Abstract

When clusters of deuterium are irradiated with an intense, ultrafast laser pulse, the clusters explode, generating ions with kinetic energies high enough to produce nuclear-fusion events. Here we present experimental measurements of the dependence of the fusion yield of an exploding deuterium-cluster plasma on pulse energy up to the 10-J level for incident pulse durations of 100 fs and 1 ps. These energies correspond to peak vacuum intensities of 2×1020 and 2×1019 W/cm2, respectively. We also present measurements of the resulting plasma ion spectra that possess features indicative of a Coulomb explosion and discuss the yield scaling and its relation to previous findings based on the differences in laser focal geometry and pulse duration.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Floux, D. Cognard, L.-G. Denoeud, G. Piar, D. Parisot, J. L. Bobin, F. Delobeau, and C. Fauquignon, “Nuclear fusion reactions in solid-deuterium laser-produced plasma,” Phys. Rev. A 1, 821–824 (1970).
    [CrossRef]
  2. T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398, 489–492 (1999).
    [CrossRef]
  3. J. Zweiback, R. A. Smith, T. E. Cowan, G. Hays, K. B. Wharton, V. P. Yanovsky, and T. Ditmire, “Nuclear fusion driven by Coulomb explosions of large deuterium clusters,” Phys. Rev. Lett. 84, 2634–2637 (2000).
    [CrossRef] [PubMed]
  4. G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
    [CrossRef]
  5. J. Zweiback, T. E. Cowan, R. A. Smith, J. H. Hartley, R. Howell, C. A. Steinke, G. Hays, K. B. Wharton, J. K. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640–3643 (2000).
    [CrossRef] [PubMed]
  6. Damage in materials from particle collision induced atomic cascades has been studied theoretically in, for example, T. Diaz de la Rubia and G. H. Gilmer, “Structural transformations and defect production in ion implanted silicon: a molecular dynamics simulation study,” Phys. Rev. Lett. 74, 2507–2510 (1995).
    [CrossRef] [PubMed]
  7. F. G. Patterson, J. Bonlie, D. Price, and B. White, “Suppression of parasitic lasing in large-aperture Ti:sapphire laser amplifiers,” Opt. Lett. 24, 963–965 (1999).
    [CrossRef]
  8. J. Zweiback and T. Ditmire, “Femtosecond laser energy deposition in strongly absorbing cluster gases diagnosed by blast wave trajectory analysis,” Phys. Plasmas 8, 4545–4550 (2001).
    [CrossRef]
  9. M. Lewerenz, B. Schilling, and J. P. Toennies, “A new scattering deflection method for determining and selecting the sizes of large liquid clusters of 4He,” Chem. Phys. Lett. 206, 381–387 (1993).
    [CrossRef]
  10. V. P. Krainov and M. B. Smirnov, “Surface heating of deuterium clusters by the field of a superintense ultrashort laser pulse for implementing the nuclear reaction d+d→ 3He+n,” Phys. At. Nucl. 64, 585–587 (2001).
    [CrossRef]

2002 (1)

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

2001 (2)

J. Zweiback and T. Ditmire, “Femtosecond laser energy deposition in strongly absorbing cluster gases diagnosed by blast wave trajectory analysis,” Phys. Plasmas 8, 4545–4550 (2001).
[CrossRef]

V. P. Krainov and M. B. Smirnov, “Surface heating of deuterium clusters by the field of a superintense ultrashort laser pulse for implementing the nuclear reaction d+d→ 3He+n,” Phys. At. Nucl. 64, 585–587 (2001).
[CrossRef]

2000 (2)

J. Zweiback, R. A. Smith, T. E. Cowan, G. Hays, K. B. Wharton, V. P. Yanovsky, and T. Ditmire, “Nuclear fusion driven by Coulomb explosions of large deuterium clusters,” Phys. Rev. Lett. 84, 2634–2637 (2000).
[CrossRef] [PubMed]

J. Zweiback, T. E. Cowan, R. A. Smith, J. H. Hartley, R. Howell, C. A. Steinke, G. Hays, K. B. Wharton, J. K. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640–3643 (2000).
[CrossRef] [PubMed]

1999 (2)

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398, 489–492 (1999).
[CrossRef]

F. G. Patterson, J. Bonlie, D. Price, and B. White, “Suppression of parasitic lasing in large-aperture Ti:sapphire laser amplifiers,” Opt. Lett. 24, 963–965 (1999).
[CrossRef]

1995 (1)

