Abstract

The ionization of neon was studied in strong (10141016 W/cm2) and ultrastrong (10171018 W/cm2) laser fields. Measurements of ionization yields in ultrastrong fields reveal that they are dominated by sequential tunneling ionization of the ion charge states. The rescattering mechanism, identified with the generation of high-order harmonics and multiple electron ionization in strong fields, is modeled for ultrastrong fields and is shown to be reduced by orders of magnitude when compared with strong-field ionization. The results from the model are consistent with the experimental results and indicate that the reduced core size for ions and the Lorentz force in ultrastrong fields combine to reduce rescattering in ultrastrong fields.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription