. Vacuum expansion is found to quench the ejected material 1–3 orders of magnitude more efficiently than thermal conduction quenches the residual bulk surface. Efficient quenching implies that solid-phase particles are produced rapidly (in ≪1 ns) following laser excitation; this may allow unique material states to be frozen within the ejected particles. Finally, the mean particle size is estimated to range from ∼1 to ∼10 nm for initial lattice temperatures ranging from 0.3 to 10 eV.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
    [CrossRef]
  2. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
    [CrossRef]
  3. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 68036807 (1999).
    [CrossRef]
  4. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162–163 (1985).
    [CrossRef]
  5. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
    [CrossRef]
  6. B. L. Holian and D. E. Grady, “Fragmentation by molecular dynamics: the microscopic ‘Big Bang, ’” Phys. Rev. Lett. 60, 1355–1358 (1988).
    [CrossRef] [PubMed]
  7. L. Oddershede, P. Dimon, and J. Bohr, “Self-organized criticality in fragmenting,” Phys. Rev. Lett. 71, 3107–3110 (1993).
    [CrossRef] [PubMed]
  8. M. C. Downer, R. L. Fork, and C. V. Shank, “Femtosecond imaging of melting and evaporation at a photoexcited silicon surface,” J. Opt. Soc. Am. B 2, 595–599 (1985).
    [CrossRef]
  9. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
    [CrossRef]
  10. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301–3309 (1999).
    [CrossRef]
  11. J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72, 1364–1367 (1994).
    [CrossRef] [PubMed]
  12. H. L. Anderson, ed., Physics Vade Mecum (American Institute of Physics, New York, 1989).
  13. M. G. Grimaldi, P. Baeri, and M. A. Malvezzi, “Melting temperature of unrelaxed amorphous silicon,” Phys. Rev. B 44, 1546–1553 (1991).
    [CrossRef]
  14. H. C. Gerritsen, H. van Brug, F. Bijkerk, K. Murakami, and M. J. van der Wiel, “A time-resolved x-ray absorption study of amorphous Si during pulsed laser irradiation,” J. Appl. Phys. 60, 1774–1783 (1986).
    [CrossRef]
  15. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1008 (1983).
    [CrossRef]
  16. K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B 51, 14186–14198 (1995).
    [CrossRef]
  17. B. Striker, A. Pospieszczyk, and J. A. Tagle, “Measurement of lattice temperature of silicon during pulsed laser annealing,” Phys. Rev. Lett. 47, 356–358 (1981).
    [CrossRef]
  18. J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: many-body effects,” Phys. Rev. B 26, 2147–2158 (1982).
    [CrossRef]
  19. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron–hole plasmas in silicon,” Phys. Rev. B 61, 2643–2649 (2000).
    [CrossRef]
  20. S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
    [CrossRef] [PubMed]
  21. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986).
  22. S. I. Anisimov, D. Bauerle, and B. S. Luk’yanchuk, “Gas dynamics and film profiles in pulsed-laser deposition of materials,” Phys. Rev. B 48, 12076–12081 (1993).
    [CrossRef]
  23. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 2000).
  24. N. F. Mott, Metal–Insulator Transitions (Barnes and Noble, New York, 1974).
  25. D. A. Young, Lawrence Livermore National Laboratory, Livermore, Calif., 94550–9234 (personal communication, January 21, 2002).
  26. G. Devaud and D. Turnbull, “Undercooling of molten silicon,” Appl. Phys. Lett. 46, 844–845 (1985).
    [CrossRef]
  27. T. Ohyanagi, A. Miyashita, K. Murakami, and O. Yoda, “Time-and-space resolved x-ray absorption spectroscopy of laser-ablated Si particles,” Jpn. J. Appl. Phys. 33, 2586–2592 (1994).
    [CrossRef]
  28. D. E. Grady, “Local inertial effects in dynamic fragmentation,” J. Appl. Phys. 53, 322–325 (1982).
    [CrossRef]
  29. A. Strachan and C. O. Dorso, “Timescales in fragmentation,” Phys. Rev. C 55, 775–787 (1997).
    [CrossRef]

2000 (1)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron–hole plasmas in silicon,” Phys. Rev. B 61, 2643–2649 (2000).
[CrossRef]

1999 (2)

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301–3309 (1999).
[CrossRef]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 68036807 (1999).
[CrossRef]

1998 (2)

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

1997 (2)

A. Strachan and C. O. Dorso, “Timescales in fragmentation,” Phys. Rev. C 55, 775–787 (1997).
[CrossRef]

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

1995 (2)

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B 51, 14186–14198 (1995).
[CrossRef]

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

1994 (2)

J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72, 1364–1367 (1994).
[CrossRef] [PubMed]

T. Ohyanagi, A. Miyashita, K. Murakami, and O. Yoda, “Time-and-space resolved x-ray absorption spectroscopy of laser-ablated Si particles,” Jpn. J. Appl. Phys. 33, 2586–2592 (1994).
[CrossRef]

1993 (2)

S. I. Anisimov, D. Bauerle, and B. S. Luk’yanchuk, “Gas dynamics and film profiles in pulsed-laser deposition of materials,” Phys. Rev. B 48, 12076–12081 (1993).
[CrossRef]

L. Oddershede, P. Dimon, and J. Bohr, “Self-organized criticality in fragmenting,” Phys. Rev. Lett. 71, 3107–3110 (1993).
[CrossRef] [PubMed]

1991 (1)

M. G. Grimaldi, P. Baeri, and M. A. Malvezzi, “Melting temperature of unrelaxed amorphous silicon,” Phys. Rev. B 44, 1546–1553 (1991).
[CrossRef]

1988 (1)

B. L. Holian and D. E. Grady, “Fragmentation by molecular dynamics: the microscopic ‘Big Bang, ’” Phys. Rev. Lett. 60, 1355–1358 (1988).
[CrossRef] [PubMed]

1987 (1)

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[CrossRef] [PubMed]

1986 (1)

H. C. Gerritsen, H. van Brug, F. Bijkerk, K. Murakami, and M. J. van der Wiel, “A time-resolved x-ray absorption study of amorphous Si during pulsed laser irradiation,” J. Appl. Phys. 60, 1774–1783 (1986).
[CrossRef]

1985 (3)

G. Devaud and D. Turnbull, “Undercooling of molten silicon,” Appl. Phys. Lett. 46, 844–845 (1985).
[CrossRef]

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

M. C. Downer, R. L. Fork, and C. V. Shank, “Femtosecond imaging of melting and evaporation at a photoexcited silicon surface,” J. Opt. Soc. Am. B 2, 595–599 (1985).
[CrossRef]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1008 (1983).
[CrossRef]

1982 (2)

J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: many-body effects,” Phys. Rev. B 26, 2147–2158 (1982).
[CrossRef]

D. E. Grady, “Local inertial effects in dynamic fragmentation,” J. Appl. Phys. 53, 322–325 (1982).
[CrossRef]

1981 (1)

B. Striker, A. Pospieszczyk, and J. A. Tagle, “Measurement of lattice temperature of silicon during pulsed laser annealing,” Phys. Rev. Lett. 47, 356–358 (1981).
[CrossRef]

Anisimov, S. I.

S. I. Anisimov, D. Bauerle, and B. S. Luk’yanchuk, “Gas dynamics and film profiles in pulsed-laser deposition of materials,” Phys. Rev. B 48, 12076–12081 (1993).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1008 (1983).
[CrossRef]

Baeri, P.

M. G. Grimaldi, P. Baeri, and M. A. Malvezzi, “Melting temperature of unrelaxed amorphous silicon,” Phys. Rev. B 44, 1546–1553 (1991).
[CrossRef]

Banks, P. S.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 68036807 (1999).
[CrossRef]

Bauerle, D.

S. I. Anisimov, D. Bauerle, and B. S. Luk’yanchuk, “Gas dynamics and film profiles in pulsed-laser deposition of materials,” Phys. Rev. B 48, 12076–12081 (1993).
[CrossRef]

Bialkowski, J.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301–3309 (1999).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B 51, 14186–14198 (1995).
[CrossRef]

Bijkerk, F.

H. C. Gerritsen, H. van Brug, F. Bijkerk, K. Murakami, and M. J. van der Wiel, “A time-resolved x-ray absorption study of amorphous Si during pulsed laser irradiation,” J. Appl. Phys. 60, 1774–1783 (1986).
[CrossRef]

Bohr, J.

L. Oddershede, P. Dimon, and J. Bohr, “Self-organized criticality in fragmenting,” Phys. Rev. Lett. 71, 3107–3110 (1993).
[CrossRef] [PubMed]

Brorson, S. D.

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[CrossRef] [PubMed]

Cavalleri, A.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301–3309 (1999).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Cheng, Z.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Colbert, D. T.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

Curl, R. F.

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

Devaud, G.

G. Devaud and D. Turnbull, “Undercooling of molten silicon,” Appl. Phys. Lett. 46, 844–845 (1985).
[CrossRef]

Dimon, P.

L. Oddershede, P. Dimon, and J. Bohr, “Self-organized criticality in fragmenting,” Phys. Rev. Lett. 71, 3107–3110 (1993).
[CrossRef] [PubMed]

Dorso, C. O.

A. Strachan and C. O. Dorso, “Timescales in fragmentation,” Phys. Rev. C 55, 775–787 (1997).
[CrossRef]

Downer, M. C.

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Feit, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 68036807 (1999).
[CrossRef]

Fork, R. L.

Fujimoto, J. G.

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[CrossRef] [PubMed]

Gerritsen, H. C.

H. C. Gerritsen, H. van Brug, F. Bijkerk, K. Murakami, and M. J. van der Wiel, “A time-resolved x-ray absorption study of amorphous Si during pulsed laser irradiation,” J. Appl. Phys. 60, 1774–1783 (1986).
[CrossRef]

Goldman, J. R.

J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72, 1364–1367 (1994).
[CrossRef] [PubMed]

Grady, D. E.

B. L. Holian and D. E. Grady, “Fragmentation by molecular dynamics: the microscopic ‘Big Bang, ’” Phys. Rev. Lett. 60, 1355–1358 (1988).
[CrossRef] [PubMed]

D. E. Grady, “Local inertial effects in dynamic fragmentation,” J. Appl. Phys. 53, 322–325 (1982).
[CrossRef]

Grimaldi, M. G.

M. G. Grimaldi, P. Baeri, and M. A. Malvezzi, “Melting temperature of unrelaxed amorphous silicon,” Phys. Rev. B 44, 1546–1553 (1991).
[CrossRef]

Guo, T.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

Heath, J. R.

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

Holian, B. L.

B. L. Holian and D. E. Grady, “Fragmentation by molecular dynamics: the microscopic ‘Big Bang, ’” Phys. Rev. Lett. 60, 1355–1358 (1988).
[CrossRef] [PubMed]

Ippen, E. P.

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[CrossRef] [PubMed]

Kautek, W.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Krausz, F.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Kroto, H. W.

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

Kruger, J.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Lenzner, M.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Luk’yanchuk, B. S.

S. I. Anisimov, D. Bauerle, and B. S. Luk’yanchuk, “Gas dynamics and film profiles in pulsed-laser deposition of materials,” Phys. Rev. B 48, 12076–12081 (1993).
[CrossRef]

Malvezzi, M. A.

M. G. Grimaldi, P. Baeri, and M. A. Malvezzi, “Melting temperature of unrelaxed amorphous silicon,” Phys. Rev. B 44, 1546–1553 (1991).
[CrossRef]

Miyashita, A.

T. Ohyanagi, A. Miyashita, K. Murakami, and O. Yoda, “Time-and-space resolved x-ray absorption spectroscopy of laser-ablated Si particles,” Jpn. J. Appl. Phys. 33, 2586–2592 (1994).
[CrossRef]

Mourou, G.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Murakami, K.

T. Ohyanagi, A. Miyashita, K. Murakami, and O. Yoda, “Time-and-space resolved x-ray absorption spectroscopy of laser-ablated Si particles,” Jpn. J. Appl. Phys. 33, 2586–2592 (1994).
[CrossRef]

H. C. Gerritsen, H. van Brug, F. Bijkerk, K. Murakami, and M. J. van der Wiel, “A time-resolved x-ray absorption study of amorphous Si during pulsed laser irradiation,” J. Appl. Phys. 60, 1774–1783 (1986).
[CrossRef]

Nikolaev, P.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

O’Brien, S. C.

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

Oddershede, L.

L. Oddershede, P. Dimon, and J. Bohr, “Self-organized criticality in fragmenting,” Phys. Rev. Lett. 71, 3107–3110 (1993).
[CrossRef] [PubMed]

Ohyanagi, T.

T. Ohyanagi, A. Miyashita, K. Murakami, and O. Yoda, “Time-and-space resolved x-ray absorption spectroscopy of laser-ablated Si particles,” Jpn. J. Appl. Phys. 33, 2586–2592 (1994).
[CrossRef]

Perry, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 68036807 (1999).
[CrossRef]

Pospieszczyk, A.

B. Striker, A. Pospieszczyk, and J. A. Tagle, “Measurement of lattice temperature of silicon during pulsed laser annealing,” Phys. Rev. Lett. 47, 356–358 (1981).
[CrossRef]

Prybyla, J. A.

J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72, 1364–1367 (1994).
[CrossRef] [PubMed]

Rubenchik, A. M.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 68036807 (1999).
[CrossRef]

Sartania, S.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Schreiner, M.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301–3309 (1999).
[CrossRef]

Shank, C. V.

Smalley, R. E.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron–hole plasmas in silicon,” Phys. Rev. B 61, 2643–2649 (2000).
[CrossRef]

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301–3309 (1999).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B 51, 14186–14198 (1995).
[CrossRef]

Spielmann, Ch.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Strachan, A.

A. Strachan and C. O. Dorso, “Timescales in fragmentation,” Phys. Rev. C 55, 775–787 (1997).
[CrossRef]

Striker, B.

B. Striker, A. Pospieszczyk, and J. A. Tagle, “Measurement of lattice temperature of silicon during pulsed laser annealing,” Phys. Rev. Lett. 47, 356–358 (1981).
[CrossRef]

Stuart, B. C.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 68036807 (1999).
[CrossRef]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1008 (1983).
[CrossRef]

Tagle, J. A.

B. Striker, A. Pospieszczyk, and J. A. Tagle, “Measurement of lattice temperature of silicon during pulsed laser annealing,” Phys. Rev. Lett. 47, 356–358 (1981).
[CrossRef]

Thess, A.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

Turnbull, D.

G. Devaud and D. Turnbull, “Undercooling of molten silicon,” Appl. Phys. Lett. 46, 844–845 (1985).
[CrossRef]

van Brug, H.

H. C. Gerritsen, H. van Brug, F. Bijkerk, K. Murakami, and M. J. van der Wiel, “A time-resolved x-ray absorption study of amorphous Si during pulsed laser irradiation,” J. Appl. Phys. 60, 1774–1783 (1986).
[CrossRef]

van der Wiel, M. J.

H. C. Gerritsen, H. van Brug, F. Bijkerk, K. Murakami, and M. J. van der Wiel, “A time-resolved x-ray absorption study of amorphous Si during pulsed laser irradiation,” J. Appl. Phys. 60, 1774–1783 (1986).
[CrossRef]

van Driel, H. M.

J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: many-body effects,” Phys. Rev. B 26, 2147–2158 (1982).
[CrossRef]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron–hole plasmas in silicon,” Phys. Rev. B 61, 2643–2649 (2000).
[CrossRef]

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301–3309 (1999).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B 51, 14186–14198 (1995).
[CrossRef]

Yanovsky, V.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 68036807 (1999).
[CrossRef]

Yoda, O.

T. Ohyanagi, A. Miyashita, K. Murakami, and O. Yoda, “Time-and-space resolved x-ray absorption spectroscopy of laser-ablated Si particles,” Jpn. J. Appl. Phys. 33, 2586–2592 (1994).
[CrossRef]

Young, J. F.

J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: many-body effects,” Phys. Rev. B 26, 2147–2158 (1982).
[CrossRef]

Appl. Phys. Lett. (1)

G. Devaud and D. Turnbull, “Undercooling of molten silicon,” Appl. Phys. Lett. 46, 844–845 (1985).
[CrossRef]

Chem. Phys. Lett. (1)

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

J. Appl. Phys. (4)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 68036807 (1999).
[CrossRef]

D. E. Grady, “Local inertial effects in dynamic fragmentation,” J. Appl. Phys. 53, 322–325 (1982).
[CrossRef]

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301–3309 (1999).
[CrossRef]

H. C. Gerritsen, H. van Brug, F. Bijkerk, K. Murakami, and M. J. van der Wiel, “A time-resolved x-ray absorption study of amorphous Si during pulsed laser irradiation,” J. Appl. Phys. 60, 1774–1783 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Ohyanagi, A. Miyashita, K. Murakami, and O. Yoda, “Time-and-space resolved x-ray absorption spectroscopy of laser-ablated Si particles,” Jpn. J. Appl. Phys. 33, 2586–2592 (1994).
[CrossRef]

Nature (1)

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

Phys. Rev. B (6)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1008 (1983).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B 51, 14186–14198 (1995).
[CrossRef]

M. G. Grimaldi, P. Baeri, and M. A. Malvezzi, “Melting temperature of unrelaxed amorphous silicon,” Phys. Rev. B 44, 1546–1553 (1991).
[CrossRef]

J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: many-body effects,” Phys. Rev. B 26, 2147–2158 (1982).
[CrossRef]

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron–hole plasmas in silicon,” Phys. Rev. B 61, 2643–2649 (2000).
[CrossRef]

S. I. Anisimov, D. Bauerle, and B. S. Luk’yanchuk, “Gas dynamics and film profiles in pulsed-laser deposition of materials,” Phys. Rev. B 48, 12076–12081 (1993).
[CrossRef]

Phys. Rev. C (1)

A. Strachan and C. O. Dorso, “Timescales in fragmentation,” Phys. Rev. C 55, 775–787 (1997).
[CrossRef]

Phys. Rev. Lett. (7)

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

B. L. Holian and D. E. Grady, “Fragmentation by molecular dynamics: the microscopic ‘Big Bang, ’” Phys. Rev. Lett. 60, 1355–1358 (1988).
[CrossRef] [PubMed]

L. Oddershede, P. Dimon, and J. Bohr, “Self-organized criticality in fragmenting,” Phys. Rev. Lett. 71, 3107–3110 (1993).
[CrossRef] [PubMed]

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[CrossRef] [PubMed]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72, 1364–1367 (1994).
[CrossRef] [PubMed]

B. Striker, A. Pospieszczyk, and J. A. Tagle, “Measurement of lattice temperature of silicon during pulsed laser annealing,” Phys. Rev. Lett. 47, 356–358 (1981).
[CrossRef]

Other (5)

H. L. Anderson, ed., Physics Vade Mecum (American Institute of Physics, New York, 1989).

C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986).

L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 2000).

N. F. Mott, Metal–Insulator Transitions (Barnes and Noble, New York, 1974).

D. A. Young, Lawrence Livermore National Laboratory, Livermore, Calif., 94550–9234 (personal communication, January 21, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated initial lattice temperature as a function of absorbed laser fluence. Calculations are shown for laser energy-deposition lengths ranging from 78 nm to 2 μm, as specified by the labels of the curves.

Fig. 2
Fig. 2

(a) Calculated density versus time for material expanding into vacuum. By “time” is meant the time following lattice heating, and the assumed initial lattice temperatures (degrees Kelvin) are shown. Quantities specified in this and all subsequent figures are averaged over a layer of ejected material that is 1 nm thick before vacuum expansion. Calculations assume a similarity profile (see text). (b) Calculated fractional density dilution rate (change in density per unit time as a fraction of the density at that time) versus time for material expanding into vacuum. The assumed initial lattice temperatures (degrees Kelvin) are shown. (c) Calculated change in density per picosecond as a function of time for material expanding into vacuum. The assumed initial lattice temperatures (degrees Kelvin) are shown. (d) Calculated pressure versus time for material expanding into vacuum. The assumed initial lattice temperatures (degrees Kelvin) are shown. Pressure is expressed in units of atmospheres (atms); 1 atm=760 Torr=133.32 Pa.

Fig. 3
Fig. 3

(a) Calculated temperature versus time for material expanding into vacuum. The assumed initial lattice temperatures (degrees Kelvin) are shown. (b) Calculated cooling rate versus time for material expanding into vacuum. The assumed initial lattice temperatures (degrees Kelvin) are shown.

Fig. 4
Fig. 4

Thermodynamic pathway for adiabatic expansion into vacuum. The phase diagram for silicon is shown, as are ideal-gas isentropes at initial lattice temperatures ranging from 3540 K (0.3 eV) to 116,040 K (10 eV).

Fig. 5
Fig. 5

(a) Mean fragment size as a function of fragmentation time. The time is the time after lattice heating, and the fragment size is calculated by use of an energy balance argument discussed in the text. The variation in fragment size results from variations of density and of density dilution rate with time. (b) Mean fragment size as a function of initial lattice temperature. Fragmentation is assumed to occur as soon as the rarefaction wave overtakes the region of interest (the top 1 nm before expansion). The associated fragmentation times are 697, 382, 270, 171, and 121 fs for initial lattice temperatures of 0.3, 1, 2, 5, and 10 eV, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ=ρ0[1-0.5*(γ-1)|v|/c0]2/(γ-1),
P=P0[1-0.5*(γ-1)|v|/c0]2γ/(γ-1),
T=T0[1-0.5*(γ-1)|v|/c0]2,
c=c0-0.5*(γ-1)|v|.
R=D(T/L2).
S=[3(dρ/dt)2/(5ργ)]1/3,
d=6/S.

Metrics