Damage in materials from particle collision induced atomic cascades has been studied theoretically in, for example, T. Diaz de la Rubia and G. H. Gilmer, “Structural transformations and defect production in ion implanted silicon: a molecular dynamics simulation study,” Phys. Rev. Lett. 74, 2507–2510 (1995).
[CrossRef] [PubMed]

1993 (1)

M. Lewerenz, B. Schilling, and J. P. Toennies, “A new scattering deflection method for determining and selecting the sizes of large liquid clusters of 4He,” Chem. Phys. Lett. 206, 381–387 (1993).
[CrossRef]

1970 (1)

F. Floux, D. Cognard, L.-G. Denoeud, G. Piar, D. Parisot, J. L. Bobin, F. Delobeau, and C. Fauquignon, “Nuclear fusion reactions in solid-deuterium laser-produced plasma,” Phys. Rev. A 1, 821–824 (1970).
[CrossRef]

Balcou, Ph.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Bobin, J. L.

F. Floux, D. Cognard, L.-G. Denoeud, G. Piar, D. Parisot, J. L. Bobin, F. Delobeau, and C. Fauquignon, “Nuclear fusion reactions in solid-deuterium laser-produced plasma,” Phys. Rev. A 1, 821–824 (1970).
[CrossRef]

Bonlie, J.

Chambaret, J.-P.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Cognard, D.

F. Floux, D. Cognard, L.-G. Denoeud, G. Piar, D. Parisot, J. L. Bobin, F. Delobeau, and C. Fauquignon, “Nuclear fusion reactions in solid-deuterium laser-produced plasma,” Phys. Rev. A 1, 821–824 (1970).
[CrossRef]

Cowan, T. E.

J. Zweiback, R. A. Smith, T. E. Cowan, G. Hays, K. B. Wharton, V. P. Yanovsky, and T. Ditmire, “Nuclear fusion driven by Coulomb explosions of large deuterium clusters,” Phys. Rev. Lett. 84, 2634–2637 (2000).
[CrossRef] [PubMed]

J. Zweiback, T. E. Cowan, R. A. Smith, J. H. Hartley, R. Howell, C. A. Steinke, G. Hays, K. B. Wharton, J. K. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640–3643 (2000).
[CrossRef] [PubMed]

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398, 489–492 (1999).
[CrossRef]

Crane, J. K.

J. Zweiback, T. E. Cowan, R. A. Smith, J. H. Hartley, R. Howell, C. A. Steinke, G. Hays, K. B. Wharton, J. K. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640–3643 (2000).
[CrossRef] [PubMed]

Delobeau, F.

F. Floux, D. Cognard, L.-G. Denoeud, G. Piar, D. Parisot, J. L. Bobin, F. Delobeau, and C. Fauquignon, “Nuclear fusion reactions in solid-deuterium laser-produced plasma,” Phys. Rev. A 1, 821–824 (1970).
[CrossRef]

Denoeud, L.-G.

F. Floux, D. Cognard, L.-G. Denoeud, G. Piar, D. Parisot, J. L. Bobin, F. Delobeau, and C. Fauquignon, “Nuclear fusion reactions in solid-deuterium laser-produced plasma,” Phys. Rev. A 1, 821–824 (1970).
[CrossRef]

Diaz de la Rubia, T.

Damage in materials from particle collision induced atomic cascades has been studied theoretically in, for example, T. Diaz de la Rubia and G. H. Gilmer, “Structural transformations and defect production in ion implanted silicon: a molecular dynamics simulation study,” Phys. Rev. Lett. 74, 2507–2510 (1995).
[CrossRef] [PubMed]

Ditmire, T.

J. Zweiback and T. Ditmire, “Femtosecond laser energy deposition in strongly absorbing cluster gases diagnosed by blast wave trajectory analysis,” Phys. Plasmas 8, 4545–4550 (2001).
[CrossRef]

J. Zweiback, T. E. Cowan, R. A. Smith, J. H. Hartley, R. Howell, C. A. Steinke, G. Hays, K. B. Wharton, J. K. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640–3643 (2000).
[CrossRef] [PubMed]

J. Zweiback, R. A. Smith, T. E. Cowan, G. Hays, K. B. Wharton, V. P. Yanovsky, and T. Ditmire, “Nuclear fusion driven by Coulomb explosions of large deuterium clusters,” Phys. Rev. Lett. 84, 2634–2637 (2000).
[CrossRef] [PubMed]

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398, 489–492 (1999).
[CrossRef]

Fauquignon, C.

F. Floux, D. Cognard, L.-G. Denoeud, G. Piar, D. Parisot, J. L. Bobin, F. Delobeau, and C. Fauquignon, “Nuclear fusion reactions in solid-deuterium laser-produced plasma,” Phys. Rev. A 1, 821–824 (1970).
[CrossRef]

Floux, F.

F. Floux, D. Cognard, L.-G. Denoeud, G. Piar, D. Parisot, J. L. Bobin, F. Delobeau, and C. Fauquignon, “Nuclear fusion reactions in solid-deuterium laser-produced plasma,” Phys. Rev. A 1, 821–824 (1970).
[CrossRef]

Gilmer, G. H.

Damage in materials from particle collision induced atomic cascades has been studied theoretically in, for example, T. Diaz de la Rubia and G. H. Gilmer, “Structural transformations and defect production in ion implanted silicon: a molecular dynamics simulation study,” Phys. Rev. Lett. 74, 2507–2510 (1995).
[CrossRef] [PubMed]

Grillon, G.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Hartley, J. H.

J. Zweiback, T. E. Cowan, R. A. Smith, J. H. Hartley, R. Howell, C. A. Steinke, G. Hays, K. B. Wharton, J. K. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640–3643 (2000).
[CrossRef] [PubMed]

Hays, G.

J. Zweiback, T. E. Cowan, R. A. Smith, J. H. Hartley, R. Howell, C. A. Steinke, G. Hays, K. B. Wharton, J. K. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640–3643 (2000).
[CrossRef] [PubMed]

J. Zweiback, R. A. Smith, T. E. Cowan, G. Hays, K. B. Wharton, V. P. Yanovsky, and T. Ditmire, “Nuclear fusion driven by Coulomb explosions of large deuterium clusters,” Phys. Rev. Lett. 84, 2634–2637 (2000).
[CrossRef] [PubMed]

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398, 489–492 (1999).
[CrossRef]

Howell, R.

J. Zweiback, T. E. Cowan, R. A. Smith, J. H. Hartley, R. Howell, C. A. Steinke, G. Hays, K. B. Wharton, J. K. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640–3643 (2000).
[CrossRef] [PubMed]

Hulin, D.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Krainov, V. P.

V. P. Krainov and M. B. Smirnov, “Surface heating of deuterium clusters by the field of a superintense ultrashort laser pulse for implementing the nuclear reaction d+d→ 3He+n,” Phys. At. Nucl. 64, 585–587 (2001).
[CrossRef]

Lewerenz, M.

M. Lewerenz, B. Schilling, and J. P. Toennies, “A new scattering deflection method for determining and selecting the sizes of large liquid clusters of 4He,” Chem. Phys. Lett. 206, 381–387 (1993).
[CrossRef]

Martino, J.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Moustaizis, S.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Notebaert, L.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Parisot, D.

F. Floux, D. Cognard, L.-G. Denoeud, G. Piar, D. Parisot, J. L. Bobin, F. Delobeau, and C. Fauquignon, “Nuclear fusion reactions in solid-deuterium laser-produced plasma,” Phys. Rev. A 1, 821–824 (1970).
[CrossRef]

Patterson, F. G.

Piar, G.

F. Floux, D. Cognard, L.-G. Denoeud, G. Piar, D. Parisot, J. L. Bobin, F. Delobeau, and C. Fauquignon, “Nuclear fusion reactions in solid-deuterium laser-produced plasma,” Phys. Rev. A 1, 821–824 (1970).
[CrossRef]

Pittman, M.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Price, D.

Pussieux, Th.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Rousse, A.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Rousseau, J.-Ph.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Schilling, B.

M. Lewerenz, B. Schilling, and J. P. Toennies, “A new scattering deflection method for determining and selecting the sizes of large liquid clusters of 4He,” Chem. Phys. Lett. 206, 381–387 (1993).
[CrossRef]

Schmidt, M.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Sebban, S.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Smirnov, M. B.

V. P. Krainov and M. B. Smirnov, “Surface heating of deuterium clusters by the field of a superintense ultrashort laser pulse for implementing the nuclear reaction d+d→ 3He+n,” Phys. At. Nucl. 64, 585–587 (2001).
[CrossRef]

Smith, R. A.

J. Zweiback, T. E. Cowan, R. A. Smith, J. H. Hartley, R. Howell, C. A. Steinke, G. Hays, K. B. Wharton, J. K. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640–3643 (2000).
[CrossRef] [PubMed]

J. Zweiback, R. A. Smith, T. E. Cowan, G. Hays, K. B. Wharton, V. P. Yanovsky, and T. Ditmire, “Nuclear fusion driven by Coulomb explosions of large deuterium clusters,” Phys. Rev. Lett. 84, 2634–2637 (2000).
[CrossRef] [PubMed]

Steinke, C. A.

J. Zweiback, T. E. Cowan, R. A. Smith, J. H. Hartley, R. Howell, C. A. Steinke, G. Hays, K. B. Wharton, J. K. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640–3643 (2000).
[CrossRef] [PubMed]

Sublemontier, O.

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

Toennies, J. P.

M. Lewerenz, B. Schilling, and J. P. Toennies, “A new scattering deflection method for determining and selecting the sizes of large liquid clusters of 4He,” Chem. Phys. Lett. 206, 381–387 (1993).
[CrossRef]

Wharton, K. B.

J. Zweiback, T. E. Cowan, R. A. Smith, J. H. Hartley, R. Howell, C. A. Steinke, G. Hays, K. B. Wharton, J. K. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640–3643 (2000).
[CrossRef] [PubMed]

J. Zweiback, R. A. Smith, T. E. Cowan, G. Hays, K. B. Wharton, V. P. Yanovsky, and T. Ditmire, “Nuclear fusion driven by Coulomb explosions of large deuterium clusters,” Phys. Rev. Lett. 84, 2634–2637 (2000).
[CrossRef] [PubMed]

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398, 489–492 (1999).
[CrossRef]

White, B.

Yanovsky, V. P.

J. Zweiback, R. A. Smith, T. E. Cowan, G. Hays, K. B. Wharton, V. P. Yanovsky, and T. Ditmire, “Nuclear fusion driven by Coulomb explosions of large deuterium clusters,” Phys. Rev. Lett. 84, 2634–2637 (2000).
[CrossRef] [PubMed]

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398, 489–492 (1999).
[CrossRef]

Zweiback, J.

J. Zweiback and T. Ditmire, “Femtosecond laser energy deposition in strongly absorbing cluster gases diagnosed by blast wave trajectory analysis,” Phys. Plasmas 8, 4545–4550 (2001).
[CrossRef]

J. Zweiback, T. E. Cowan, R. A. Smith, J. H. Hartley, R. Howell, C. A. Steinke, G. Hays, K. B. Wharton, J. K. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640–3643 (2000).
[CrossRef] [PubMed]

J. Zweiback, R. A. Smith, T. E. Cowan, G. Hays, K. B. Wharton, V. P. Yanovsky, and T. Ditmire, “Nuclear fusion driven by Coulomb explosions of large deuterium clusters,” Phys. Rev. Lett. 84, 2634–2637 (2000).
[CrossRef] [PubMed]

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398, 489–492 (1999).
[CrossRef]

Chem. Phys. Lett. (1)

M. Lewerenz, B. Schilling, and J. P. Toennies, “A new scattering deflection method for determining and selecting the sizes of large liquid clusters of 4He,” Chem. Phys. Lett. 206, 381–387 (1993).
[CrossRef]

Nature (1)

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398, 489–492 (1999).
[CrossRef]

Opt. Lett. (1)

Phys. At. Nucl. (1)

V. P. Krainov and M. B. Smirnov, “Surface heating of deuterium clusters by the field of a superintense ultrashort laser pulse for implementing the nuclear reaction d+d→ 3He+n,” Phys. At. Nucl. 64, 585–587 (2001).
[CrossRef]

Phys. Plasmas (1)

J. Zweiback and T. Ditmire, “Femtosecond laser energy deposition in strongly absorbing cluster gases diagnosed by blast wave trajectory analysis,” Phys. Plasmas 8, 4545–4550 (2001).
[CrossRef]

Phys. Rev. A (1)

F. Floux, D. Cognard, L.-G. Denoeud, G. Piar, D. Parisot, J. L. Bobin, F. Delobeau, and C. Fauquignon, “Nuclear fusion reactions in solid-deuterium laser-produced plasma,” Phys. Rev. A 1, 821–824 (1970).
[CrossRef]

Phys. Rev. Lett. (4)

J. Zweiback, R. A. Smith, T. E. Cowan, G. Hays, K. B. Wharton, V. P. Yanovsky, and T. Ditmire, “Nuclear fusion driven by Coulomb explosions of large deuterium clusters,” Phys. Rev. Lett. 84, 2634–2637 (2000).
[CrossRef] [PubMed]

G. Grillon, Ph. Balcou, J.-P. Chambaret, D. Hulin, J. Martino, S. Moustaizis, L. Notebaert, M. Pittman, Th. Pussieux, A. Rousse, J.-Ph. Rousseau, S. Sebban, O. Sublemontier, and M. Schmidt, “Deuterium–deuterium fusion dynamics in low density molecular cluster jets irradiated by intense ultrafast laser pulses,” Phys. Rev. Lett. 89, 065005–1–065005–4 (2002).
[CrossRef]

J. Zweiback, T. E. Cowan, R. A. Smith, J. H. Hartley, R. Howell, C. A. Steinke, G. Hays, K. B. Wharton, J. K. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640–3643 (2000).
[CrossRef] [PubMed]

Damage in materials from particle collision induced atomic cascades has been studied theoretically in, for example, T. Diaz de la Rubia and G. H. Gilmer, “Structural transformations and defect production in ion implanted silicon: a molecular dynamics simulation study,” Phys. Rev. Lett. 74, 2507–2510 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical photomultiplier tube (PMT) signal for a neutron detector to plasma separation of 1.45 m. The laser energy for this shot was 6.86 J, and the pulse duration was 100 fs. The x-ray (first) and neutron (second) peaks are easily resolvable and appear with a 63-ns relative delay, corresponding to the difference in flight time expected for a photon and a 2.45-MeV neutron. The number of neutrons represented by a given PMT signal was calibrated by determining the average peak height and area of a single neutron count, and the signal in Fig. 1 corresponds to a total of 80 neutrons detected and (accounting for the detection efficiency of this particular detector) therefore a total of 340 neutrons arriving in a solid angle of 4π×4.3×10-4. Assuming the emission is isotropic, the total yield is 8.0×105±11% neutrons. The uncertainty is simply the statistical uncertainty associated with the number of neutrons actually measured in the detector and is assumed to be that of a Poissonian process.

Fig. 2
Fig. 2

Typical deuterium ion energy spectra (a) obtained from the ion current (b) captured on a Faraday cup placed 0.52 m from the interaction region. The laser energy for this shot was 9.7 J, and the pulse duration was 100 fs. The Faraday-cup current shown in (b) possesses two distinct ion features: an initial peak due to the arrival of hot (average of 2.1 keV) deuterium ions generated in the cluster explosions, and a second peak due to the arrival of cold (average of 30 eV) deuterium ions whose energy is consistent with the breakout velocity of a Taylor–Sedov blast wave launched by the absorption of the short laser pulse. The part of the Faraday-cup signal (thick solid curve) containing the hot ions is fit to the energy distribution of a Coulomb-explosion model averaged over a log-normal distribution of cluster sizes within the plume (thin solid curve).

Fig. 3
Fig. 3

Fusion neutron yield from an exploding deuterium cluster plasma as a function of pulse energy for two different pulse durations, (filled squares) 1-ps and (filled circles) 100-fs pulses. These data were obtained with a focal-spot size of 5 μm. The dotted curves are the least-mean-squares fit to a power-law dependence of the yield on pulse energy, Y=QEα. The best fit was obtained with α=2.29 and α=2.15 for the 1-ps and 100-fs pulses, respectively. The proportionality constant, Q, was a factor of 9.3 larger for the shorter pulse duration.

Fig. 4
Fig. 4

Comparison of the fusion neutron yield from an exploding deuterium-cluster plasma as a function of pulse energy for (filled diamond) the Falcon laser experiment (35-fs pulses and a spot size of 30 μm) and (filled circle) the LLNL JanUSP laser (100 fs and a focal-spot size of 5 μm). The solid curves are the least-mean-squares fit to a power-law dependence of the yield on pulse energy, Y=QEα. The best fit was obtained with α=2.3 and α=2.15 for the 35-fs and 100-fs pulses, respectively. The proportionality constant, Q, was a factor of 250 larger for the Falcon laser experiment. Both scalings are approximately quadratic with pulse energy but have different magnitudes, due in part to the difference in focal geometries and in part due to the difference in pulse duration.  

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

f(E)dEEdE, EEmax,
Emax=qe2a2n030
PN(N)=1Nσ2πexp[-(ln N-μ)2/2σ2],
Np=0NpPN(N)dN=exppμ+p2σ22.
F(E)dEg(E)EdE,
g(E)=NEPN(N)dN
NE=43 πn03E0qe2n03/2.
Esurf=n0qe30 a,
Ic=c02 |Esurf|2.

Metrics